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Appendix B.  PARAMETER ESTIMATION FOR THE DAILY GROWTH MODEL. 

The likelihood analysis used measurements of above- and belowground biomass of individual 

plants, growing in different temperature and nutrient regimes, to estimate the parameters in 

the daily growth model (see main text and Eqs. 1 - 4). The first step of a likelihood analysis is 

to define the log-likelihood of the data X, given the model, and parameter values ,  

(hereafter referred to as the likelihood only). Given the definition of , the analysis 

proceeds by finding the parameters θ  that maximize  (the so-called maximum-

likelihood estimates, or MLEs), and the confidence intervals on each parameter. In special 

cases involving simple models and simple error structures (e.g., linear regression), the MLEs 

and confidence intervals can be found analytically. For complex, nonlinear models, such as 

those employed here, this is not possible, and computational methods are needed to explore 

different parameter sets. Nonetheless, the underlying approach in these more complex cases is 

formally identical to simpler, more familiar statistical methods, including (for example) linear 

regression and ANOVA. For an introduction to likelihood analysis in ecology see Hilborn and 

Mangel (1997). 
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  The sections below explain the definition of the likelihood, including the error 

structure employed in the statistical model, how model predictions were generated given a 

particular parameter set, and how the data were manipulated to produce a set of observations, 

against which the model predictions could be compared. The final section details the Monte 

Carlo Markov Chain (MCMC) computational methods employed to find the MLEs and 

confidence intervals on parameters. 
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DEFINITION OF THE LIKELIHOOD 

The analysis begins by defining , the likelihood of the observed data X, given a vector 

of model parametersθ . In this case, the vector X consisted of a total of 2556 destructive 

measurements of above- and belowground biomass, and 7107 nondestructive measurements 

of above- and belowground biomass, taken from 1724 individuals of the nine different 

species, growing in different temperature and nutrient regimes, and taken at various times 

after the beginning of the experiment (see the main text).  

( | )X θ

 The vector θ  consisted of 13 parameters for each of the nine species j. Nine of these 

parameters ( , , G refM 0γ , massγ , nutrγ , , optT tσ , α , μ ) governed the behavior of the daily 

growth model itself, including the size-independent growth coefficient , allocation above- and 

belowground, and frost tolerance (see Eqs. 5 - 9 in the main text). The other four parameters 

( dest−nonblw,dest−nonabv,dest,blwdestabv, ,,, ρρρρ ) set the magnitude of individual-to-individual variation 

in biomass, which was required to define the error distributions (see below). The model was 

fit several different times, with the parameters in  either being global (shared between all 

species), or species-specific. This meant that the number of parameters to be estimated also 

varied from 9 (all parameters global) to 117 (all parameters species-specific). 

θ

Conditional on a particular vectorθ , the daily growth model gives a prediction 

corresponding to any observation k, where k is an observation of above- or belowground 

biomass, taken  days after the start of the experiment, for an individual of species j, 

growing in nutrient regime nutr, and temperature regime temp. Comparing all available 

observations k with model predictions, and assuming log-normal error distributions, yields the 

likelihood . The key assumption here is that each observation k is a random draw from 

a log-normal probability distribution with a mode equal to the prediction from the daily 

growth model: 
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where dest and non-dest signify destructive and non-destructive measurements of biomass 

respectively. The set  contain observations k that consist of an observation of 

aboveground biomass, destructively harvested; and similarly for , 

 and  (see below).  is the biomass measurement 

associated with observation k, and  is the model prediction for the biomass associated 

with k.  is conditional on the parameter vector θ , making  a function of . The 

function 
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 is the probability density for the observation 

, given a normal probability distribution with mean equal to , and standard 

deviation equal to 

}mod
kMln{

ρ , and similarly for the other three normal functions. Note that the 

standard deviation is specific to each of the four combinations of above- vs. belowground 

biomass, and destructive vs. nondestructive harvesting (i.e., destabv,ρ , destblw,ρ , destnonabv −,ρ , 

destnonblw −,ρ  are estimated as separate parameters). This is because ρ  includes both true 

individual-to-individual variation in biomass and measurement error, both of which can be 

expected to differ according to species, above- vs. belowground biomass and destructive vs. 

nondestructive harvesting. 

