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Appendix A. Additional details on data collection, statistical methods, and maximum entropy. 

Data 

We compiled species abundance data from six continental- or global-scale databases spanning 

four major taxonomic groups and encompassing 15,848 sites distributed across all continents 

except Antarctica.  We used only one year of sampling for each site to capture only those 

individuals partitioning resources in a community at one time in the same place. We used only 

data for communities comprised of a minimum of 10 species, based on the assumption that 

abundance distributions will not be well characterized with fewer than 10 data points. In the 

descriptions of datasets below, averages are reported as the mean ± 1 standard deviation. 

Birds 

We used community data collected in 2009 from 2,769 routes of the Breeding Bird Survey 

(Sauer et al. 2011) (BBS) and 1,999 counts of the Christmas Bird Count (National Audubon 

Society 2002) (CBC). BBS routes are 40 km long, each consisting of 50 three minute point 

counts, 800 m apart, sampled annually in June. The 2009 data include a total of 1,819,908 

individuals representing 347 species of diurnal landbirds, with individual routes averaging 657.2 

± 323.9 individuals (range = 53 – 3,504) and 46 ± 13 species (range = 10 – 81). CBC count 

circles are 24.1 km in diameter and are censused by multiple observers over the course of a day. 
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This intensive sampling effort yielded a total of 45,294,162 individuals representing 397 species 

of diurnal landbirds in 2009 (count year 109), with individual circles averaging 22,658.4 ± 

254,604.2 individuals (range = 36 – 10,280,057) and 45 ± 17 species (range = 10 – 116). 

Nocturnal species, water birds, and raptors were excluded from analyses, because they are poorly 

sampled by these survey methods. 

Trees 

We also used two existing data sets of species abundance for communities of trees, the USFS 

Forest Inventory Analysis program (U.S. Department of Agriculture 2010, Woudenberg et al. 

2010, http://apps.fs.fed.us/fiadb-downloads/datamart.html) (FIA), and the Alwyn H. Gentry 

Forest Transect Data Set (Phillips and Miller 2002) (referred to herein as ‘Gentry’). We used one 

year of data (calendar year of sampling varies among plots) for FIA phase 2 plots that were 

sampled using the standardized methodology implemented in 1999 [see the FIA National Core 

Field Guide for more information (U.S. Department of Agriculture 2010)]. The standard plot 

consists of four 24.0-foot (7.32 m) radius subplots, on which trees 5.0 inches (12.7 cm) and 

greater in diameter are identified to species and measured. We used species abundance data for 

10,355 FIA plots, encompassing a total of 380,581 individuals and 236 species, with plots 

averaging 36.8 ± 12.5 individuals (range = 11 – 118) and 11.4 ± 1.6 species (range = 10 – 21). 

The Gentry data were collected from 226-0.1 hectare sites throughout the world, with each site 

sampled once over the course of a 22 year period. At each site, all plants with stem diameters of 

2.5 cm or greater were identified and measured along ten 2 × 50 m transects. It should be noted 

that, due to difficulties in the taxonomy and identification of tropical trees, some species in the 

Gentry dataset are identified only as morpho-species (unique within sites), and species’ names 

vary among sites due to both typographical errors and synonymy problems. Since we only 



23 
 

analyzed data within a site, these issues do not affect our analyses, but they artificially elevate 

the count of species in the Gentry dataset and therefore the number of species included in the 

overall analysis. We used data from 222 sites, including 67,405 individuals representing 

approximately 7,300 species, with individual sites averaging 303.6 ± 115.6 individuals (range = 

44 – 779) and approximately 91.4 ± 59.7 species  (range = 10 – 250). 

Mammals 

We used species abundance data for the 103 sites included in the Mammal Community Database 

(Thibault et al. 2011) (MCDB) that included at least 10 species (mean richness = 13.6 ± 4.0 

species; range = 10 – 34). These data have been compiled from various published sources and 

therefore have not been collected using a standardized protocol across sites. As a result, these 

data are species-level abundances of small mammals that were captured using various levels of 

sampling effort spread across varying amounts of time and space. Despite these limitations, these 

data represent, to our knowledge, the largest collection of mammal community data ever 

analyzed in one study. The data encompass a total of 380 mammal species and 94,866 

individuals (mean abundance per site = 921.0 ± 1,434.9; range = 19 – 10,085). 

