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Appendix A. Derivation of the Fokker-Planck equation for space-use.



Appendix

Derivation of the Fokker-Planck equation for space-use

Here we derive equation Egs. (9)-(10) from Eq. (8), for the case of general redistribution kernel
k;(z,2')!. First we note that in order for u(z,t) to remain a probability density function, the kernel
must satisfy

/kT(x,m’)dm =1, for all . (A1)

Recalling the definition ¢ := x — 2/, we now change the variables used to describe the kernel from
(z,2") to (¢q,2), by defining
kr(q, o) == kr (2 + q,2). (A.2)

The purpose of this is to enable us to hold ¢ constant while expanding a Taylor series in z’. Writing
Eq. (8) in terms of this new kernel, then changing integration variable from z’ to ¢ gives

u(z, t+71) = /K]T(JL’ — 2’ 2 u(2 t)da’

= /lfw(q, z —q)u(z — g, t)dq
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The final step is achieved by considering the integrand as a function of two variables, ¢ and (x — q),
and Taylor expanding this function with respect to the second variable about the value x, while
holding the first constant.
Dividing (A.3) by 7, making use of [ k,(q,z)dg = 1 which is a re-statement of Eq. (A.1), and
switching the order of differentiation and integration we get
u(x, t+ 1) —u(z,t) 10 1 02
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Taking the limit of small time interval 7 gives

Qu(w,t) _ 7% {lim 1 (/Oo qm(q,x)dq> u(z:,t)}
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!This is essentially the derivation of a Fokker-Planck equation from a Chapman-Kolmogorov master equation via
the Kramers-Moyal expansion — see Gardiner 1983.




The two integrals in the first and second terms are, respectively, the first and second moments of
the kernel ;. Consideering the limit of small time-steps (7 — 0), and making the conventional
assumptions that the first two moments scale with order 7 and that higher order terms can be
discarded, we arrive at Egs. (9)-(10)

ou(z,t) 0 0?
@8 = D lelayula, 0] + 2y ld@)uta, 1) (A6)
where
O
clr) = lim— qk+(q,z)dg, and
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d(z) = }%%/mq Kr (g, z)dg. (A7)

Coefficients of the space-use equation arising from a spatially-dependent
resource selection model

The redistribution kernel for the spatially-explicit resource selection model (Eq.7) is given by

6o x’)w(m) (A8)

k(z, o', 7) = fgb " — 2 w(z")dz"

where ¢, (x — x’)dz’'dx the probability that an individual located between 2’ and 2’ + dx will move
to a location between x and x + dr away from x, and w(x) is a resource selection function. The
denominator is a normalizing factor that ensures that Eq. (A.1) holds.

We consider the case of continuous, sufficiently smooth positive preference function w(z), and a
bounded symmetric distribution of displacement distances ¢,(q) (Figure 4). Recalling the definition
(A.2), we can rewrite A.8, as

¢T( ) (x +4q)
Kr(g,x) = (A.9)
f ¢T -T +4q )dq

The p! moment of the distribution of displacement distances is

My(T) := / 7" ¢r(q)dg. (A.10)

Since ¢, is a probability density function My(7) = 1, and since it is symmetric M7(7) = 0 and all
higher odd moments are zero. Ms(7) is the variance, and we make the conventional assumption
that in the limit 7 — 0 the higher even moments can be negleted (i.e., they vanish faster than
linearly in 7).

Under the above assumptions, Taylor expanding w yields the following expression for the de-
nominator of (A.9),

/¢T w(x+q¢)dg = w(x)+ 51 Msy(T)+--- (A.11)



where wy, = 57%’. In the limit 7 — 0, only the first term of Eq. A.11 remains. Using this expression
for the denominator and inserting (A.9) into Eqs. (A.7) yields

=0T w(x)+wzz($)M2(T)/2|+
— lim M . Wy ()
e

(A.12)

where w, = %v etc. Similarly,
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This is Eq (12a,b).

As two examples, we consider two special cases of the distribution of displacement distances,
(i) the fixed step length ¢(q) = (6(¢ — L) 4+ 6(¢ + L))/2 for which lim,_,o M+m =1, and, (ii) the
exponential step distribution (Figure 4), namely ¢, (q) = (1/2L)e~14/E which gives lim, o M%(T) =
2. As is clear from (A.12) and (A.13), it is the value of the second moment of ¢, that determines
the magnitude of the advection and diffusion coefficients.

Steady-state distribution of the resource selection model

The steady state distribution u* for Equation (9) can be derived by first expressing the equation
in conservation law form

ou 0

e + o [(
where the quantity in square brackets is the flux. Setting the time derivative to zero implies that
the steady-state flux is a constant independent of spatial position. Since by definition the steady-
state pattern of space-use u* does not change with time, this constant is zero. Thus in the steady
state (du), = cu, which may be integrated to give the steady state pattern of space use

du)y — cu] = 0. (A.14)

ey C Y@
u*(z) = d(w)exp/ d(x/)dx (A.15)

with C' chosen to so that u*(x) integrates to 1. Substituting (A.12) and (A.13) into A.15 gives Eq.
(13).

Note that if the individual is moving in a finite, bounded region, then zero-flux boundary
conditions apply to A.6 at the edges of the domain, i.e.:

0

92 [(d(z)u(z,t)] — c(x)u(z,t) =0, at 0 (A.16)

In this case a nonzero steady-state solution Eq. A.15 is guaranteed to exist for any continuous w(z).
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