The statistical model underlying Eq. B2.1 can be written as 

       (B2.2) k
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k
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where kε  is an unexplained random deviation specific to observation k, which is assumed to 

come from a normal distribution with a mean of zero, and standard deviation equal to the ρ  

corresponding to k (e.g. destabv,ρ  if k corresponds to a destructive measurement of above-

ground biomass). The analysis also assumes independence of observations. Thus, the analysis 

is a standard nonlinear least-squares regression, but carried out on the log-transformed values 

of the data, and model predictions. This implies that the most likely value of , i.e., 

the mode of the log-normal distribution, is , which in turn implies that the most 

likely value of  is . However, the arithmetic mean of a sample taken from a log-

normal distribution is not equal to the mode, which means in this case that the daily growth 

model (once parameterized) is not expected to reproduce the arithmetic mean of the 

observational data. For this reason, when comparing the model predictions to the data, we 

present the geometric mean of the data (e.g., see Figs. 3 and 4), which is expected to be equal 

to the mode of the log-normal distribution, and hence equal to the prediction from the daily 

growth model. 
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GENERATION OF MODEL PREDICTIONS 

To generate the likelihood , it was necessary to predict the biomass corresponding to 

observation k,  (see above). These predictions were generated differently for destructive 

and non-destructive measurements. 
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Destructive measurements. For destructive measurements, the daily growth model was 

initialized from the earliest available observations of above- and belowground biomass for 

species j (i.e., those taken on day 14). Then, the predicted biomass for observation k was 
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generated by summing the changes in biomass up to the harvest day associated with 

observation k. Thus, where observation k is for plant i of species j harvested on day : )(ˆ kd
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where ),(
14,

obsabv
jM  is the geometric mean of all destructive measurements of aboveground 

biomass for species j taken on day 14; similarly for ),(
14,

obsblw
jM ; and where the superscript mod 

denotes the values of biomass, and change in biomass, used in the daily growth model. The 

MΔ values given by the daily growth model are conditional on the parameter vector . Note 

also that the 

θ

MΔ terms are specific to subscript k. This is because different observations k 

were subject to different combinations of temperature and nutrient regimes, which alter the 

predicted growth in the daily growth model. However, since there were only 10 combinations 

of these factors (5 nutrient regimes × 2 temperature regimes), in practice it was only necessary 

to implement the daily growth model 10 times for each parameter set θ .  

 

Nondestructive measurements. Utilizing nondestructive measurements provided two principle 

benefits to the analysis of plant growth in this case. First, it meant that each individual plant 

contributed more than one pair of values for above- and belowground biomass, increasing the 

amount of observational information available to estimate the model parameters. Second, the 

nondestructive measurements provided multiple measurements of the biomass of individual 

plants, which could be used to measure growth over short time intervals. This provided 

information on how, for a given species j in a given combination of temperature and nutrient 
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regime, variation in above- and belowground biomass affected above- and belowground 

growth over the subsequent growth period. Since biomass is a primary driver of growth and 

allocation in the daily growth model (see main text), this additional information can be 

expected to substantially improve parameter estimation.  

Therefore, for nondestructive measurements corresponding to plant i and measurement 

day , the model was initialized with the nondestructive measurements of above- and 

belowground biomass, specific to plant i, taken in the measurement period proceeding day 

,  (approximately 30 days prior to , because measurements were taken 

monthly). After this initialization, the predicted biomass for observation k was generated by 

summing the changes in biomass from up to . Thus, where observation k is for 

plant i of species j measured on day d : 
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As Eqs. 2.4 show, under this scheme a particular plant i received an initialization specific to i 

(see the right-hand side of the first two equations in B2.4). This went on to affect the 

predicted growth and allocation of plant i (because this is affected by initial biomass; see main 

text), which in turn provided a prediction for the above- and belowground biomass of plant i, 

which was then compared with that observed for plant i . Under this scheme, the effect of 

individual-to-individual variation in initial biomass, for two plants of the same species, 

growing over the same period, and experiencing the same environmental conditions, was 

 6



explicitly incorporated into the parameter estimation. This information cannot be incorporated 

into an analysis utilizing destructive harvests alone. 

