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Measuring diversity:
the importance of species similarity

Tom Leinster and Christina A. Cobbold

Appendix A: Mathematical proofs

In this appendix, we write

PS = {(p1, . . . , pS) ∈ RS | pi ≥ 0,
∑

pi = 1}

for the set of relative abundance vectors for S species. As usual, S denotes the theoretical
number of species in the population. It may be that pi = 0 for some values of i; we write
s ≤ S for the number of values of i such that pi > 0. A similarity matrix is an S × S
matrix Z such that 0 ≤ Zij ≤ 1 for all i and j, and Zii = 1 for all i.

In the definition

qDZ(p) =
(∑

pi(Zp)q−1
i

) 1
1−q

(q 6= 1,∞),

the sum is over all i = 1, . . . , S such that pi 6= 0. We now explain why the eventuality
that some species are absent (pi = 0) must be handled in this way.

We would like our measures of diversity to be continuous in p, as far as possible.
A small change in the abundance of a species should cause only a small change in the
measured diversity. An exception is species richness (naive diversity of order 0): if the
relative abundance of a species increases from 0 to 0.001, the species richness increases
by 1. However, we will show that for all q with 0 < q < ∞, diversity of order q is indeed
continuous in p.

When all S species are present, the sum in the definition of qDZ(p) is over all i from
1 to S. It follows easily that qDZ is continuous on the set

P◦S = {p ∈ PS | pi > 0 for all i}.

Given a continuous function on P◦S , there is at most one way of extending it to a con-
tinuous function on the whole of PS . We show that qDZ, defined as above, is indeed
continuous on the whole of PS (for 0 < q < ∞). This implies that, once the definition
has been decided for relative abundance vectors in which no pi is zero, our formula is the
only way of handling the case where one or more pi is zero.

Proposition A1 Let 0 < q < ∞. Then the function qDZ on PS is continuous.

The delicacy of the proof arises from the possibility that pi = 0 for some i: for then it
may be that (Zp)i = 0, and in that case (Zp)q−1

i is undefined for q < 1.

Proof When 1 < q < ∞, the sum in the definition of qDZ(p) can equivalently be taken
over all values of i from 1 to S. Then qDZ(p) is clearly continuous in p.

Let 0 < q < 1. Define functions f1, . . . , fS on PS by

fi(p) =

{
pi(Zp)q−1

i if pi > 0
0 if pi = 0.
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Since qDZ(p) = (f1(p)+· · ·+fS(p))1/(1−q), it suffices to prove that each fi is continuous.
Certainly fi is continuous on P(i)

S = {p ∈ PS | pi > 0}, so all we have to prove is that
if p ∈ PS with pi = 0, then fi(r) → 0 as r → p in PS . Since fi(r) = 0 whenever ri = 0,
we might as well constrain r to lie in P(i)

S . We have ri ≤ (Zr)i ≤ 1, so

rq
i = ri · rq−1

i ≥ ri · (Zr)q−1
i ≥ ri · 1 = ri. (A.1)

Now as r → p we have ri → pi = 0, so rq
i → 0; hence ri(Zr)q−1

i → 0 by (A.1), as
required.

Finally, consider q = 1. It is enough to prove that (Zp)pi

i is continuous in p, for each
i. (One evaluates 00 as 1.) Certainly it is continuous on P(i)

S , so all we have to prove
is that if p ∈ PS with pi = 0, then (Zr)ri

i → (Zp)pi

i = 1 as r → p in PS . We have
ri ≤ (Zr)i ≤ 1, so

rri
i ≤ (Zr)ri

i ≤ 1ri = 1. (A.2)

Observe also that limx→0+ xx = 1. Now as r → p we have ri → pi = 0, so we also have
rri
i → 1; hence (Zr)ri

i → 1 by (A.2), as required. �

Diversity of order 0 need not be continuous in p (depending on the similarity matrix).
The same goes for diversity of order ∞. However, 0DZ and ∞DZ do fit naturally into the
family (qDZ) of diversity measures, in the sense made precise by the following proposition.

Proposition A2 Let p ∈ PS and let Z be an S × S similarity matrix. Then:

i. qDZ(p) is continuous in q, for 0 < q < ∞

ii. limq→0
qDZ(p) = 0DZ(p)

iii. limq→∞
qDZ(p) = ∞DZ(p).

