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Appendix B

Mathematical developments of the SSAS

In the following section, we present the mathematical developments and related under-
lying statistical tenets of our paper. Contrary to segregation coefficients, this theoretical
background ensures the validity of the proposed test (hereafter called SSAS standing
for Sexual Segregation and Aggregation Statistic).

Context

Qualitative variables

We first set the discussion in a probabilistic context. The problem deals with the study
of an eventual dependence between the factor Sex (male or female) and the distribution
of animals among Groups. In other words, at a fixed instant, for any individual, we
consider two qualitative variables :

• its Sex that can take one of the 2 modalities male or female,

• its Group of appartenance that can take one of the theoretical modalities valued
in IN∗.

We check that at the time of observation, any individual presents one and only one
modality for each variable.

Observed Contingency Table

We now use the qualitative variables Sex and Group previously defined, in order to
describe a population consisting of N individuals. Actually, there may not exist more
Groups than the number N of individuals in the data set. Considering a modality
that does not occur in the data set has no sense. So we reduce the modalities of the
variable Group to the number k (k ≥ 2) of observed Groups. We can therfore construct
a standard contingency table as follows:

Sex \ Group 1 2 · · · j · · · k Total

Male x1 x2 · · · xj · · · xk x

Female y1 y2 · · · yj · · · yk y

Total n1 n2 · · · nj · · · nk N

Probabilistic approach

Studied Random variables

Let (Ω,F , IP) be a probability space. Consider 2 random variables on (Ω,F , IP) denoted
by S and G, valued respectively in {1, 2} and {1, 2, · · · , k}. Suppose their distribution
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defined as follows :

IP(S = 1) = p , IP(S = 2) = 1 − p .

IP(G = 1) = pG

1 , IP(G = 2) = pG

2 , · · · IP(G = k) = pG

k ,

with p ∈]0, 1[ and pG
1 , · · · pG

k > 0 such that

k
∑

j=1

pG
j = 1.

We aim to test if the qualitative variables Sex and Group are independent. We
will test the null hypothesis H0 : ”S and G are independent” against the alternative
hypothesis H1 : ”S and G are not independent”. We shall first recall the following basic
result.

Definition B.1

Random variables S and G are independent if and only if ∀j ∈ {1, 2, · · · , k},
IP(S = 1 ∩ G = j) = IP(S = 1) × IP(G = j) = p pG

j ,

IP(S = 2 ∩ G = j) = IP(S = 2) × IP(G = j) = (1 − p) pG

j .

We now consider a sample of random variables S1, · · · , SN (resp. G1, · · · , GN ) drawn
from S (resp. G). The observations of the factor Sex (resp. Group) for the N individuals
of the population give a realization s1, · · · , sN (resp. g1, · · · , gN ) of these random vari-

ables. Indeed, si reveals the Sex of the ith individual, and gi its Group of appartenance.

Remark: During the sampling procedure of the data, we need to assume the same
condition as in Conradt’s work (Conradt 1998), p. 222: ”This applies only if individual
animals in the population move between groups independently of other individuals”.

Construction of a Statistic

Notations Let X (resp. Y ) be the number of males (resp. females) in the population
:

X =

N
∑

i=1

1lSi=1 and Y =

n
∑

i=1

1lSi=2 .

We also define Nj as the number of individuals in Group j : ∀ j ∈ {1, 2, · · · , k},

Nj =
N

∑

i=1

1lGi=j .

By definition,

k
∑

j=1

Nj = N . We can also introduce the random variable Xj defined as

the number of males belonging to Group j, and Yj the number of females belonging to
the same Group (variables Xj and Yj satisfy 0 ≤ Xj , Yj ≤ Nj ). Obviously, ∀ j ∈
{1, 2, · · · , k}, Xj + Yj = Nj, and X =

∑k
j=1 Xj , Y =

∑k
j=1 Yj = N − X .

2



Principle of the test Under hypothesis H0, ∀j ∈ {1, 2, · · · , k} ∀i ∈ {1, 2, · · · ,N},

IP(Si = 1 ∩ Gi = j) = IP(Si = 1) × IP(Gi = j) = p pG

j ,

IP(Si = 2 ∩ Gi = j) = IP(Si = 2) × IP(Gi = j) = (1 − p) pG

j ,

Hence, if H0 is satisfied, the observed frequencies should verify ∀j ∈ {1, 2, · · · , k},

xj

N
≃ p pG

j and
yj

N
≃ (1 − p) pG

j .

In our case, the probabilities p and pG

j are unknown ∀j ∈ {1, 2, · · · , k}. Never-
theless, the law of large numbers allows the approximation of p by x

N , and pG

j by
nj

N ∀j ∈ {1, 2, · · · , k}. Hence the question can be reformulated in this way : Are observed
frequencies

xj

N and
yj

N close enough from x
N × nj

N and y
N × nj

N respectively, to conclude
that factors S and G are independent ? In terms of observed numbers, we are led to
compare xj (resp. yj) and

x nj

N (resp.
y nj

N ).

