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A Homogeneity calculations

A.1 Niche homogeneity
Recall from the manuscript that we define the niche homogeneity Hn as

Hn =
⟨B⟩ − B∗

σB

, (A.1)

where B∗ is the number of boundaries, in the niche space, between the observed compartments,
⟨B⟩ is the average number of boundaries between compartments for the ensemble of all partitions
of the species (with the same number of compartments and the same compartment sizes as the
observed partitions), and σB is the standard deviation of the same quantity (Fig. A1).

For a given partition of a network with NC compartments of sizes {n1, n2, . . . , nNC
}, both ⟨B⟩

and σB can be calculated analytically by realizing that averaging over partitions is equivalent to
averaging over random re-orderings of the species in the niche space (and keeping each species’
actual compartment).

Let mj be the compartment of species j, and Oi the species in position i in a given ordering
O of the species, so that mOi

is the compartment of the species in position i. Then, the number of
boundaries between compartments for ordering O is

∑S−1
i=1

(
1 − δ(mOi

,mOi+1
)
)
, where S is the

total number of species, and the average is

⟨B⟩ =
1

S!

∑
{O}

S−1∑
i=1

(
1 − δ(mOi

,mOi+1
)
)

, (A.2)

where the first sum is over all possible orderings of the species. Similarly, σB can be calculated as

σB =
(
⟨B2⟩ − ⟨B⟩2

)1/2
, (A.3)

with

⟨B2⟩ =
1

S!

∑
{O}

[
S−1∑
i=1

(
1 − δ(mOi

,mOi+1
)
)]2

. (A.4)

After some algebra, we obtain

⟨B⟩ = S − 1

S

NC∑
m=1

s2
m (A.5)
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Figure A1: Boundaries in niche space between hypothetical compartments. The horizontal axis
represents the niche space and each circle represents a species, with colors indicating compart-
ments. Boundaries are indicated with vertical lines. A, For very niche-homogeneous compart-
ments, all species in a compartment occupy contiguous positions in the niche space, so the number
of “boundaries” between compartments (a boundary separates each pair of contiguous species with
different color) is low. When compartments are perfectly homogeneous, the number of boundaries
is simply the number of compartments minus 1. B, For less homogeneous compartments, the
number of boundaries is larger.
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. (A.6)

where sm is the number of species in compartment m, and Nc is the number of compartments.

A.2 Trophic homogeneity
Again, recall from the manuscript that we define trophic homogeneity Ht in the same way as niche
homogeneity, but counting the boundaries in the trophic space, rather than the niche space. The
trophic level li of species i is (Levine, 1980)

li = 1 +
∑
j∈Pi

lj
kin

i

, (A.7)

where Pi is the set of i’s prey, and kin
i is the number of prey (Levine, 1980).

This definition of trophic level raises an important issue about the structure of model food webs.
In principle, nothing precludes the generalized niche model (or the niche model) from generating
food webs that are “trophically inconsistent.” For example, a species could have no other prey
than itself, so that Eq. A.7 does not have a solution. Since these inconsistencies are not observed
in real food webs, we discard all trophically inconsistent model food webs for all the calculations
reported in the manuscript.
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A.3 Sink homogeneity
For each species i in a food web, we find the set Ti of species that belong to i’s sink food web, that
is, the species on which i preys directly and indirectly (i’s prey, the prey of i’s prey, the prey of the
prey of i’s prey, and so on). For convenience, we always exclude i from Ti.

We then count the number o∗i of species that belong to both Ti and species i’s compartment Ci.
We define sink homogeneity as

Hs =
S∑

i=1

o∗i − ⟨oi⟩
σoi

, (A.8)

where the sum is over all species, and ⟨oi⟩ and σoi
are the average and standard deviation, respec-

tively, of the null expectation for the overlap between Ti and Ci.
The simplest null model is one in which nodes in Ti are randomly selected from the actual

compartments. Let us call ti the number of nodes in Ti and si the number of nodes in Ci. In the
null model, the probability pi(k) that Ti contains exactly k nodes from Ci is

pi(k) =

(
si−1

k

)(
S−si

ti−k

)
(

S−1
ti

) k ≤ si − 1, k ≤ ti. (A.9)

The denominator is the total number of ways in which one can pick ti elements among a set of
S − 1 (all the nodes in the network except i). The numerator is the number of ways in which those
elements can be selected so that exactly k of them come from compartment Ci; that is, the number
of ways one can select k elements among the si − 1 in Ci (excluding i), times the number of ways
one can select the remaining ti − k among the S − si nodes in compartments other than Ci.

With this, one can calculate the expected overlap ⟨oi⟩ between Ti and Mi, as well as the standard
deviation σoi

⟨oi⟩ =
∑
k

kpi(k) = ti
si − 1

S − 1
(A.10)

⟨o2
i ⟩ =

∑
k

k2pi(k) (A.11)

= ti(si − 1)
(S − si)!(S − ti − 1)!

(S − 1)!(S − ti − si + 1)!
3F2(2, 2 − si, 1 − ti; 1, S − ti − si + 2; 1)

σoi
=

√
⟨o2

i ⟩ − ⟨oi⟩2 (A.12)

where 3F2(a1, a2, a3; b1, b2; z) is the generalized hypergeometric function (Weisstein, 2008).
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