Proof All of this follows from standard results on generalized means (also called power
means), which can be found in Hardy et al. (1952). Writing xi = (Zp)i, we have

1/qDZ(p) =
( ∑

i : pi>0

pix
q−1
i

)1/(q−1)

(q 6= 1), which is the mean of order q − 1 of the family (xi)i : pi>0, weighted by the pis.
Similarly, 1/1DZ(p) is the mean of order 0.

Parts (i) and (ii) are immediate except for continuity at q = 1, which follows from
Theorem 3 of Hardy et al. Part (iii) follows from Theorem 4 of Hardy et al. �

Now consider the diversity qDZ(p) when q is an integer greater than 1. Let µq be
the expected value of

Zi1,i2Zi1,i3 · · ·Zi1,iq

over all samples with replacement of q individuals from the community, whose respective
species have been written as i1, i2, . . . , iq. Thus,

µq =
∑

i1,i2,...,iq

pi1pi2pi3 · · · piqZi1,i2Zi1,i3 · · ·Zi1,iq .

Proposition A3 Let q ≥ 2 be an integer. Then qDZ(p) = µ
1/(1−q)
q .

2



Proof Since q > 1, the sum in the definition of qDZ(p) might as well be over all
i = 1, . . . , S (including those for which pi = 0). We have

qDZ(p)1−q =
S∑

i=1

pi(Zp)q−1
i =

S∑
i=1

pi

( S∑
j=1

Zijpj

)q−1

=
∑

i,j1,...,jq−1

piZi,j1pj1Zi,j2pj2 · · ·Zi,jq−1pjq−1 = µq,

as required. �

The next result states that our formula for qHZ(p) agrees with that of Ricotta and
Szeidl (2006), except that they did not specify how their formula was to be interpreted
in the case that some of the relative abundances pi are 0. Recall from Section 3 of the
main text that although Ricotta and Szeidl referred to their inter-species differences as
‘distances’ and denoted them by dij , we call them ‘dissimilarities’ and denote them by
∆ij , since they are measured on a scale of 0 to 1.

Let Z be an S×S similarity matrix. Let ∆ be the corresponding dissimilarity matrix,
defined by ∆ij = 1− Zij .

Proposition A4 For 0 ≤ q < ∞ and p ∈ PS,

qHZ(p) =

{
1

q−1

(
1−

∑
i : pi>0 pi(1−

∑
j 6=i ∆ijpj)q−1

)
if q 6= 1

−
∑

i : pi>0 pi ln(1−
∑

j 6=i ∆ijpj) if q = 1.

Proof For i = 1, . . . , S we have

(Zp)i =
S∑

j=1

Zijpj =
S∑

j=1

(1−∆ij)pj = 1−
S∑

j=1

∆ijpj = 1−
∑
j 6=i

∆ijpj

since
∑S

j=1 pj = 1 and ∆ii = 1− Zii = 0. The result follows. �

Many authors have found it convenient to assume that the measure of dissimilarity
or distance between species is a metric in the mathematical sense. For distances (dij) to
define a metric means that (i) dij = 0 if and only if i = j; (ii) dij = dji; and (iii) the
triangle inequality holds: dij + djk ≥ dik.

Now, it may be that we started with inter-species distances dij measured on a scale
of 0 to ∞ and converted them to similarities Zij by the formula Zij = e−udij , where u is
a positive constant. These in turn correspond to dissimilarities ∆ij = 1−Zij , measured
on a scale of 0 to 1. Whether we are using (dij) or ∆ = (∆ij) matters: asking that (dij)
defines a metric is not the same as asking that (∆ij) defines a metric, as the following
proposition shows.

Proposition A5 If (dij) is a metric then (∆ij) is a metric, but the converse implication
fails.

Proof The quantities dij and ∆ij are related by ∆ij = 1 − e−udij , or equivalently,
dij = −(1/u) ln(1−∆ij). It is easy to see that axioms (i) and (ii) hold for d if and only
if they hold for ∆. For the triangle inequality (iii),

dij + djk ≥ dik ⇐⇒ − ln(1−∆ij)− ln(1−∆jk) ≥ − ln(1−∆ik)
⇐⇒ (1−∆ij)(1−∆jk) ≤ 1−∆ik

⇐⇒ ∆ij + ∆jk −∆ij∆jk ≥ ∆ik.
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Figure A1: Three simple phylogenetic trees, each with two present-day species. The
dotted horizontal lines show the beginning of the time period under consideration. In (i),
the tree has three branches, b1, b2, b3, with L(b1) = L(b2) = 2 and L(b3) = 1. Tree (i) is
ultrametric; trees (ii) and (iii) are not. In trees (i) and (ii), the present-day species have
a common ancestor in the time period considered; in tree (iii), they do not.

