Appendix B: Parameter Digtributions

Distribution of the s ap EStimate, Eq. 2
Congder for the moment, an idedized ss,p estimate using subsampled deta to diminate
overlgpinthe N ¢/N; ratiosand L=1. Let'scall |ts,Slp We can derive the digtribution of

/s by observing that the dope of var(In(Ni+¢)-IN(Ny)) versust (t =1,2,...,t ¢) isbasicdly
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whereS? =va(n(N,,,)- In(N,))fort=1i+2,2i +3,...,ni+ n+1
since the var(In(Nw++)-IN(Ny)) versust lineisgenerdly adraight. Usng
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scale b, the distribution of S 2 /s,f isgraght-forward to derive.
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whereS > =va(n( N, /N,)) fort =1,i +2,2i +3...,ni +n+1

and E(S?) =2s} +is Eq. Al
df, ; = number of In(N,,, ./ N, ) ratios minus 1

df, = number of In( N,,, / N,) ratios minus 1
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Note that the sequentid N, .../ N, ratios are chosen so thet there is no overlap thus esch ratio is

independent. Assume for the moment, that the two gamma ditributions are independent -- which

they arenot. In this case, we can show that the limiting distribution of Eq. Al as df, ;and df,
become largeis c? with y df, . degrees of freedom:

The moment generating function of g(a,, b,) - g@,, b,) is (1- b,t)* ([1+b,t) 2. Thus

the moment generating function for the didribution in Eq. Al is
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Using the Taylor expangon for In(1+x) and multiplying the second element by df, . / df, .,
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Ignoring higher order terms, the In(mgf) has the form:
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which is the In(mgf) of the following ¢ digtribution:
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As noted, the gamma distributions for the variances of In( N,/ N, ) and var(In(N 1 /Ny)) are

actudly correlated. The effect of the correlation, as seen from numerical experiments, isto cause
the digtribution in Eq. Al to gpproach the limiting digtribution fagter (i.e. when the dfsin the

gammadidributions are andler).

ThesS: ap Usedinthe Dennis-Holmes method is somewhat different than the idedlized S ap

used inthis derivetion. Fird, the N,/ N, ratios cannot generaly be subsampled due to short



time series. This means the ratios are correlated and df,  is substantialy less than the number of

ratios minus one; additionaly the lack of subsampling makes S 2 biased. The dataare running

slp
sum transformed (L>1); this leads to further bias. These are trade- offs that improve estimation for
short corrupted time series by reducing the number of negative variance estimates (percent errors
columnin Table B1). Despite the differences, understanding the limiting digtribution for the

idedized S 2
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helps us understand why when we estimated anorvidedized $2_ (L > 1 and data
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not subsampled) from simulated data, we observed that S 2/ mean(S 2, ) showed adistribution of
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theform (1/df )¢, for awide range of time series lengths, non-process to process error ratios, and

filter lengths (Table B1).
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Monte Carlo estimation was used to numericaly estimatethe ¢® digtributions for S

estimates used in the Dennis-Holmes method (= the dope of IN(R++/R) versust for t = 1,2,3,4).
Monte Carlo estimation uses parameter estimates from samples of data generated with smulations
to calculate the distribution of the parameter estimate (this is akin to parametric bootsirapping).

We generated 5000 time series of length n using the model, Ni+1 = Ny exp(mt+ ), Ot = N exp(eyp)

where the process error, g ~ Norma (0, Sp), and the non-process error, &, ~ Norma (0, Spp). Let

mean(S 2 ) denote the mean of al 5000 S 2 estimates. For each smulation, we calculated the
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satistic S 3,/ mean(S 5,) =h. Wethen found the best fitting df, parameter such that
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We did this by finding the dfg, that maximized the p-va ue from a Kolmogorov-Smirnov goodness
of fit test. We repeated the fitting process for different time series lengths (n), filter lengths (L),

ratios of process to non-process error ratios (Sp/Snp) and mend sp. The best fitting dfgp values for



different n, L and (Sp/Snp) are given in Table B1 with the p-vaues for the fitted distribution. The
observed bias and g parameters from the smulations are given in Table B2. The degrees of
freedom depended mainly on the length of the time series, n, and the length of thefilter, L. There
was an gpproximately linear relationship between n, L and the dfg, valuesin Table B1. The
following formula gives a close gpproximation of the numericaly calculated dfgp:

dfgp = 0.333+ 0.212n—-0.387L for n> 15.

Varianceof m,, Eq. 3

Given n observations, Oy, O, Os ... Oy, of thetrue population Sze, N1, N2, N3 ... Ny, the O
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sziesistrandformed into arunning sum, Ry, R, Rs ... R wherer=n-L+1and R =q . O, .
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Denote N, asthe mean of the N’sthat comprise the running sum, R: N, :Eai:t N, , and recall
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Note that m, isthe meen of the In(R+1/R) ratios from the time series; however, for corrupted time
series, the variance of the m, isnot 1/(n-L) times the variance of the In(R+1/R) ratios, asit would
be the case for uncorrupted time series.
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Using the variance of the In(R.+1/R) ratios would lead to high overestimation of the variance of

m,. Thisoverestimation is grester for smdler L.

Estimate of the distribution iy fromdata, Eq. 4

If s and s, wereknown, it would be straight-forward to specify the distribution of iy,
(i.e norma( M, s 2 ) ) however, instead we have to use estimatesof s 2 and s 2, which
themselves have some distribution. Below is outlined an estimate of the distribution of 1, which
usssonly S2 ap+ Deriving adistribution based on both s g ands fp appears problematic given the

nature of the distribution of S (see below) and given that the S estimate is not independent of
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By smple algebra, we can rewrite — 2~ 1 o
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Point estimate of s
A point esimate of s 2, can be calculated by noting that var(In(0,,,/0,))=2s2 +s?2,
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