  

DATA MANIPULATION 

Each plant i provided a number of nondestructive values for above- and belowground 

biomass, and was then harvested, at which time it provided a pair of destructive values for 

above- and belowground biomass. Plants harvested at the first measurement date (day 14) 

provided destructive measures only. The sets  and  consisted of all 

available destructive harvest data, except the day-14 data, which was used only to initialize 

the growth model for predictions to compare with destructive harvest data (see Eqs. B2.3 

above). This provided 1278 observations k in each of  and , a total of 

2556 observations.  

),( destabvS

(abvS
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The sets  and ),( destnonabvS − ),( destnonblwS −  were generated by finding all 

available pairs of nondestructive measurements of above- and belowground biomass from the 

same plant i, where the second set of measurements was taken in the measurement date 

immediately following the first (approximately 30 days previous to the second measurement). 

From this pair of observations, the second measurement corresponded to an observation k as 

described above, while the previous observation was used to initialize the daily growth model 

to provide a model prediction with which to compare observation k (see Eqs. B2.4 above). 

Therefore, the observations k in sets ),( destnonabvS −  and  

consisted of pairs of measurements taken either on day 35 with a previous measurement from 

day 14; or on day 70, with a previous measurement from day 35; or on day 98 with a previous 

measurement from day 70; or on day 133 with a previous measurement from day 98; or on 

day 161 with a previous measurement from day 133. An example of an observation k in set 

 is the aboveground biomass of plant 457, measured on day 161, where a 

),( destnonblwS −

),( destnonabvS −
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nondestructive measurement of the aboveground biomass of plant 457 was also taken on day 

133. In total, there were 2325 paired measurements of above- and belowground biomass 

meeting these criteria, providing 2325 observations k in the each of the sets 

 and  (a total of 4650 observations). ),( destnonabvS − ),( destnonblwS −
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MONTE CARLO MARKOV CHAIN SCHEME 

In likelihood analysis, the vector of parameter values θ  that maximizes  is taken to be 

the most likely vector of parameters, given the model structure and data X. The parameter 

values in this vector are referred to as the “maximum-likelihood estimates”, or MLEs, and the 

value of the likelihood that is returned when the parameters are set to the MLEs is called the 

“maximum likelihood”. Confidence limits on parameters can be defined very simply. Extract 

the set of all vectors θ  that return a value for  within a certain tolerance of the 

maximum likelihood, where the tolerance is defined by the confidence level (e.g., for P = 

0.05, the tolerance is 1.96). This set of vectors contains a range of values for a given 

parameter p, and this range is the confidence interval for p. 

( | )X θ

( )θ|X

Therefore, once  is defined, all that remains is to find the MLE vector, and the 

set of all other vectors that lies within a predetermined tolerance of the maximum likelihood. 

When fitting a model with few parameters, and when  can be calculated very quickly, 

it is possible to calculate the  associated with every possible vector within a pre-

specified range (and with the parameters specified to a predetermined level of accuracy). 

However, for models with larger numbers of parameters, such as the one considered here, the 

number of possible vectors is so large that an approximation is needed.  