This implies the triangle inequality for ∆, but not conversely: e.g. S = 3, ∆12 = ∆23 =
1/2, ∆13 = 4/5. �

The next few results concern the relationships between our measures qDZ and other
indices of diversity.

First we compare our measures with some measures of phylogenetic diversity. All of
the latter are based on phylogenetic trees, some very simple examples of which are shown
in Fig. A1. From a phylogenetic tree we extract the following information:

• the number S of present-day species (which we put in order: 1, 2, . . . , S)

• the set of branches

• for each branch b, its length L(b)

• for each branch b, the set Ib ⊆ {1, 2, . . . , S} of present-day species descended from b.

We make the convention that the variable i always ranges over the present-day species
1, 2, . . . , S, and the variable b always ranges over the set of branches.

Before making the comparison, we review the phylogenetic measures concerned. The
simplest is that of Faith (1992), which is just the total branch length,∑

b

L(b).

Suppose now that we have a relative abundance vector p = (p1, . . . , pS) for the present-
day species. For each branch b, write

p(b) =
∑

i : i∈Ib

pi,

which is the total relative abundance of present-day species descended from b. For each
present-day species i, write

Li =
∑

b : i∈Ib

L(b),

which is the total evolutionary change undergone by the ith species over the time-span
considered. For the tree to be ultrametric means that L1 = L2 = · · · = LS .
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Chao et al. (2010) write

T =
∑

i

piLi =
∑

i,b : i∈Ib

piL(b) =
∑

b

p(b)L(b) (A.3)

for the mean evolutionary change per present-day species. This reflects the time-span
under consideration. When the tree is ultrametric, T = L1 = · · · = LS . For 0 ≤ q < ∞,
they define the mean phylogenetic diversity of order q as

qD(T ) =


(∑

b

L(b)
T

p(b)q
)1/(1−q)

if q 6= 1∏
b

p(b)−(L(b)/T )p(b) if q = 1.

The expression at q = 1 is the limit as q → 1 of qD(T ). Although they do not mention
it, there is also a limit as q →∞, namely

∞D(T ) = 1/ max
b

p(b).

When the present-day species have a common ancestor in the time-span considered, the
tree has a root b; then p(b) = 1 and so ∞D(T ) = 1.

The phylogenetic entropy of Allen, Kon, and Bar-Yam (2009) is

HAKB(p) = −
∑

b

L(b)p(b) ln p(b).

They also implicitly propose a phylogenetic entropy of each order q ≥ 0,

qHAKB(p) =
∑

b

L(b)p(b)σq(p(b))

where σq is the surprise function of Section 3. For example, 1HAKB = HAKB.
Chao et al. (2010) showed that Faith’s measure and HAKB can be recovered from

their measures. We now connect our measures to Chao et al.’s, Faith’s, and qHAKB (for
any q). To do this, we begin by showing how, from the data given (a phylogenetic tree
and relative abundances for the present-day species), we can extract a matrix Z and a
relative abundance vector π.

Since we are considering the evolution of species through time, our basic biological
units (which would usually be called ‘species’) are not present-day species, but species
in a particular period of their evolutionary history. That is, a unit is a pair (i, b) where b
is a branch and i ∈ Ib. We call such a pair a historical species. Its relative abundance
π(i,b) is weighted according to how great a portion of evolutionary time it occupies:

π(i,b) =
L(b)
T

pi. (A.4)

(Equation (A.3) implies that
∑

i,b : i∈Ib
π(i,b) = 1.) The matrix Z is defined by

Z(i,b), (j,c) =

{
T/Lj if j ∈ Ib

0 otherwise.
(A.5)
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We offer no intuitive interpretation of this last formula. But intuitive or not, this formula
provides a strong logical connection (Proposition A7) between our diversity measures and
the measures of phylogenetic diversity mentioned above.

If the tree is ultrametric then T/Lj is always 1, so the matrix Z consists entirely of 0s
and 1s. It is not symmetric, but is a similarity matrix in the precise sense defined in the
main text and at the beginning of this appendix. This demonstrates that non-symmetric
similarity matrices can serve a useful purpose.