Butterflies 

Butterfly community abundance data were collected as part of the continent-wide North 

American Butterfly Count program of the North American Butterfly Association (North 

American Butterfly Association 2009) (NABA). This program includes the 4th of July Butterfly 

Counts, 1st of July Butterfly Counts, 16th of September Butterfly Counts, and Seasonal Butterfly 

Counts. We used only one date of sampling per site from the 2009 data, with most of the data 

collected in July. These counts are censuses of all butterflies seen within a 25-km (15-mile) 

diameter circle over the course of a day (minimum of 6 hours) by various numbers of observers.  
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We used species abundance data from 400 count circles, including 453 species (mean richness 

per site = 34.9 ± 13; range = 10 – 95) and 405,354 individuals (mean per-site abundance = 

1,013.4 ± 3,808; range = 23 – 73,435). 

 

 

Taxonomic and Geographic Limitations 

While this is, to our knowledge, the most extensive collection of ecological communities ever 

assembled, it does contain taxonomic and geographic biases. In particular, while there are 

communities on six continents, the vast majority of the data are from North America. In addition, 

we lack data on several major taxonomic groups including both aquatic and microbial 

communities. Therefore, the inference regarding the ability to capture the form of the species-

abundance distribution using information on only richness and abundance is strongest for 

terrestrial systems in North America. 

 

Statistical Methods 

A Brief Introduction to the Method of Maximum Entropy 

The maximum entropy principle (MaxEnt) is a method from information theory that is used to 

make inference related to probability distributions (Jaynes 2003). MaxEnt identifies the 

probability distribution that is consistent only with a limited amount of prior information 

regarding the underlying processes or the state of the system. The fundamental idea is that, 

among all potential configurations concordant with some constraints, the least biased (i.e., most 

likely) configuration is the one that relies on the fewest assumptions, i.e., the one that includes 

the least additional information beyond the specified constraints. Intuitively, a peaked 

distribution is more precise and informative in inference compared to a flat one; thus the 
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application of MaxEnt is equivalent to identifying the flattest (i.e., closest to uniform) 

distribution possible that also matches the prior information. 

The most common measure of information (or rather, lack of information) is Shannon 

entropy  

ሺܺሻܪ ൌ െ ∑ ௜ሻ௡ݔሺ݌
௜ୀଵ log ሺ݌ሺݔ௜ሻሻ,  

where p denotes the probability mass function of a random variable X. This measure is 

maximized when the distribution is flattest with respect to the prior information. Prior 

information can often be expressed as constraints on the expected value of some function of the 

variable: 

∑ ݂ሺݔ௜ሻ݌ሺݔ௜ሻ ൌ ௜ۄ௜ሻݔሺ݂ۃ   

such as the mean or the variance. This type of constraint is known as a “soft constraint” (sensu 

Haegeman and Etienne 2010). It is also possible to place “hard constraints” on the distribution 

that fix specific values rather than expectations, which can lead to different predictions 

(Haegeman and Etienne 2010). Once the constraints are defined, the determination of the least 

biased distribution is a constrained optimization problem, which can be solved with the method 

of Lagrange multipliers (Jaynes 2003, Harte 2011). 

 

Harte et al.’s Maximum Entropy Based Theory 

In the theory developed by Harte and colleagues (Harte et al. 2008, 2009, Harte 2011), 

macroecological patterns are inferred based on a joint distribution, R(n, ε | S0, N0, E0), which 

specifies the probability that a randomly selected species from a given community has 

abundance n, and a randomly selected individual from that species has a metabolic requirement 

in the interval (ε, ε+dε). The constraints on this distribution are soft constraints on the average 
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abundance per species, N0/S0, and the average energy flux per species, E0/S0, and hard constraints 

on the upper bound of the distribution equal to N0 for n and E0 for ε. By applying the method of 

