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Digital Appendix F.  On using the exponential to quantify fluctuations. 

In general, a theoretical curve predicting dN(t) in a bin of width dt is transformed to become a 

function of diameter b in the following way:  
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– simple scaling.   

 

Suppose however  
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The size profile becomes an exponential in κb2  and 
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which is a skewed gaussian with a maximum at b =
1

2κδ
.  This case, which corresponds to 

the cross sectional area growing at a constant rate, is very different from an exponential. 
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which is an inverse power law.  This is reasonable enough, but diameter increasing 

exponentially with age is pathological (see Ogden 1981, Worbes et al. 2003). 

There are several cases in the data of Kelly et al. (2001) where the size profiles exhibit 

a maximum which is right shifted from zero – in at least two of these the growth rate data are 

sufficient to rule out the form (i) (see Fig. 2 in Kelly et al. 2001).  In all probability, the 

growth rates are dominated by a term independent of diameter and in such cases the size 

profiles will have much the same shape as the age profiles. 

An exponential is thus a sensible single parameter choice for the shape taken as 

underlying both the size and age profiles, for the purpose of revealing recruitment fluctuations.  

We have made this argument with trees in mind, but a comparable argument might be made for 

any organism with a sufficient correlation between age and some measurable aspect of size. 
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