If the tree is not ultrametric then matters are more delicate. First, the matrix Z
depends on T =

∑
i piLi, which in turn depends on the relative abundances p of the

present-day species. (There is no such dependence when the tree is ultrametric.) When
the entries of Z depend on species abundances, it can no longer be thought of as a
‘similarity’ matrix in the same way. Second, Z is not a similarity matrix in the precise
sense, since some of its entries are strictly greater than 1. But this turns out to cause
no mathematical difficulty. The situation is clarified by introducing a new piece of
terminology, as follows.

Let us say that a relatedness matrix is a real square matrix Y such that Yij ≥ 0
for all i, j and Yii > 0 for all i. Certainly every similarity matrix is a relatedness matrix,
but not vice versa. Observe that for any relatedness matrix Y and relative abundance
vector r, if r1 > 0 then (Yr)1 > 0: for

(Yr)1 = Y11r1 +
S∑

j=2

Y1jrj ≥ Y11r1 > 0.

Similarly, for any i ∈ {1, . . . , n}, if ri > 0 then (Yr)i > 0; so (Yr)q−1
i is a well-defined

real number (even if q < 1). The definitions of the diversities qDY(r) and entropies
qHY(r) therefore make mathematical sense for an arbitrary relatedness matrix Y. The
phylogenetic matrix Z in equation (A.5) is always a relatedness matrix. It only satisfies
the stronger condition of being a similarity matrix if the tree is ultrametric. But it is
a relatedness matrix in any case, so qDZ(π) and qHZ(π) are always mathematically
well-defined quantities.

Section 4 of the main text contains a list of important properties satisfied by the
diversity measures qDZ. Most of them hold for an arbitrary relatedness matrix Z. The
stronger assumption that Z is a similarity matrix is only needed for the naive model and
range properties, as shown in Propositions A9–A17. So the notion of relatedness matrix
widens the scope of our results. It is also useful because it allows us to prove new results
about the phylogenetic measures of Chao et al. (2010) (Corollary A12).

Example A6 In the ultrametric tree of Fig. A1(i), there are four historical species:
(1, b1), (1, b3), (2, b2) and (2, b3). We have T = 2 + 1 = 3, and

Z =


1 1 0 0
1 1 1 1
0 0 1 1
1 1 1 1

 , π =


2
3 × 0.6
1
3 × 0.6
2
3 × 0.4
1
3 × 0.4

 =


0.4
0.2

0.267
0.133

 .

This Z is a similarity matrix, depending only on the structure of the phylogenetic tree
(and independent of the species abundances). As observed above, these properties of Z
are guaranteed by the fact that the tree is ultrametric.
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In the non-ultrametric tree of Fig. A1(ii), there are the same four historical species
(i, b). We have L1 = 1+1 = 2, L2 = 2+1 = 3, and T = 0.6×L1 +0.4×L2 = 2.4, giving

Z =


1.2 1.2 0 0
1.2 1.2 0.8 0.8
0 0 0.8 0.8

1.2 1.2 0.8 0.8

 , π =


1

2.4 × 0.6
1

2.4 × 0.6
2

2.4 × 0.4
1

2.4 × 0.4

 =


0.25
0.25
0.333
0.167

 .

This Z is a relatedness matrix but not a similarity matrix, and it does depend on the
abundances of the present-day species.

The following result makes the connection between our measures and the phylogenetic
measures of Chao et al. (2010), of Faith (1992), and of Allen et al. (2009).

Proposition A7 Take a phylogenetic tree and a relative abundance vector for the
present-day species. Then, defining Z and π as in equations (A.4) and (A.5) above,

i. qDZ(π) = qD(T ), the mean phylogenetic diversity of Chao et al. (2010), for all
0 ≤ q ≤ ∞. In particular, 0DZ(π) is 1

T
times Faith’s phylogenetic diversity.

ii. qHZ(π) = 1
T
× qHAKB(p), the phylogenetic entropy of Allen et al. (2009), for all

0 ≤ q < ∞. In particular, 1HZ(π) = 1
T
×HAKB(p).

So where Chao et al.’s measures are diversities, Allen et al.’s are (up to a multiplicative
factor) the accompanying entropies.

Proof First we compute Zπ. For each historical species (i, b),

(Zπ)(i,b) =
∑

j,c : j∈Ic

Z(i,b),(j,c)π(j,c) =
∑

j,c : j∈Ib∩Ic

T

Lj

L(c)
T

pj

=
∑

j : j∈Ib

pj

Lj

∑
c : j∈Ic

L(c) =
∑

j : j∈Ib

pj = p(b).