Lagrange multipliers, integrating out energy, and dropping terms that are very small (this 

approximation has been empirically justified for reasonably large values of S0 and N0; see Box 

7.4, and Table 7.2 in Harte 2011), it has been shown that the species-abundance distribution 

(SAD) predicted by MaxEnt follows Fisher’s log-series distribution:  

Φሺ݊ | ܵ଴, ଴ܰሻ ൌ ଵ

௟௢௚ሺఉషభሻ

௘షഁ೙

௡
   [Eq. 7.32 from (Harte 2011)] 

where Φ(n) is the probability that a species has abundance n, and β is the sum of the two 

Lagrange multipliers and is defined by: 
ேబ

ௌబ
ൌ

∑ ௘షഁ೙ಿబ
೙సభ

∑ ௘షഁ೙ ௡⁄ಿబ
೙సభ

  (Harte et al. 2008, Harte 2011). In the 

traditional parameterization of the log-series β = –log(p). 

While E0 does not appear in the resulting form of the abundance distribution, its presence in the 

model does influence the general shape of the distribution. If the only constraint included in this 

application of MaxEnt was the average abundance (N0/S0), and the uniform prior is maintained 

(Harte et al. 2008, 2009), then the resulting prediction is a geometric distribution. 

  Other applications of MaxEnt to this problem have also predicted log-series distributions 

but have used priors different from the uniform (Pueyo et al. 2007, Dewar and Porté 2008). 

Using MaxEnt with different detailed assumptions can also produce distributions that differ from 

the log-series (Haegeman and Etienne 2010), but alternative MaxEnt approaches to modeling the 

SAD tend to produce predictions that are generally similar in shape (Banavar et al. 2010, Frank 

2011). Given these similarities, our results are likely relatively robust to the application of 

different MaxEnt approaches. A detailed exploration of the different maximum entropy models 

for the SAD would represent a valuable contribution to the field, but is beyond the scope of this 
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manuscript. Some preliminary comparisons based on six datasets suggest that alternative 

formulations may perform even better than Harte et al.’s models (Banavar et al. 2010). 

 

 

 

Fitting the predicted log-series distribution to empirical datasets 

Harte and colleagues have developed several levels of approximation in calculating the log-series 

parameter p (Harte et al. 2008, 2009, Harte 2011). In our analysis we adopted Eq. 7.27 in (Harte 

2011): 

ேబ

ௌబ
ൌ

∑ ௘షഁ೙ಿబ
೙సభ

∑ ௘షഁ೙ ௡⁄ಿబ
೙సభ

   (A.1)  

where β = –log(p). This formula is computationally more intensive but makes fewer 

approximation assumptions compared to the other formulas. Given S0 and N0, β was solved 

numerically for each community, and p was obtained by the back transformation p = exp(-β). 

This is equivalent to the maximum likelihood estimate of the log-series when the log-series is 

right truncated at N0 (see below). 

One way of assessing the predictive power of a theory for empirical SADs is by binning. 

However the choice of bin width is arbitrary, and power is lost by grouping data together. In our 

study we converted theoretical log-series distributions to rank-abundance distributions (RAD), 

i.e., the abundance of each species within the community from the most abundant to the least 

abundant, which were then compared to the empirical RADs. Log-series distributions were right 

truncated at N0 to accommodate the implicit restriction that no species can have more individuals 

than the total number of individuals within the community. To obtain RADs, we utilized the 

concept of the cumulative density function (CDF), F(n), i.e., the fraction of species with 
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abundance no more than n. The predicted abundance for species with rank i (ranging from 1 to 

S0) ni is then calculated by solving ሺܵ଴ െ ݅ ൅ 0.5ሻ/ܵ଴ ൌ  ሺ݊௜ሻ (A.2) (Harte 2011). We present anܨ

example to illustrate how the procedure works (Appendix B, Fig. B1). In 2009, the observed 

species richness of BBS Route 1 in British Columbia is 42, with a total abundance across all 

species of 436 individuals. For this community, parameter p for the predicted log-series can be 

obtained by solving Eq. A1 to give 0.974. Fig. B1 (a) shows the CDF of the corresponding 

truncated distribution. To obtain abundance for each species, we solve Eq. A.2, which is 

equivalent to drawing a horizontal line for each rank and identifying the corresponding x value of 

the intersection (Harte 2011). The predicted RAD is shown in Fig. B1 (b).  

