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Appendix

Derivation of the Fokker-Planck equation for space-use

Here we derive equation Eqs. (9)-(10) from Eq. (8), for the case of general redistribution kernel
kτ (x, x′)1. First we note that in order for u(x, t) to remain a probability density function, the kernel
must satisfy ∫

kτ (x, x′)dx = 1, for all x′. (A.1)

Recalling the definition q := x− x′, we now change the variables used to describe the kernel from
(x, x′) to (q, x′), by defining

κτ (q, x′) := kτ (x′ + q, x′). (A.2)

The purpose of this is to enable us to hold q constant while expanding a Taylor series in x′. Writing
Eq. (8) in terms of this new kernel, then changing integration variable from x′ to q gives

u(x, t + τ) =
∫

κτ (x− x′, x′)u(x′, t)dx′

=
∫

κτ (q, x− q)u(x− q, t)dq

=
∫ [

κτ (q, x)u(x, t)− q
∂

∂x
[κτ (q, x)u(x, t)] +

q2

2!
∂2

∂x2
[κτ (q, x)u(x, t)] · · ·

]
dq. (A.3)

The final step is achieved by considering the integrand as a function of two variables, q and (x− q),
and Taylor expanding this function with respect to the second variable about the value x, while
holding the first constant.

Dividing (A.3) by τ , making use of
∫

κτ (q, x)dq = 1 which is a re-statement of Eq. (A.1), and
switching the order of differentiation and integration we get

u(x, t + τ)− u(x, t)
τ

= −1
τ

∂

∂x

∫
qκτ (q, x)dq u(x, t) +

1
2τ

∂2

∂x2

∫
q2κτ (q, x)dq u(x, t) · · ·(A.4)

Taking the limit of small time interval τ gives

∂u(x, t)
∂t

= − ∂

∂x

[
lim
τ→0

1
τ

(∫ ∞

−∞
qκτ (q, x)dq

)
u(x, t)

]
+

∂2

∂x2

[
lim
τ→0

1
2τ

(∫ ∞

−∞
q2κτ (q, x)dq

)
u(x, t)

]
− . . . (A.5)

1This is essentially the derivation of a Fokker-Planck equation from a Chapman-Kolmogorov master equation via
the Kramers-Moyal expansion – see Gardiner 1983.
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The two integrals in the first and second terms are, respectively, the first and second moments of
the kernel κτ . Consideering the limit of small time-steps (τ → 0), and making the conventional
assumptions that the first two moments scale with order τ and that higher order terms can be
discarded, we arrive at Eqs. (9)-(10)

∂u(x, t)
∂t

= − ∂

∂x
[c(x)u(x, t)] +

∂2

∂x2
[d(x)u(x, t)] . (A.6)

where

c(x) = lim
τ→0

1
τ

∫ ∞

−∞
qκτ (q, x)dq, and

d(x) = lim
τ→0

1
2τ

∫ ∞

−∞
q2κτ (q, x)dq. (A.7)

Coefficients of the space-use equation arising from a spatially-dependent
resource selection model

The redistribution kernel for the spatially-explicit resource selection model (Eq.7) is given by

k(x, x′, τ) =
φτ (x− x′)w(x)∫

φτ (x′′ − x′)w(x′′)dx′′
(A.8)

where φτ (x− x′)dx′dx the probability that an individual located between x′ and x′ + dx will move
to a location between x and x + dx away from x, and w(x) is a resource selection function. The
denominator is a normalizing factor that ensures that Eq. (A.1) holds.

We consider the case of continuous, sufficiently smooth positive preference function w(x), and a
bounded symmetric distribution of displacement distances φτ (q) (Figure 4). Recalling the definition
(A.2), we can rewrite A.8, as

κτ (q, x) =
φτ (q)w(x + q)∫

φτ (q′)w(x + q′)dq′
(A.9)

The pth moment of the distribution of displacement distances is

Mp(τ) :=
∫

qpφτ (q)dq. (A.10)

Since φτ is a probability density function M0(τ) = 1, and since it is symmetric M1(τ) = 0 and all
higher odd moments are zero. M2(τ) is the variance, and we make the conventional assumption
that in the limit τ → 0 the higher even moments can be negleted (i.e., they vanish faster than
linearly in τ).

Under the above assumptions, Taylor expanding w yields the following expression for the de-
nominator of (A.9), ∫

φτ (q′)w(x + q′)dq′ = w(x) +
wxx(x)

2!
M2(τ) + · · · (A.11)
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where wxx = d2w
dx2 . In the limit τ → 0, only the first term of Eq. A.11 remains. Using this expression

for the denominator and inserting (A.9) into Eqs. (A.7) yields

c(x) = lim
τ→0

1
τ

wx(x)M2(τ) + wxxx(x)M4(τ)/3! + · · ·
w(x) + wxx(x)M2(τ)/2! + · · ·

= lim
τ→0

M2(τ)
τ

· wx(x)
w(x)

(A.12)

where wx = dw
dx , etc. Similarly,

d(x) = lim
τ→0

1
2τ

w(x)M2(τ) + wxx(x)M4(τ)/2! · · ·
w(x) + wxx(x)M2(τ)/2 + · · ·

= lim
τ→0

M2(τ)
2τ

. (A.13)

This is Eq (12a,b).
As two examples, we consider two special cases of the distribution of displacement distances,

(i) the fixed step length φτ (q) = (δ(q − L) + δ(q + L))/2 for which limτ→0
M2(τ)

τ = 1, and, (ii) the
exponential step distribution (Figure 4), namely φτ (q) = (1/2L)e−|q|/L, which gives limτ→0

M2(τ)
τ =

2. As is clear from (A.12) and (A.13), it is the value of the second moment of φτ that determines
the magnitude of the advection and diffusion coefficients.

Steady-state distribution of the resource selection model

The steady state distribution u∗ for Equation (9) can be derived by first expressing the equation
in conservation law form

∂u

∂t
+

∂

∂x
[(du)x − cu] = 0. (A.14)

where the quantity in square brackets is the flux. Setting the time derivative to zero implies that
the steady-state flux is a constant independent of spatial position. Since by definition the steady-
state pattern of space-use u∗ does not change with time, this constant is zero. Thus in the steady
state (du)x = cu, which may be integrated to give the steady state pattern of space use

u∗(x) =
C

d(x)
exp

∫ x c(x′)
d(x′)

dx′ (A.15)

with C chosen to so that u∗(x) integrates to 1. Substituting (A.12) and (A.13) into A.15 gives Eq.
(13).

Note that if the individual is moving in a finite, bounded region, then zero-flux boundary
conditions apply to A.6 at the edges of the domain, i.e.:

∂

∂x
[(d(x)u(x, t)]− c(x)u(x, t) = 0, at ∂Ω (A.16)

In this case a nonzero steady-state solution Eq. A.15 is guaranteed to exist for any continuous w(x).
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