( | )X θ

In this case, we employed a Monte Carlo Markov chain (MCMC) sampling scheme, 

which we have found previously to be particularly efficient at finding MLEs and confidence 

intervals (e.g., Purves et al. 2007a,b, A. Barron, D. W. Purves, and L. O. Hedin, unpublished 
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manuscript). MCMC sampling is based around random changes in , which are then 

accepted or rejected depending on the corresponding changes in  (see Chib and 

Greenberg 1995). Two key features of MCMC sampling make it attractive for complex, 

parameter-rich problems, such as that considered here. First, as might be expected, the 

algorithm accepts any change in  that increases ; but it also probabilistically accepts 

changes that decrease , according to the so-called “metropolis criterion”. This latter 

behavior is particularly important in nonlinear problems, because it allows the algorithm to 

escape from local maxima of , and find the global maximum. Second, when 

configured properly, MCMC sampling has the remarkable property that, once a so-called 

quasi-equilibrium has been reached, each vector  returned by the algorithm is a random 

sample from the posterior probability of θ  given X (Chib and Greenberg 1995). Within the 

context of likelihood analysis, this means that (for example) 90% of the values of a given 

parameter p returned by the algorithm will be within the 90% confidence limit for p (given the 

model structure, and data X). In practical terms, this means that, retaining a list of parameter 

values for p output by the MCMC scheme, ranking this list, and removing the tails gives a 

simple estimate of the confidence interval for p. The benefit of this technique is that the time 

required to obtain an estimate of the confidence intervals is dramatically reduced compared 

with the time required to find the set of all vectors within a fixed tolerance of the maximum 

likelihood. However, we have confirmed in the context of several different analyses (e.g., A. 

Barron, D. W. Purves, and L. O. Hedin, unpublished manuscript; and the current global fit in 

this study) that it gives the same results. This can also be proven analytically (not shown). 

θ

( | θ)X
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θ
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There are many particular choices to be made in the implementation of MCMC 

sampling, but providing that certain criteria are met, these choices only affect the efficiency 

and not the output of the analysis. The scheme used and outlined here is the result of 

experimentation with a variety of problems in likelihood and Bayesian analysis (see, for 
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example, Purves et al. 2007a; Purves et al. 2007b; A. Barron, L. O. Hedin and D. W. Purves, 

unpublished manuscript). For further details, or C code to implement the scheme, please 

contact D.W. Purves. To generate the proposed parameter vector ′θ  from the current vector 

, the scheme (1) chooses, at random, the number, n, of parameters to be altered between 1 

and N, where N is the total of parameters in ; (2) selects, at random, which of the N 

parameters are to be altered; (3) increments the current value of p by 

θ

θ

pΔ  for each parameter p 

chosen, (i.e. p p→ +Δp ) where pΔ  is drawn from a Gaussian distribution with mean zero 

and standard deviation Pσ  (if p is logically constrained to be positive, then the transformation 

.exp[ ]p p→

( | )′ >X θ

pΔ

θ ′θ
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 is used, which corresponds to a Gaussian jump in the logarithm of p). The 

change from  to  is accepted according to the metropolis criterion: i.e., with certainty if 

, and with probability exp[ | ) ( | )]( ′ −X θ X θ  if . The 

algorithm begins with 

(X | ) ( | )′ <θ X θ

pσ  set to half the allowable range in p (where the allowable range is 

much larger than the realistic range). The values of pσ  are adjusted automatically, to achieve 

a target acceptance ratio of 0.25 (i.e., the aim is to accept one quarter of the proposed changes, 

which is often considered optimal). Importantly, the scheme for adjusting the pσ  values 

(which is too complicated to be given here) allows the pσ  values to become specific to p (in 

practice, this means that pσ  becomes smaller for parameters that are better constrained by the 

data). This improves the efficiency of the sampling of vectors from the posterior. 

When fitting this model, we allowed a “burn in” of 250000 iterations for the MCMC 

algorithm to reach quasi-equilibrium, after which an additional 250000 were used to provide 

samples of the parameters from the posterior distribution. These numbers of iterations were 

many times greater than required for convergence in this case. The MLE vector was taken to 

be the single vector  that returned the highest value of the likelihood  from the total 

sample of 500000 vectors. 67% and 95% confidence intervals for parameter p were generated 

θ ( | )X θ
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by cutting the tails from a rarified sample from the 250000 post-burn-in vectors, as described 

above. 
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