 

Predictive power across sites and taxonomic groups 

The ability of the maximum entropy model to predict observed abundance distributions is 

evaluated using observed-predicted plots and associated coefficients of determination (R2). 

Instead of regressing the observed abundances with the predicted abundances, which can yield 

high R2 values even with consistent deviations from the predictions, we calculated R2 with 

respect to the one-to-one line, i.e., the proportion of variance among the observed abundances 

that is explained by the predicted abundances alone:  

ܴଶ ൌ 1 െ
∑ ሺ݊௜ି௢௕௦ െ ݊௜ି௣௥௘ௗሻଶௌబ

௜ୀଵ
∑ ሺ݊௜ି௢௕௦ െ ݊పି௢௕௦തതതതതതതതሻଶௌబ

௜ୀଵ

൘    (A.3) 

where ni-obs and ni-pred are the log-transformed observed and predicted abundances of the i-th 

ranked species, respectively, and ݊పି௢௕௦തതതതതതതത is the mean log-transformed observed abundance across 

all species and sites. All species from different sites within a given dataset (i.e., NABC, BBS, 

CBC, MCDB, FIA and Gentry) were pooled to calculate a single R2, such that each point in an 

observed-predicted plot represents a single rank (i.e., a single species) at one site. As such, the 
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associated R2 value characterizes the proportion of variance in the abundance across ranks and 

across sites that can be determined using only information on the richness and abundance at each 

site. We also calculated R2 values for each individual site. The results of the individual site 

analyses are presented as kernel density estimates of the distribution of R2 values in the insets of 

Fig. 2. 

 

Comparison between the MaxEnt prediction and the log-normal distribution 

A variety of different forms of the log-normal distribution have been used in the literature. Here 

we chose the Poisson log-normal distribution, a log-normal distribution discretized by a Poisson 

sampling process (Bulmer 1974), which is generally considered the most appropriate form of the 

log-normal for fitting to abundance distributions (Connolly et al. 2005, McGill et al. 2007), even 

though it is not the most commonly used form. We compared the performance of the two 

distributions using Akaike Information Criterion (AIC) (Burnham and Anderson 2002, Connolly 

et al. 2005), which is a measure of likelihood while penalizing for complexity. We used AICC, a 

second order variant of AIC that corrects for small sample size: 

஼ܥܫܣ ൌ 2݇ െ 2 logሺܮሻ ൅ ଶ௞ሺ௞ାଵሻ

௡ି௞ିଵ
 (A.4) 

where L is the likelihood of the corresponding distribution, n is sample size, and k is the number 

of parameters. 

Because right truncated likelihoods for the Poisson log-normal are not readily available, 

this analysis was conducted by treating both distributions as having no upper bound. For the log-

series, the single parameter p was estimated using a form of the MaxEnt solution that is 

equivalent to the maximum likelihood estimate for the untruncated log-series (Eq. B.4 from 

(Harte et al. 2008) (see below) 
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ܰ
ܵ

ൌ
݌

1 െ ݌
·

1

log ቀ 1
1 െ ቁ݌

 

For the Poisson log-normal, the two parameters μ and σ were estimated with maximum 

likelihood using the approach described in Bulmer (1974), with code adapted from the 

Palamedes software package developed by the NCEAS working group on “Tools and fresh 

approaches for species abundance distributions.” The AICC values of the two distributions were 

then converted to Akaike weights which indicate the relative probability that one distribution is 

superior compared to the other (Burnham and Anderson 2002). The results of this analysis are 

nearly identical if we use the MaxEnt parameter calculation that is used for the predictive power 

analyses (which assumes that the log-series distribution is truncated at N0). 