It suffices to prove (i) and (ii) when q 6= 1,∞, by Proposition A2 (which holds for
arbitrary relatedness matrices, by exactly the same proof). For (i),

qDZ(π) =

( ∑
i,b : i∈Ib,
π(i,b)>0

π(i,b)(Zπ)q−1
(i,b)

)1/(1−q)

=

( ∑
i,b : i∈Ib,

pi>0

L(b)
T

pi · p(b)q−1

)1/(1−q)

=
(∑

b

L(b)
T

p(b)q

)1/(1−q)

= qD(T ).

In particular, 0DZ(π) = (1/T )
∑

b L(b).
For (ii),

qHZ(π) =
∑

i,b : i∈Ib,
π(i,b)>0

π(i,b)σq

(
(Zπ)(i,b)

)
=

∑
i,b : i∈Ib,

pi>0

L(b)
T

pi · σq(p(b))

=
∑

b

L(b)
T

p(b) · σq(p(b)) =
1
T
× qHAKB(p),

as required. �
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Next we turn to the indices studied by Hurlbert (1971) and Smith and Grassle (1977),
showing that they can be derived from the naive diversities (Hill numbers) qD. For each
m ≥ 2, let HHSG

m (p) be the expected number of species represented in a random sample
of m individuals. As Hurlbert observed,

HHSG
m (p) =

S∑
i=1

(1− (1− pi)m).

Proposition A8 For each m ≥ 2, the Hurlbert–Smith–Grassle index is given by

HHSG
m (p) = m−

m∑
q=2

(−1)q

(
m

q

)
qD(p)1−q,

where
(
m
q

)
is the binomial coefficient m!/q!(m− q)!.

Proof We have

S∑
i=1

(1− (1− pi)m) = S −
S∑

i=1

m∑
q=0

(
m

q

)
(−pi)q = S −

m∑
q=0

(−1)q

(
m

q

) S∑
i=1

pq
i

= S −
{(

m

0

)
S −

(
m

1

)
1 +

m∑
q=2

(−1)q

(
m

q

)
qD(p)1−q

}

= m−
m∑

q=2

(−1)q

(
m

q

)
qD(p)1−q,

as required. �

We now prove the properties of our diversity measures stated in Section 4.

Our standing assumption for the rest of this appendix is that matrices called
Z, Z(i), etc. are relatedness matrices. They are not required to be similarity
matrices except where this is stated explicitly.

We observe that although Proposition A2 is stated for similarity matrices, it holds for
arbitrary relatedness matrices, by exactly the same proof.

Proposition A9 (Effective number) Let 0 ≤ q ≤ ∞. Then diversity of order q is an
effective number; that is, if p1 = · · · = pS = 1/S then qDI(p) = S.

Proof This follows immediately from the definition of qDZ(p), substituting Z = I and
p = (1/S, . . . , 1/S). �

Suppose now that the community is divided into m subcommunities. No species
appears in more than one subcommunity, and species in different subcommunities are
totally dissimilar.

Write w1, . . . , wm for the relative sizes of the subcommunities (so that
∑

wi = 1).
Within the ith subcommunity, write Si for the number of species, ri = (ri1, . . . , riSi) for
its relative abundance vector (so that

∑Si

j=1 rij = 1), and Z(i) for its matrix (an Si × Si

matrix).
Write S for the number of species in the whole community, p for the overall relative

abundance vector, and Z for the overall, S × S, matrix.
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Proposition A10 (Modularity) For 0 ≤ q ≤ ∞,

qDZ(p) =


(∑

i : wi>0 wq
i d

1−q
i

) 1
1−q

if q 6= 1,∞
1D(w)dw1

1 dw2
2 · · · dwm

m if q = 1
mini : wi>0(di/wi) if q = ∞

where di = qDZ(i)(ri).

Proof We have

S = S1 + · · ·+ Sm,

p = (w1r11, . . . , w1r1S1 , . . . , wmrm1, . . . , wmrmSm),

Z =


Z(1) 0 · · · 0

0 Z(2)
. . .

...
...

. . . . . . 0
0 · · · 0 Z(m)

 ,

the last expression being a block sum of matrices. So for 1 ≤ i ≤ m and 1 ≤ j ≤ Si,

(Zp)S1+···+Si−1+j = wi(Z(i)ri)j .

