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Appendix A. The approach used to specify the observation error and system noise variance. 

 



A : APPENDIX - Specifying the Observation

Error and System Noise Variance

Determining the observation error variance, σ2
o , and the system noise variance, σ2

ε , is an

important part of the state space model. Note that in principle σ2
ε and σ2

o could be

estimated as part of the parameter estimation procedure using the state augmentation

approach. However, it is often difficult to separately estimate these quantities using a

state space model, as they may be confounded with one another or even with the

movement parameters. It is therefore advisable to estimate any parameters off-line

(where possible) to ensure optimal identifiability of the movement parameters. Such a

procedure is outlined below for our application, and is used to specify the observation

error variance in (2), as well as the magnitude of the system noise variance, which scales

the normal mixture model (8).

The calculation of the sample auto-covariance (ACVF) function provides the basis for

our estimation procedure. We assume the observation error is uncorrelated through time,

and hence the observation error variance contributes to the ACVF only at zero lag, and

has zero auto-covariance for all other lags. In contrast, the vertical velocity process, zt, is

correlated through time as dictated by the state evolution equation (5), and so has

contributions to the ACVF at both zero and non-zero lags.

Based on the above assumptions, the theoretical ACVF, designated as γ(k), for the

measured vertical velocity, yt, is given by

γ(k) = σ2
o(0) + σ2

z(k) (A.1)
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where k here denotes the lag. At zero lag the total variance, γ(0), has contributions from

observation error variance, σ2
o(0), and the process variance, σ2

z(0); at non-zero lags it has

contributions only from σ2
z(k).

The sample ACVF, γ̂(k) of Figure 1, can therefore be used to separate σ2
o from σ2

z

using (A.1). To do this, a quadratic was fit to γ̂(k) associated with small non-zero lags

k = 1, . . . n. We chose n = 8 to capture the quadratic trend near the origin. After fitting

we then extrapolate to the origin, k = 0, to provide an estimate of the process variance at

lag 0, or σ̂2
z(0). Based on this, the estimated observation error variance is taken as

σ̂2
o = γ̂(0)− σ̂2

z(0). Note that this procedure is directly analogous to determining the

nugget in kriging.

We next determine the system noise variance, σ2
ε , using our estimate of the process

noise variance, σ2
z . If we assume that zt follows an Markov process, or has an exponential

correlation function, then the system noise variance can be estimated as (Priestley 2004,

Section 3.5.3),

σ̂2
ε =

(
1−

(
γ̂(1)

γ̂(0)

)2
)
σ̂2

z(0). (A.2)

This is an approximation and relies on the ratio of sample ACVF at lag 1 to lag 0 to

describe the decay rate of the underlying autocovariance function, but acts as a variance

adjustment due to the autocorrelation in our data, while making no assumptions about

the movement process itself.

Both σ2
o and σ2

ε change over the dive record. The evolutionary sample ACVF

(Figure 2a) was used with the above approach to compute the time evolution of the

observation error variance and the system noise variance for each of our 110 time

windows. These estimates are shown in Figure 3 i. The resultant values obtained for σ2
ε

and σ2
o can be used directly as input to the state space model.
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