  

Deriving parameter estimate for log-series using maximum likelihood 

In this section we derive the maximum likelihood estimator for the log-series parameter p, and 

demonstrate that the MaxEnt model developed by Harte and colleagues (Harte et al. 2008, 2009, 

Harte 2011) is compatible with the maximum likelihood method without making the explicit 

assumption.  

 

1. Untruncated log-series 

If the SAD is assumed to take the form of an untruncated log-series distribution, it follows that  

Pr ሺ݊|݌ሻ ൌ
െ1

log ሺ1 െ ሻ݌
௡݌

݊
 

where Pr(n|p) denotes the probability that a species has abundance n (i.e., SAD) given fitted 

parameter p. For a community of S species with abundances (n1, n2, …, nS), the joint probability 

is  
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Prሺ݊ଵ, ݊ଶ, … , ݊ௌ|݌ሻ ൌ ෑ Pr ሺ
ௌ

௜ୀଵ
݊௜|݌ሻ ൌ ሺ

1

log ቀ 1
1 െ ቁ݌

ሻௌ ·
∑݌ ௡೔

∏ ݊௜
 

We then seek the maximum likelihood estimator ̂݌ that maximizes the joint probability by setting 

its partial derivative to zero: 

߲Pr ሺ݊ଵ, ݊ଶ, … , ݊ௌ|݌ሻ

݌߲

ൌ ሺ
1

log ቀ 1
1 െ ቁ݌

ሻௌ · ∑݌ ௡೔ିଵ · ෍ ݊௜ ൅ ሺ
1

log ቀ 1
1 െ ቁ݌

ሻௌାଵ · ܵ · ∑݌ ௡೔ · ሺെ
1

1 െ ݌
ሻ ൌ 0 

ฺ ෍ ݊௜ ൌ
ௌ

௜ୀଵ
ܵ ·

݌
1 െ ݌

·
1

log ቀ 1
1 െ ቁ݌

 

Letting N denote ∑ ݊௜
ௌ
௜ୀଵ , i.e., the total abundance for all species within the community, we have  

ܰ
ܵ

ൌ
݌

1 െ ݌
·

1

log ቀ 1
1 െ ቁ݌

 

which is identical to Eq. B.4 derived by Harte and colleagues (Harte et al. 2008) using MaxEnt .  

 

2. Truncated log-series 

Alternatively, if the SAD is assumed to follow a log-series distribution truncated at ܰ ൌ ∑ ݊௜
ௌ
௜ୀଵ , 

i.e., if no species can have an abundance higher than the total number of individuals within the 

community, we have  

Pr ሺ݊|݌ሻ ൌ
௡݌

݊
/ ෍

௜݌

݅

ே

௜ୀଵ

 

The joint probability in this case is  

Prሺ݊ଵ, ݊ଶ, … , ݊ௌ|݌ሻ ൌ ෑ Pr ሺ
ௌ

௜ୀଵ
݊௜|݌ሻ ൌ

∑݌ ௡೔

∏ ݊௜
· ሺ෍

௜݌

݅

ே

௜ୀଵ

ሻିௌ 



32 
 

Setting the partial derivative of the log-transformed joint probability to zero, 

߲log ሺPrሺ݊ଵ, ݊ଶ, … , ݊ௌ|݌ሻሻ
݌߲

ൌ
ܰ
݌

െ
ܵ

∑ ௜݌

݅
ே
௜ୀଵ

· ෍
݅ · ௜ିଵ݌

݅

ே

௜ୀଵ

ൌ 0 

֜
ܰ
݌

െ
ܵ

∑ ௜݌

݅
ே
௜ୀଵ

·
1 െ ே݌

1 െ ݌
ൌ 0 

ฺ
ܵ
ܰ

·
݌ െ ேାଵ݌

1 െ ݌
ൌ ෍

௜݌

݅

ே

௜ୀଵ

 

which is identical to Eq. 3 derived by Harte and colleagues (Harte et al. 2008) using MaxEnt . 

Because the primary constraints in the Maximum Entropy model are “soft constraints” (sensu 

Haegeman and Etienne 2010), it is valid to treat the probabilities as independent for each species 

and therefore to treat the likelihoods in the usual way as done here and in the statistical analysis. 
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