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APPENDIX A: The MaxEnt Machinery 

We seek the least biased estimate of the functional form of a probability distribution p(n) that is 

subject to a set of K constraints that are accepted from prior knowledge and that can be expressed 

in the form of K equations: 
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where n is summed over all of its possible values, 〉〈 kf is the numerical value of the average of 

fk, and the index k runs from 1 to K.  It was shown by Jaynes (9) that the best inference as to the 

shape of p(n) is the function that maximizes the “information entropy” 
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subject to those constraints. Maximization is carried out using the method of Lagrange 

multipliers.  We are assuming a uniform reference entropy here (sensu Jaynes) because we can 

construct the continuous formulation of the problem as the limiting case of a discrete formulation 

and because there is no a priori reason to choose anything other than a uniform reference. The 

maximization procedure yields: 
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where Z, the partition function, is given by:  
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and the λk are given by the solutions to: 
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A practical example of the use of this equation is in Appendix B.  Eqs. A.1 to A.5 readily 

generalize to joint probability distributions, such as R(n, ε) in the text.   

 



 

 

 

 


