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Appendix B: Stability analysis for host-parasitoid models

Consider the general class of discrete-time models

Ht+1 = RHt f (r(Ht)Pt) (B.1)

Pt+1 = k(RHt −Ht+1) (B.2)

where the monotonically decreasing function f (r(Ht)Pt) represents the fraction of host that

escape parasitism and f (0) = 1. The function r(Ht) takes non-negative values for Ht ≥ 0 and

is assumed to be such such that r(Ht)Ht is an increasing function of Ht while r(Ht)/Ht is a

decreasing function of Ht , i.e.,

d(Htr(Ht))
dHt

> 0,
d(r(Ht)/Ht)

dHt
< 0, for all Ht > 0. (B.3)

Discrete-time model

Ht+1 = RHt

∫
∞

x=0
p(x)exp(−xPt)dx (B.4)

Pt+1 = k(RHt −Ht+1) (B.5)

is a special case of (B.1)-(B.2) with r(Ht) = 1 and

f (Pt) =
∫

∞

x=0
p(x)exp(−xPt)dx. (B.6)

Phenomenological models that incorporate both variability in risk and a parasitoid Type II or

Type III functional responses are given by

Ht+1 = RHt

∫
∞

x=0
p(x)exp

(
− xHn−1

t Pt

H̄n +Hn
t

)
dx (B.7)

Pt+1 = k(RHt −Ht+1) (B.8)

where H̄ is a positive constant and n can take values one (corresponds to a Type II functional

response) and two (corresponds to a Type III functional response). The model (B.7)-(B.8)
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also corresponds to the general class of discrete-time models (B.1)-(B.2) with

r(Ht) = Hn−1
t

H̄n+Hn
t
, n = 1,2 (B.9)

f (r(Ht)Pt) =
∫

∞

x=0 p(x)exp
(
−xHn−1

t Pt
H̄n+Hn

t

)
dx. (B.10)

We now perform a stability analysis of the general class of discrete-time models (B.1)-(B.2).

We assume there exists a non-trivial equilibrium for the discrete-time model (B.1)-(B.2)

which is given as the solution of

1
R

= f (r(H∗)P∗), P∗ = k(R−1)H∗, (B.11)

where H∗ and P∗ denote the adult host and parasitoid equilibrium, respectively. Denoting

small fluctuation around the equilibrium H∗ and P∗ by ht := Ht −H∗ and pt := Pt −P∗,

respectively, one obtains using linearization the following linear discrete system ht+1

pt+1

= A

 ht

pt

 , (B.12)

with

A =

 1+RH∗ f ′(r(H∗)P∗)r′(H∗)P∗ RH∗ f ′(r(H∗)P∗)r(H∗)

k(R−1−RH∗ f ′(r(H∗)P∗)r′(H∗)P∗) −kRH∗ f ′(r(H∗)P∗)r(H∗)

 (B.13)

where

f ′(r(H∗)P∗) =
d f (x)

dx
|x=r(H∗)P∗, r′(H∗) =

dr(Ht)
dHt

|Ht=H∗. (B.14)

The above equilibrium is stable, if and only if, the following three Jury conditions

(Elaydi 1996) hold

1− tr(A)+det(A) > 0 (B.15)

1+ tr(A)+det(A) > 0 (B.16)

1−det(A) > 0, (B.17)
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which implies

−kR(R−1)H∗ f ′(r(H∗)P∗)d(Htr(Ht))
dHt

|Ht=H∗ > 0 (B.18)

2− kRH∗ f ′(r(H∗)P∗)
(

d(Htr(Ht))
dHt

|Ht=H∗ −RH∗2 d(r(Ht)/Ht)
dHt

|Ht=H∗

)
> 0 (B.19)

1+ kR2H∗r(H∗) f ′(r(H∗)P∗) > 0. (B.20)

Using (B.3), R > 1 and the fact that f ′(r(H∗)P∗) < 0 ( f is a monotonically decreasing

function), inequalities (B.18)-(B.19) always hold and the stability condition is given by

inequality (B.20), which using P∗ = k(R−1)H∗ becomes

−P∗r(H∗) f ′(r(H∗)P∗) < 1
R −

1
R2 . (B.21)

For the discrete-time model (B.4)-(B.5) we have r(Ht) = 1, and hence from the above

equation, the host-parasitoid equilibrium of (B.4)-(B.5) is stable, if and only if,

−P∗ f ′(P∗) < 1
R −

1
R2 . (B.22)

Differentiating the first equation in (B.11) with respect to R we have

1
R2 = − f ′(r(H∗)P∗)

(
r′(H∗)P∗dH∗

dR
+ r(H∗)

dP∗

dR

)
. (B.23)

From P∗ = k(R−1)H∗ we have

1
P∗

dP∗

dR
=
(

1
R−1

+
1

H∗
dH∗

dR

)
. (B.24)

Substituting (B.24) in (B.23) and using P∗ = k(R−1)H∗ gives us

1
R
− 1

R2 = −P∗r(H∗) f ′(r(H∗)P∗)
(

1+(R−1)
1

r(H∗)H∗
dH∗

dR
d(Htr(Ht))

dHt
|Ht=H∗

)
. (B.25)

Substituting (B.25) in the stability condition (B.21) and using the (B.3) we have that the

stability condition is

dH∗

dR
> 0. (B.26)

From (B.24), the stability condition in terms of the parasitoid equilibrium is

1
P∗

dP∗

dR
>

1
R−1

. (B.27)
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