Hence for q 6= 1,∞, letting i range over 1, . . . ,m and j range over 1, . . . , Si,

qDZ(p)1−q =
∑

i,j : wirij>0

wirij

(
wi(Z(i)ri)j

)q−1

=
∑

i : wi>0

wq
i

∑
j : rij>0

rij(Z(i)ri)
q−1
j =

∑
i : wi>0

wq
i d

1−q
i ,

as required. For q = 1,

1DZ(p) =
∏
i,j

(
wi(Z(i)ri)j

)−wirij

=
(∏

i,j

w
−wirij

i

)(∏
i,j

(Z(i)ri)
−wirij

j

)
= 1D(w)

∏
i

dwi
i

since
∑

j rij = 1 for each i. Finally, for q = ∞,

∞DZ(p) = 1
/

max
i,j : wirij>0

wi(Z(i)ri)j = 1
/

max
i : wi>0

(
wi max

j : rij>0
(Z(i)ri)j

)
= 1
/

max
i : wi>0

(wi/di) = min
i : wi>0

(di/wi),

as required. �

Proposition A11 (Replication) If w1 = · · · = wm and d1 = · · · = dm = d then
qDZ(p) = md for all 0 ≤ q ≤ ∞.

Proof Substitute wi = 1/m and di = d into Proposition A10. �
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We can deduce some facts about the mean phylogenetic diversity of Chao et al. (2010),
extending the replication principle that they proved.

Corollary A12 Let 0 ≤ q ≤ ∞. Take m completely distinct phylogenetic assemblages,
with relative sizes w1, . . . , wm. Write T i for the mean evolutionary change per species in
the ith assemblage, di = qD(T i) for its mean phylogenetic diversity of order q, and T for
the mean evolutionary change per species in the pooled assemblage.

i. If T 1 = · · · = Tm then the mean phylogenetic diversity qD(T ) of the pooled as-
semblage is determined by w1, . . . , wm and d1, . . . , dm via the formula in Proposi-
tion A10.

ii. If w1 = · · · = wm = 1/m and d1 = · · · = dm = d then the mean phylogenetic
diversity qD(T ) of the pooled assemblage is md.

Chao et al. (2010) proved (ii) under the further assumption that the m assemblages all
have the same mean evolutionary change per species; but this assumption is unnecessary.

Proof We begin the proof without assuming either the hypothesis in (i) or that in (ii).
We use the notation set up after Proposition A5.

Write Z(i) for the matrix (A.5) of the ith assemblage, and Z for the matrix (A.5) of
the pooled assemblage. Then Z is the block sum

Z =


(T/T 1)Z(1) 0 · · · 0

0 (T/T 2)Z(2)
...

...
. . . 0

0 · · · 0 (T/Tm)Z(m)

 .

Write σ(i) for the relative abundance vector (A.4) of the ith assemblage, and π for the
relative abundance vector (A.4) of the pooled assemblage. Then whenever a present-day
species j belongs to the ith assemblage and is descended from a branch b,

π(j,b) =
T i

T
wi · σ(i)(j,b).

Note also that T =
∑m

i=1 wiT i.
We now apply Proposition A10. For q 6= 1,∞, it gives

qDZ(π) =
( ∑

i : wi>0

(
T i

T
wi

)q(
qD(T/T i)Z(i)(σ(i))

)1−q
)1/(1−q)

=
( ∑

i : wi>0

(
T i

T
wi

)q(
T i

T
qDZ(i)(σ(i))

)1−q)1/(1−q)

=
( ∑

i : wi>0

T i

T
wq

i

(
qDZ(i)(σ(i))

)1−q
)1/(1−q)

where in the second step, we have used the easily verified fact that when a matrix Z is
multiplied by a constant λ > 0, the resulting diversity (of any order) is divided by λ. So
by Proposition A7,

qD(T ) =
( ∑

i : wi>0

T i

T
wq

i d
1−q
i

)1/(1−q)

. (A.6)
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To prove (i), suppose that T 1 = · · · = Tm: then T = T i for all i, so (A.6) gives

qD(T ) =
( ∑

i : wi>0

wq
i d

1−q
i

)1/(1−q)

,

and similarly for q = 1,∞. To prove (ii), suppose instead that w1 = · · · = wm = 1/m
and d1 = · · · = dm = d: then T = (1/m)

∑
T i, so (A.6) gives

qD(T ) =
( m∑

i=1

T i

T

(
1
m

)q

d1−q

)1/(1−q)

= md,

and similarly for q = 1,∞, as required. �

The ‘elementary properties’ all follow from a single general lemma. For this we need
some notation. Take S, T ≥ 1 and a function θ : {1, . . . , S} → {1, . . . , T}. For each
r ∈ PS , define θ · r ∈ PT by

(θ · r)j =
∑

i : θ(i)=j

ri

(j ∈ {1, . . . , T}), where the sum is over all i ∈ {1, . . . , S} such that θ(i) = j. For each
T × T matrix Z, define an S × S matrix Z · θ by

(Z · θ)ii′ = Zθ(i),θ(i′)

(i, i′ ∈ {1, . . . , S}).