χ2-Statistic Actually, we only study populations of size N , with both males and fe-
males, distributed in k groups. Hence, random variables X, Y and Nj (∀ j ∈ {1, 2, · · · , k})
satisfy X, Y, Nj ≥ 1 IPa.s.. In such situations, the convenient mathematical statistic
is defined by

Definition B.2

X2 =

k
∑

j=1

(

(Xj − XNj

N )2

XNj

N

+
(Yj − Y Nj

N )2

Y Nj

N

)

, is called the χ2-statistic.

Theorem B.3

Under H0, X2 d−−−−−−→
N→+∞

χ2
k−1.

Proof.

The proof is very technical. For details, see Kendall and Stuart (1961). We just recall
here that the degree of freedom is computed as (2 − 1) × (k − 1). �

Theorem B.3 means that independence test of χ2 is an asymptotical test, so that a
large N (size of the population) is required.

Statistical Test of independence

Whenever applying any statistical test, we compute the value of the statistic from the
observed sample. In our case, we compute

X2
observation =

k
∑

j=1

(

(xj − x nj

N )2

x nj

N

+
(yj − y nj

N )2

y nj

N

)

.
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The Theorem B.3 provides the asymptotic distribution of the statistic X2. We shall
recall that such a distribution is available only if the sample size n is large. In the
current framework, it does not seem reasonable to allow n to grow to infinity whereas
the number of groups k keeps fixed. This is the reason why we do not use the asymptotic
distribution of X2 but advise to use a randomization test instead (Manly 1991). In other
words, we still consider the χ2-statistics, whose exact distribution is unknown. The value
of X2

observation is compared with the distribution of χ2-statistic obtained by randomly
reordering the data. An observation ω0 gives an observed contingency table, and so
X(ω0), Y (ω0), Nj(ω0), ∀j ∈ {1, 2, · · · , k}. The randomization procedure considers any
ω ∈ Ω such that X(ω) = X(ω0), Y (ω) = Y (ω0), Nj(ω) = Nj(ω0) ∀j ∈ {1, 2, · · · , k} (i.e.
any contingency tables with marginal totals equal to those of the observed table). The
decision is taken by comparing the value of the statistical X2

observation and the quantiles
(associated to the probability 1−α) of the randomized distribution. If hypothesis H0 is
not accepted, we conclude (with risk α) that factors Sex and Group are not independent.
In the paper, a Monte-Carlo version of the test is used by considering a random sampling
of the randomization distribution.

Definition of an index detecting dependence

The χ2-Statistic is convenient for testing independence of factors Sex and Group. In our
context, we can prove that variable X2 can take another expression.

Proposition B.4

X2 = N

(

1 − N

XY

k
∑

j=1

Xj Yj

Nj

)

Proof.

This result is proved in the Appendix of our paper. �

Hence we can define an index called SSAS by X
2

N .

Definition B.5

We call Sexual Segregation and Aggregation Statistic the following quantity :

SSAS =

(

1 − N

X Y

k
∑

j=1

Xj Yj

Nj

)

Properties of SSAS

Given that index SSAS stems from a strong mathematical theory, several properties can
be deduced easily.

Theorem B.6
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i) Cramer’s variable V =
√

X
2

N×min(2−1,k−1) takes values in [0, 1].

ii) IE
(

X
2

N

)

= k−1
N−1 .

Proof.

i) See Cramer (1999).

ii) The proof lies on the fact that ∀ j ∈ {1, · · · k},

IE(Xj Yj | X = x, Y = y, N1 = n1, · · · ,Nk = nk ) =
x y nj (nj − 1)

N(N − 1)
. (1)

We refer to Haldane (1940) for details.

�

Corollary B.7

i) Index SSAS takes values in [0, 1].

ii) IE
(

k−1
N−1

)

.

iii) Index SCsocial introduced by Conradt (1998) is the observation of a random variable
whose expectation is −1

N−1 and not 0 contrary to what Conradt claimed in her paper.

iv) Let us define Z = 1 − N − 1

X Y

k
∑

j=1

Xj Yj

Nj − 1
.

Conradt (1999) introduced SC as
√

Zobservation.

This index is not well-defined because IP

(

1 − N − 1

X Y

k
∑

j=1

Xj Yj

Nj − 1
< 0

)

> 0 .

