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Appendix B. A primer on particle filtering. 

 



B : Appendix - Particle Filtering

Numerical solutions for state space models are based on Monte Carlo algorithms that

generate samples from probability distributions describing the system state. These

samples can be used to reconstruct approximations of summary quantities of interest

(e.g. the mean and variance of the state or even its probability distribution). Here, we

have used a particle filter based on sequential importance resampling, which is the most

common approach for solving the nonlinear and non-Gaussian state space model. The

interested reader is referred to Gordon et al. (1993) and Kitagawa (1996), and the book

of (Ristic et al. 2004), for further details. The state augmented particle filter provides the

basis for parameter estimation using the multiple iterated filter at the end of Section 4.

At each iteration, the particle filter is run to produce estimates for the augmented state

(comprised of the vertical velocity, zt, the dummy variable, ζt, and the movement

parameters, a1 and a2). The particle filter is therefore a central element of the approach,

and is explained in detail below.

Consider a sample from our 4× 1 augmented state vector x̃. Each member of the

sample is also a 4× 1 vector, and there are np of these in the total sample. The sample

members, or particles, are each denoted by x̃(i) where i = 1, . . . , np; the complete sample,

or ensemble, with its np members is designated as {x̃(i)} . Suppose this sample is drawn

from the (multivariate) probability density function (pdf), p(x̃), as designated by the

notation

{x̃(i)} ∼ p(x̃), i = 1, . . . , np.

This is a sample based approximation to the pdf of the augmented state. As the sample

size np →∞ it provides for an exact representation (we use np = 500 in this study). A

particle filter is a recursive algorithm that produces an ensemble of particles whose

marginal density approximates the target pdf, and hence provides a Monte Carlo solution
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for the state space model. The particle filtering algorithm is recursive, and so we need

only consider the time transition of the system from t− 1 to t to specify the procedure

completely.

Suppose we are at time t− 1 and have a sample from the system state,

{x̃(i)
t−1|t−1} ∼ p(x̃t−1|y1:t−1), i = 1, . . . , np. (B.1)

The subscripting on x̃ designates that this is a sample at time t− 1 using information up

to and including time t− 1. It is a draw from the pdf of x̃t−1 conditional on having

observations up to and including time t− 1, or y1:t−1. The target distribution of the

particle filter is the pdf (or sample thereof) at time t as represented by

{x̃(i)
t|t} ∼ p(x̃t|y1:t), i = 1, . . . , np. (B.2)

Monte Carlo methods can be used to carry out the transition from (B.1) to (B.2) for

sequential data assimilation, and provide a means to generate the new sample at time t

from the current sample at time t− 1.

The algorithm for the particle filter used to generate the target sample {x̃(i)
t|t} from the

current sample, {x̃(i)
t−1|t−1} is the following:

1. Forecasting/Prediction Step. The forecasting step predicts the augmented state

forward to the next observation time. This produces a sample from the forecast

pdf, p(x̃t|y1:t−1), designated as {x̃(i)
t|t−1}. This is done by treating each member of

the sample at time t− 1, {x̃(i)
t−1|t−1} as an initial condition for prediction via the

state evolution equation (4), i.e.

x̃
(i)
t|t−1 = g(x̃

(i)
t−1|t−1) + ñ

(i)
t , i = 1, . . . , np (B.3)
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where ñ
(i)
t represents an independent realization of the augmented system noise and

is a draw from the normal mixture model (8) for the vertical velocity state, and

from the disturbance terms νt in (7) associated with the movement parameters.

2. Resampling/Filtering Step. The filtering step involves drawing a sample with

replacement from the forecast ensemble with a probability proportional to a set of

weights computed from the likelihood. To do this, we calculate a weight for each

sample member

w
(i)
t = p(yt|x̃(i)

t|t−1).

Here, p(yt|x̃(i)
t|t−1) is the likelihood of the observations yt conditional on knowledge of

the predicted state for the ith sample member from step 1. Note that only the first

element of x̃ is observed and so this is a univariate likelihood. It hence reflects the

observation error et in (2), which is ∼ N(0, σ2
o) and shown in Figure 3 i. A standard

weighted resampling (with replacement) of the sample {x̃(i)
t|t−1} is undertaken using

the corresponding weights {w(i)
t }. After resampling, this yields a sample {x(i)

t|t} from

the target probability distribution p(x̃t|y1:t).

Therefore given a starting value for the state at t = 0, this sequential importance

resampling algorithm can be run forward in time to sequentially generate the required

samples for estimation of the augmented state for the duration of the analysis period.
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