Lemma A13 qDZ·θ(r) = qDZ(θ · r), for all 0 ≤ q ≤ ∞.

Proof By continuity of qDZ in q (Proposition A2), it is enough to prove this when
q 6= 1,∞. We will use the convention that indices i, i′ range over 1, . . . , S and indices
j, j′ range over 1, . . . , T .

We have

((Z · θ)r)i =
∑
i′

(Z · θ)ii′ri′ =
∑
i′

Zθ(i),θ(i′)ri′ ,

(Z(θ · r))j =
∑
j′

Zjj′(θ · r)j′ =
∑
j′

∑
i′ : θ(i′)=j′

Zjj′ri′ =
∑
i′

Zj,θ(i′)ri′ ,

so
((Z · θ)r)i = (Z(θ · r))θ(i).

Hence

qDZ·θ(r)1−q =
∑

i : ri>0

ri((Z · θ)r)q−1
i =

∑
i : ri>0

ri(Z(θ · r))q−1
θ(i)

=
∑

j : (θ·r)j>0

∑
i : θ(i)=j

ri(Z(θ · r))q−1
j

=
∑

j : (θ·r)j>0

(θ · r)j(Z(θ · r))q−1
j = qDZ(θ · r)1−q.

The result follows. �
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The three elementary properties of diversity can be deduced. In each, q may take any
value in the range 0 ≤ q ≤ ∞.

Proposition A14 (Symmetry) Let θ be a permutation of {1, . . . , S}, let Z be an S×S
matrix, and let p ∈ PS. Define Z′ and p′ by Z ′

ij = Zθ(i),θ(j) and p′i = pθ(i). Then
qDZ′

(p′) = qDZ(p).

Proof In the notation above, we have Z′ = Z · θ and p = θ · p′, since

(θ · p′)j =
∑

i : θ(i)=j

p′i =
∑

i : θ(i)=j

pθ(i) = pj .

Hence by Lemma A13,

qDZ′
(p′) = qDZ·θ(p′) = qDZ(θ · p′) = qDZ(p),

as required. �

Proposition A15 (Absent species) Let Z be an S × S matrix and let p ∈ PS with
pS = 0. Write Z′ for the restriction of Z to the first (S − 1) species; that is, Z is the
(S − 1) × (S − 1) matrix given by Z ′

ij = Zij. Write p′ = (p1, . . . , pS−1) ∈ PS−1. Then
qDZ′

(p′) = qDZ(p).

Proof Let θ : {1, . . . , S − 1} → {1, . . . , S} be the embedding θ(i) = i. Then Z′ = Z · θ
and p = θ · p′, so the result follows as in the previous proof. �

Proposition A16 (Identical species) Let Z be an S × S matrix such that Zi,S =
Zi,S−1 and ZS,i = ZS−1,i for all i. Let p ∈ PS. Write Z′ for the restriction of Z to the
first (S − 1) species, and define p′ ∈ PS−1 by

p′j =

{
pj if j < S − 1
pS−1 + pS if j = S − 1.

Then qDZ′
(p′) = qDZ(p).

Proof Define a function θ : {1, . . . , S} → {1, . . . , S − 1} by

θ(i) =

{
i if i ≤ S − 1
S − 1 if i = S.

Then Z = Z′ · θ and p′ = θ · p. The result follows from Lemma A13. �

The final properties to be proved are those from group 3: ‘effect of species similarity
on diversity’.

Proposition A17 (Monotonicity) Let Z and Z′ be S×S matrices with Zij ≤ Z ′
ij for

all i, j. Then qDZ(p) ≥ qDZ′
(p), for all 0 ≤ q ≤ ∞ and p ∈ PS.

Proof By continuity in q (Proposition A2), it is enough to prove this when q 6= 1,∞.
We have (Zp)i ≤ (Z′p)i for all i.
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If 0 ≤ q < 1 then xq−1 is decreasing in x > 0 and y1/(1−q) is increasing in y > 0.
Hence

(Zp)i ≤ (Z′p)i for all i =⇒ (Zp)q−1
i ≥ (Z′p)q−1

i for all i such that pi > 0

=⇒
∑

i : pi>0

pi(Zp)q−1
i ≥

∑
i : pi>0

pi(Z′p)q−1
i

=⇒ qDZ(p) ≥ qDZ′
(p′).