Proof.

i) It derives from Theorem B.6 i).

ii) It derives from Theorem B.6 ii).

iii) We use the equality (1), which remains available under the probability set Ω such
that ∀ j ∈ {1, · · · k}, Nj ≥ 2.

iv) The same calculation provides IE(Z) = 0. Obviously, if Index SC is well-defined,
Z would be a nonnegative random variable with null expectation. In other words,
Z would be null IP-almost surely. To use a null variable to define a measure of
segregation is not acceptable.
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Actually, we can prove that Z is not a nonnegative random variable, so that the
index SC is mathematically wrong. First of all, we fix x, y, n1, · · · , nk such that

x + y =

k
∑

j=1

nj = N and ∀ j ∈ {1, · · · k}, nj > 1 (2)

Then by definition of variables S and G in Subsection ,

IP( X = x, Y = y, N1 = n1, · · · ,Nk = nk ) > 0 (3)

We refer to Haldane (1940) to state that

IP( X1 = x1, · · · ,Xk = xk | X = x, Y = y, N1 = n1, · · · ,Nk = nk ) > 0

In particular, the following conditional probability is positive :

IP(∃i1, i2 s.t. Xi1 = 1,Xi2 = 1 and Xj = 0∀ j 6= i1, i2

| X = 2, Y = N − 2, N1 = n1, · · · , Nk = nk ) . (4)

And Equation (3) gives that the joint probability

IP(∃i1, i2 s.t. Xi1 = 1,Xi2 = 1 and Xj = 0∀ j 6= i1, i2

∩ X = 2, Y = N − 2, N1 = n1, · · · , Nk = nk ) (5)

is positive as the product of two positive terms.

Let us denote by A the set of events ω ∈ Ω such that

∃i1, i2 s.t. Xi1 = 1,Xi2 = 1 and Xj = 0∀ j 6= i1, i2

∩ X = 2, Y = N − 2, N1 = n1, · · · , Nk = nk . (6)

Then A is a nonnegligible set and for such events ω ∈ A,

Z(ω) = 1 − N − 1

2(N − 2)

( ni1 − 1

ni1 − 1
+

ni2 − 1

ni2 − 1

)

= − 1

N − 2
< 0 .

As a conclusion, we obtain IP(Z < 0 ) > 0

�

Remark 1 : When rejecting hypothesis H0, we do it with a reasonable risk (generally
equal to 5 %) that factors Sex and Group were independent nevertheless. This is the
usual principle of test.

Remark 2 : Index SSAS must not be used to measure any degree of segregation. It
has no sense to compare two values of SSAS, and conclude that segregation is higher in
one situation than in the other one. We show here that it is not convenient to measure
segregation by comparing p-values.

Remark 3 : Remark 2 also holds for indexes SCsocial and SC successively introduced by
Conradt (1998, 1999). In addition, indexes SCsocial and SC do not refer to any statistical
test.
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Confidence Interval for distance to independence ?

The question is : “Can we measure a degree of segregation”? In other words, we wish to
measure how far from independence our observation are, when H0 is rejected. To deal
with this problem, we need to know the (asymptotic) distribution of random variable
X2 under H1. We recall that when H0 is satisfied and under the assumption that k is a
constant, the asymptotic distribution of X2 is given by Theorem B.3: a χ2 with degrees
of freedom k − 1. But when H0 is rejected, the probability that an individual satisfies
both Sex = 1 ( resp. Sex = 2 ) and Group = j is no longer p pG

j ( resp. (1 − p) pG
j ).

Let us denote, ∀j ∈ {1, 2, · · · , k}
IP(S = 1 ∩ G = j) = p1j , (7)

IP(S = 2 ∩ G = j) = p2j .

Under assumption H1, the true distribution of the couple of random variables (S,G)
is defined by {p1j , p2j}j ∈{1,2,··· ,k}. Then the asymptotic distribution of X2 is a non-
central χ2 with degrees of freedom k − 1 and non-central parameter λ (see Kendall and
Stuart (1961)) :

λ = N

( k
∑

j=1

(

p1j − p pG
j

)2

p pG
j

+
k

∑

j=1

(

p2j − (1 − p) pG
j

)2

(1 − p) pG
j

)

(8)

Nevertheless, such a proprety requires an important condition :

∀j ∈ {1, 2, · · · , k}, ∃ aj and bj ∈ IR such that

p1j − p pG
j =

aj√
N

, (9)

p2j − (1 − p) pG
j =

bj√
N

.

When Condition (9) is satisfied, the non-central parameter λ is well-defined and can be
estimated by the value of X2 itself. Bulmer (1958) discusses confidence limits for λ1/2,
which is a natural parameter for distance to independence.

Theorem B.8

When Condition (9) holds, X2 d−−−−−−→
N→+∞

χ2
( k−1,λ ),

where λ is the non-centrality paramater defined in (8).

Under H0, condition (9) is obviously satisfied with aj = bj = 0. And in this case,
parameter λ equals 0. Thus the result given by Theorem B.8 under H0 is equivalent
to the result enounced in Theorem B.3. We emphasize the fact that Condition (9) is
essential in the proof of Theorem B.8. We then should not use any confidence interval
for λ without proving that Condition (9) is true. Unfortunately, such a condition is very
difficult to verify in practice, because groups are not identifiable and the experiment not
repeatable.
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