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Appendix B: Stability analysis for host-parasitoid models

Consider the general class of discrete-time models

Hiv1 = RH f(r(H)P) (B.1)

Pyi = k(RH,—H, 1) (B.2)

where the monotonically decreasing function f(r(H;)F;) represents the fraction of host that
escape parasitism and f(0) = 1. The function r(H;) takes non-negative values for H; > 0 and
is assumed to be such such that r(H;)H; is an increasing function of H, while r(H;)/H; is a

decreasing function of H;, i.e.,

d(H,r(H;)) -0 d(r(H;)/Hr)

0, f 11 H; > 0. B.3
dH, , dH, <0, for a ;> (B.3)
Discrete-time model
H. = RH,/ Op(x) exp(—xP,)dx (B.4)
x=
Pi1 = k(RH;—H ) (B.5)

is a special case of (B.1)-(B.2) with r(H;) = 1 and
f(p)= / Op(x) exp(—xP,)dx. (B.6)
x=
Phenomenological models that incorporate both variability in risk and a parasitoid Type II or
Type III functional responses are given by
oo le’l—IPt
H, :RH/ x)exp | —="—— |dx B.7
1+1 t x:Op( ) P( H”—I—Hﬁ) (B.7)
Pii = k(RH,—H 1) (B.8)

where H is a positive constant and 7 can take values one (corresponds to a Type II functional

response) and two (corresponds to a Type III functional response). The model (B.7)-(B.8)
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also corresponds to the general class of discrete-time models (B.1)-(B.2) with

n—1
r(Hy) = gitgm n=1,2 (B.9)
n—1
Fr(H)P) = [ p(x) exp (—);g;w’l’,;)dx. (B.10)

We now perform a stability analysis of the general class of discrete-time models (B.1)-(B.2).

We assume there exists a non-trivial equilibrium for the discrete-time model (B.1)-(B.2)

which is given as the solution of

= = SUUHP), PP =KR-DH", (B.11)

where H* and P* denote the adult host and parasitoid equilibrium, respectively. Denoting
small fluctuation around the equilibrium H* and P* by h, := H; — H* and p, := P, — P*,

respectively, one obtains using linearization the following linear discrete system

S N , (B.12)
Pt+1 Dt
with
L | 1HRE £ (r(H")P*)¥ (H*)P RH* f'(r(H*)P*)r(H*) (B.13)
k(R —1—RH*f'(r(H*)P*)/ (H*)P*) —kRH*f'(r(H*)P*)r(H*)
where
/ *\ P d ! (E* dr(H,
PP = Ly, ) = (.14

The above equilibrium is stable, if and only if, the following three Jury conditions

(Elaydi 1996) hold

1—tr(A) +det(A) > 0 (B.15)
1+1r(A) +det(A) > 0 (B.16)

1—det(A) > 0, (B.17)



which implies

—kR(R—1)H* f'(r(H*)P*) ) |y > 0 (B.18)

pme — R ) >0 (B.19)

[#,

* * * d(H;r(H;
2 — kRH* f'(r(H*)P*) (%
1+ kR?H*r(H*) f'(r(H*)P*) > 0. (B.20)
Using (B.3), R > 1 and the fact that f'(r(H*)P*) < 0 (f is a monotonically decreasing
function), inequalities (B.18)-(B.19) always hold and the stability condition is given by

inequality (B.20), which using P* = k(R — 1)H* becomes

—P*r(H*)f(r(H*)P*) < § — 2. (B.21)

For the discrete-time model (B.4)-(B.5) we have r(H;) = 1, and hence from the above

equation, the host-parasitoid equilibrium of (B.4)-(B.5) is stable, if and only if,

—P*f/(P*) < g — - (B.22)

Differentiating the first equation in (B.11) with respect to R we have

1 . LAH* o dP*
2= —f'(r(H*)P*) <r’(H*)P e TrHY) ) : (B.23)
From P* = k(R— 1)H* we have
1 dP* 1 1 dH*
_ S . B.24
P* dR (R—1+H* dR) (B.24)
Substituting (B.24) in (B.23) and using P* = k(R — 1)H* gives us
—— — =P r(H"f (r(H)P*)[1+(R—1 —g+ . (B.25

Substituting (B.25) in the stability condition (B.21) and using the (B.3) we have that the

stability condition is

dH*
dR

> 0. (B.26)

From (B.24), the stability condition in terms of the parasitoid equilibrium is

1 apP* 1
o B.27
P dR ~ R—1 (B.27)
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