If q > 1 then xq−1 is increasing in x and y1/(1−q) is decreasing in y, and a similar
argument applies. �

Proposition A18 (Naive model) Let Z be a similarity matrix, p ∈ PS, and 0 ≤ q ≤
∞. Then qD(p) ≥ qDZ(p).

Proof We have Iij = 0 ≤ Zij for all i 6= j, and Iii = 1 = Zii for all i, so qD(p) =
qDI(p) ≥ qDZ(p) by Proposition A17. �

Proposition A19 (Range) Let Z be a similarity matrix, p ∈ PS, and 0 ≤ q ≤ ∞.
Then 1 ≤ qDZ(p) ≤ S.

Proof Let Y be the similarity matrix with Yij = 1 for all i, j. Then Zij ≤ Yij for all
i, j, so qDZ(p) ≥ qDY(p) by Proposition A17. But qDY(p) = 1 by repeated application
of Proposition A16, or by direct calculation. Hence qDZ(p) ≥ 1.

By Proposition A18, we have qDZ(p) ≤ qD(p). But the Hill number qD(p) is
maximized at the uniform distribution p = (1/S, . . . , 1/S), where, being an effective
number, it takes the value S. Hence qDZ(p) ≤ S. �

In the last two properties (naive model and range), we explicitly assumed that Z was
a similarity matrix, not merely a relatedness matrix. The following example shows that
they can fail without that assumption.

Example A20 In Proposition A7, the mean phylogenetic diversity of Chao et al.
(2010) was expressed as qDZ(π) for a suitable matrix Z and vector π (equations (A.4)
and (A.5)). When the phylogenetic tree is ultrametric, Z is a similarity matrix; hence,
mean phylogenetic diversity for ultrametric trees satisfies all the properties above. But
when the tree is not ultrametric, the mean phylogenetic diversity can be greater than
the number of species, contrary to the naive model and range properties. An example is
given in the supplement to Chao et al. (2010). Another example is the tree of Fig. A1(iii).
There,

T = 0.6× 1 + 0.4× 2 = 1.4,

and the mean phylogenetic diversity of order 0 is

1
T
× (total branch length) =

1
1.4

× 3 = 2.142 . . . ,

which is greater than 2, the number of species. Similarly, short calculations show that
the mean phylogenetic diversities of orders 1 and 2 are also greater than the number of
species.

We finish with some facts about diversity profiles.
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Proposition A21 Let Z be an S × S matrix and p ∈ PS. Then qDZ(p) is decreasing
in q. That is, whenever 0 ≤ q ≤ q′ ≤ ∞, we have qDZ(p) ≥ q′DZ(p).

It may be that the diversity profile is constant: e.g. if Z = I and p = (1/S, . . . , 1/S) then
qDZ(p) = S for all q.

Proof This follows from standard results on generalized means: Theorems 5 and 16 of
Hardy et al. (1952). �

The final result states that if two communities have the same naive diversity profiles
then their relative abundance vectors are the same, except perhaps for the order in which
the relative abundances pi are listed.

Proposition A22 Let p,p′ ∈ PS and suppose that qD(p) = qD(p′) for all 0 < q < ∞.
Then (p′1, . . . , p

′
S) is a permutation of (p1, . . . , pS).

Proof We prove by induction on S that if p,p′ ∈ PS with p1 ≤ · · · ≤ pS , p′1 ≤ · · · ≤ p′S
and qD(p) = qD(p′) for all q > 1, then p = p′. Clearly this holds for S = 1. Now let
S ≥ 2, and write f(q) = qD(p) = qD(p′).

We have pS = 1/ limq→∞ f(q) = p′S . If pS = p′S = 1 then p = p′ = (0, . . . , 0, 1).
Otherwise, we may define r, r′ ∈ PS−1 by

r =
(

p1

1− pS
, . . . ,

pS−1

1− pS

)
and similarly r′. Then for all q > 1,

qD(r) = (1− pS)
q

q−1

(
S−1∑
i=1

pq
i

) 1
1−q

= (1− pS)
q

q−1 (f(q)1−q − pq
S)

1
1−q .

But since pS = p′S , this expression is also equal to qD(r′). Hence by inductive hypothesis,
r = r′; that is, pi = p′i for all i < S. �
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