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Appendix A. Matrix-algebraic presentation of the concepts and computations.  
 

General denotation 

 

Let X be a table expressing a measure of the abundance xai of S species (columns) within Q 

quadrats (rows). xi and xj are two columns of table X, relating to species i and j, respectively. 

Let D be a matrix containing quadrat weights (δa , 1=∑
a

aδ ) on its main diagonal and zeros 

for all off-diagonal values, and let W be a S by S matrix containing the square root of species 

weights ( iw ) on its main diagonal and zeros outside.  (In the main paper, Table 1 gives 

some options for abundance re-scaling and for quadrat and species weighting.) 

 

Contiguity relationships 

 

Let Lh be a Q by Q matrix expressing a contiguity relationship (sensu Lebart 1969) between 

the quadrats. For our variogram-based approach, we consider quadrats a and b as neighbors if 

the distance between the two is within the bounds of the distance class centered around h: 

Lh(a,b)=1  if ha,b≈h  and Lh(a,b)=0 otherwise.      (A.1) 

To introduce quadrat weights into the analysis, we define the matrix Mh and the vector Eh 

such that: 

DDLM hh =    and   Qhh 1ME =         (A.2) 



where 1Q is the vector containing Q values equal to 1. 

Mh contains, for each pair (a,b) of neighboring quadrats at "scale" h, the product δa δb of their 

weights. Eh features, for each quadrat a, the sum of the weights of its neighbors multiplied by 

δa. Let Nh be the Q by Q matrix with Eh on its main diagonal and zeros elsewhere. 

 

We shall assume that distance classes include all pairs of quadrats while being mutually 

exclusive. In such a case, the two following matrices: 

∑=
h

hMMT   and         (A.2b) ∑=
h

hNNT

are such that MT is a Q by Q matrix that containing zeros on the diagonal while all values off 

the diagonal are equal to δa δb; NT is a Q by Q matrix that containing (1-δa)δa values on the 

diagonal and zeros elsewhere. With MT and NT it is as if each quadrat has all other quadrats as 

neighbors. Denoting IQ the Q by Q diagonal identity matrix, we can also write 

D)D(INT −= Q    and           (A.3) )DI1D(1M t
T QQQ −=

(where the exponent ' t ' is the matrix transpose). Thus 

D1D1DMN t
TT QQ−=−          (A.4) 

 

Equivalent expressions of the generalized variance-covariance matrix 

 

Let GT be the generalized variance-covariance matrix, irrespective of distance classes, that 

can be directly computed from table X using weighting options for rows and columns defined 

by matrices D and W, respectively. GT contains, for each species couple (i,j), the generalized 

covariances, gij as defined by Eq. 1 and Eq. 2 in the main paper:  

∑=
ba

ijij bagg
,

),(           (A.5) 

Usual algebraic manipulations allow us to re-write Eq. 1 and Eq. A.5 as: 
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= −∑ jiajai

Q

a
ajiij xxxxwwg δ          (A.6) 

where ix and jx are the D-weighted means of xi and xj, respectively.  

( ia
Q

a
ai xx ∑= δ  or, equivalently, Q

t
iix D1X= ) 

The matrix expression of gij is thus 

WD1xD1xDxW(x )Q
t

jQ
t

ij
t

iijg −=           (A.7) 

which generalizes into 

WXDXDXW(XGT )tt −=          (A.8) 

where DX11X t
QQ=  and where [ ]ji

t xx=XDX       (A.9) 

Note that we may also write: 

WXXDXXWGT )()( −−= t          (A.10) 

 

On the other hand, it is important to note that GT can be directly computed as 

)XWM(NWXG TTT −= t         (A.11) 

Proof of Eq. A.11: 

D)X1D1(DX)XM(NX TT
t

QQ
tt −=−     (using Eq. A.4) 

XDXDXXD)X1D1(DX ttt
QQ

t −=−     (using Eq. A.9) 

Noting that XDXXDX tt = , allows us to write 

XDXDXX)XM(NX TT
ttt −=−            (A12) 

 

Partition of the generalized variance-covariance matrix among distance classes 

 

The very definition of matrices NT and MT (Eq. A.2b), along with Eq. A.11, enables partition 

of  GT into strictly additive components, Gh, that relate each to a distance class 



∑ ∑ −==
h h

hhh XWMNWXGG t
T )(        (A.13) 

Gh is the generalized variance-covariance matrix defined for the distance class h by the 

neighboring relationship expressed by the matrices  and . GhN hM h translates easily into 

generalization of Wagner's variogram matrix (2003) by a division of all its values by 

 ∑
≈

=
hhba

ba

ab

hK
,

)( δδ   or         (A.14) QhQhK 1M1 t=)(

Equations A.2, A.13 and A.14 are used for easy programming of the method as well as 

efficient  computations via any matrix-oriented programming environment, as we did with 

Matlab and R (Ihaka and Gentleman 1996):  see the freely available library "msov" on 

http://pbil.univ-lyon1.fr/CRAN/.) 

For a particular species couple i and j we obtain 

WxMNWx t
jhhiij hg )()( −=           (A.15) 

Dividing by the scaling factor K(h) gives the value at "scale" h of the generalized version of 

either cross-variogram (i≠j) or variogram (i=j) 

)(
)(

1)( hg
hK

hg ijij =γ           (A.16) 

 

Multi-scale ordination 

 

All the ordination methods mentioned in Table 1 of the main paper are based on the singular 

values decomposition (SVD) of the appropriate version of GT to compute eigenvectors, uf, and 

associated eigenvalues, λf. Let Uf be the matrix having all the eigenvectors uf as columns and 

let Λ be the diagonal matrix having the eigenvalues λf on its diagonal. Both eigenvectors and 

eigenvalues of  GT can be partitioned by distance classes  

fh
t

fh UGUF =  and         (A.17) fh
t

ff h uGu=)(λ

http://pbil.univ-lyon1.fr/CRAN/


Fh is the variance-covariance matrix of the eigenvectors at scale h. Scale-dependent 

variogram/cross-variogram matrices of the eigenvectors are deduced by the appropriate 

scaling (Eq. A.16). Note also that 
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h
h       (A.18) 

 

Taking environmental heterogeneity into account 

 

Let us now suppose that a table, Z, containing assessments of P environmental variables for 

the Q quadrats, is available in addition to table of species composition. It is well established 

that the centered by columns table, , may be partitioned into an approximated table,  CX

CC DXZDZ)Z(ZA tt 1−=            (A.19) 

and a residual table,  (Sabatier et al. 1989). AcXR CC −=

In the same manner, it may also have a direct decomposition of the initial table X: 

)XM(NZ)Z)M(NZ(ZA TTTT −−= − tt 1  and AXR −=        (A.20) 

After factoring out the environmental variables, residual spatial patterns may be studied by the 

multi-scale analysis of spatial covariances derived from table R or . The total residual 

variance-covariance matrix, G

CR

RT, is computed as 

W)RM(NWR)RWM(NWRG CTTCTTRT −=−= tt      (A.21) 

and is broken down with respect to distance classes 

W)RM(NWR)RWM(NWRG CCR hh
t

hh
t

h −=−=       (A.22) 

The additive partitioning of  GRT with respect to distance classes thus enables an investigation 

of the residual spatial patterns by a multi-scale ordination scheme analogous to that defined by 

Eq. A.17 and Eq. A.18. 
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