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APPENDIX A. Derivation and estimation of selection metrics.  

Derivation of the general coefficient of selection equation (main text Eq. 1) 

Consider a population of n competitors. These competitors could be distinct species, or 

asexually reproducing genotypes; the derivation holds in either case. The coefficient of 

selection si(t) for competitor type i (I = 1,…,n) can be defined as the difference between 

its per-capita growth rate ri(t) and that of the rest of the population  trî : 
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Starting with the first term in Eq. A.1, the per capita growth rate of competitor i is given 

as 
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where Ni is the abundance of competitor i in the population (time index dropped for 

clarity). Using the fact that Ni = piN, where N is the total abundance of the population and 

pi is the relative abundance of competitor i in the population, the per-capita growth rate 

(Eq. A.2) can be expressed as 
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where r is the per-capita growth rate of the entire population. 

The second term in Eq. A.1 is the per-capita growth rate for the sub-population that 

does not include competitor i. Starting with the definition of the sub-population 

ii NNN ˆ , the second term can be expressed as 
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Using the relation that  ii pNN  1ˆ  and Eq. A.3, Eq. A.4 can be expressed as 
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Substituting Eqs. A.3 and A.5 into Eq. A.1, after some algebra yields 
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which states that the coefficient of selection is given by the rate of change in the relative 

abundance of competitor i, adjusted by how close it is to being excluded from the 

population, or to excluding all others. 

Estimating selection dynamics from noisy data 

Eq. 1 in the main text is a continuous time model, but observations of proportions 

are collected at discrete intervals. To contend with this, the traditional approach in 

evolutionary biology is to use a discrete-time version of Eq. 1 (e.g., Lynch 1987) and 

directly calculate selection coefficients from the observed change in frequencies. While 

this yields an estimate of average selection over a time-series (net selection), a priori 

assumptions about the sampling error distribution and the amount of covariance between 

successive selection estimates must be imposed to estimate the variation in selection 

(fluctuating selection). The result is that traditional methods produce biased estimates of 

fluctuating selection when sampling error is greater than predicted by a Bernoulli 

distribution (known as overdispersion) or if temporal estimates of selection are 

autocorrelated. Overdispersion often is observed in count data (White and Bennetts 1996) 

and many fluctuation-dependent coexistence mechanisms generate autocorrelated 

selection coefficients.  

Here we develop a different approach from traditional methods that relies on fewer 

assumptions. We begin by fitting a statistical time-series model to competitor proportions 

that places the error distribution directly on the observed competitor counts as opposed to 

the derived selection coefficients. Fitting a time-series model also enables us to account 

for autocorrelation in the selection coefficients and remove the dependence on sampling 

intervals. To allow for non-stationarity in the time-series, competitor dynamics are 



described using a nonparametric regression model that makes no a priori assumptions 

about temporal dynamics. The statistical model, which assumes a Dirichlet-multinomial 

distribution (DM(•)) to allow for possibly-overdispersed sampling error (McCullugh and 

Nelder 1989), is given by 

 

        tNtftftn mii ,,,DM~ 1 ,       (A.7) 

 

where ni(t) is the observed count for competitor i (I = 0,...,m) in a sample of size N(t) 

taken at time t, and fi(t) is a cubic spline representing the temporal dynamics. Each 

competitor has a separate spline function to allow for differential responses, under the 

constraint that all splines sum to one since we are modeling the dynamics of relative 

abundance. Since Eq. A.7 is a flexible non-parametric model, model fitting involved 

estimating the optimal compromise between overfitting (“fitting the noise”) and 

underfitting using generalized cross-validation (Yee and Wild 1996; Wood 2001; Nelson 

et al. 2004). Since there are usually more than two competitors in each data set, the 

statistical problem is multivariate and requires the use of Vectorized General Additive 

Models (Yee and Wild 1996). The fits were done with the statistical library VGAM (Yee 

and Wild 1996) in the R software environment (R Development Core Team 2004).  

Statistical inference concerning Sf  and Sn (defined by Eqs. 3–5 in the main text) is 

based on parametric bootstrap confidence intervals (Dennis and Taper 1994). These are 

generated by drawing random samples from Dirichlet-multinomial distributions with the 

variance structure and parameters estimated from the fitted model (Eq. A.7). Bootstrap 

samples are drawn with the same sampling frequency and sampling effort as the original 



data, and refit in the same manner as the original data. Confidence intervals for net 

selection and fluctuating selection on each species were estimated from the upper and 

lower 2.5% percentiles of the bootstrap distribution obtained from 1000 replicates. To 

test whether fluctuating selection was statistically greater that zero, we multiplied the 

positive value from Eq. 6b by the sign of net selection for each bootstrap replicate. 
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