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Appendix B: Parameter Distributions 

Distribution of the 2
slpσ  estimate, Eq. 2 

 Consider for the moment, an idealized 2ˆ slpσ  estimate using subsampled data to eliminate 

overlap in the Nt+τ/Nt ratios and  L=1.  Let’s call it 2ˆ islpσ .  We can derive the distribution of 

22 /ˆ pislp σσ  by observing that the slope of var(ln(Nt+τ)-ln(Nt)) versus τ (τ = 1,2,…,τ′ ) is basically 
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since the var(ln(Nt+τ)-ln(Nt)) versus τ line is generally a straight.  Using  
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 where ( )βαγ ,  is a gamma distribution with shape α and 

scale β, the distribution of 22 /ˆ pislp σσ  is straight-forward to derive. 
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   Eq. A1 

Note that the sequential tt NN /τ ′+  ratios are chosen so that there is no overlap thus each ratio is 

independent.  Assume for the moment, that the two gamma distributions are independent -- which 

they are not.  In this case, we can show that the limiting distribution of Eq. A1 as τ ′df and 1df  

become large is χ2 with ψ τ ′df  degrees of freedom:   

The moment generating function of ),(),( 2211 βαγβαγ −  is ( ) ( ) 21
21 11 αα ββ −− +− tt .  Thus 

the moment generating function for the distribution in Eq. A1 is  
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Take the natural log of this to get, 
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Using the Taylor expansion for ln(1+x) and multiplying the second element by '' / ττ dfdf , 
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Ignoring higher order terms, the ln(mgf) has the form: 
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which is the ln(mgf) of the following χ2 distribution: 
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As noted, the gamma distributions for the variances of ln( tt NN /τ ′+ ) and var(ln(Nt+1 /Nt)) are 

actually correlated.  The effect of the correlation, as seen from numerical experiments, is to cause 

the distribution in Eq. A1 to approach the limiting distribution faster (i.e. when the dfs in the 

gamma distributions are smaller). 

The 2ˆ slpσ  used in the Dennis-Holmes method is somewhat different than the idealized 2ˆ slpσ  

used in this derivation.  First, the tt NN /τ ′+  ratios cannot generally be subsampled due to short 
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time series.  This means the ratios are correlated and τ ′df  is substantially less than the number of 

ratios minus one; additionally the lack of subsampling makes 2ˆ slpσ  biased.  The data are running 

sum transformed (L>1); this leads to further bias.  These are trade-offs that improve estimation for 

short corrupted time series by reducing the number of negative variance estimates (percent errors 

column in Table B1).  Despite the differences, understanding the limiting distribution for the 

idealized 2ˆ islpσ  helps us understand why when we estimated a non-idealized 2ˆ slpσ  (L > 1 and data 

not subsampled) from simulated data, we observed that )ˆ(mean/ˆ 22
slpslp σσ  showed a distribution of 

the form 2)/1( dfdf χ  for a wide range of time series lengths, non-process to process error ratios, and 

filter lengths (Table B1). 

Monte Carlo estimation was used to numerically estimate the 2χ  distributions for 2ˆ slpσ  

estimates used in the Dennis-Holmes method (= the slope of ln(Rt+τ/Rt) versus τ for τ = 1,2,3,4).  

Monte Carlo estimation uses parameter estimates from samples of data generated with simulations 

to calculate the distribution of the parameter estimate (this is akin to parametric bootstrapping).  

We generated 5000 time series of length n using the model, Nt+1 = Nt exp(µ + εp), Ot = Nt exp(εnp) 

where the process error, εp ~ Normal(0, σp), and the non-process error, εnp ~ Normal(0, σnp).  Let 

mean( 2ˆ slpσ ) denote the mean of all 5000 2ˆ slpσ  estimates.  For each simulation, we calculated the 

statistic )ˆ(mean/ˆ 22
slpslp σσ  = η.  We then found the best fitting dfslp parameter such that  

21
~

slpdf
slpdf

χη  

We did this by finding the dfslp that maximized the p-value from a Kolmogorov-Smirnov goodness 

of fit test.  We repeated the fitting process for different time series lengths (n), filter lengths (L), 

ratios of process to non-process error ratios (σp/σnp) and µ and σp.  The best fitting dfslp values for 
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different n, L and (σp/σnp) are given in Table B1 with the p-values for the fitted distribution.  The 

observed bias and γ parameters from the simulations are given in Table B2.  The degrees of 

freedom depended mainly on the length of the time series, n, and the length of the filter, L.  There 

was an approximately linear relationship between n, L and the dfslp values in Table B1.  The 

following formula gives a close approximation of the numerically calculated dfslp: 

dfslp = 0.333 + 0.212 n – 0.387 L   for   n > 15. 

 

Variance of Rµ̂ , Eq. 3 

Given n observations, O1, O2, O3 … On, of the true population size, N1, N2, N3 … Nn, the Ot 

series is transformed into a running sum, R1, R2, R3 … Rr where r = n-L+1 and ∑ −+

=
= 1Lt

ti tt OR . 

( )

( ) ( ) ( )( )∑∑ −

==

+

−
−

=−
−

=






 −

−
=

−
−

==

1

1212

1

11

lnlnvar
)(

1
)ln()ln(var

)(
1

)ln()ln(
1

var)ˆ(var

 ))ln()(ln(
1

)/ln( ofmean  sampleˆ

L

i i

n

ri ir

rR

rttR

OO
Ln

RR
Ln

RR
Ln

RR
Ln

RR

µ

µ

 

Denote tN  as the mean of the N’s that comprise the running sum, Rt: ∑ −+
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= 11 Lt

ti it N
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Ot = εnp,t Nt.  
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Note that Rµ̂  is the mean of the ln(Rt+1/Rt) ratios from the time series; however, for corrupted time 

series, the variance of the Rµ̂  is not 1/(n-L) times the variance of the ln(Rt+1/Rt) ratios, as it would 

be the case for uncorrupted time series: 
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Using the variance of the ln(Rt+1/Rt) ratios would lead to high overestimation of the variance of 

Rµ̂ .  This overestimation is greater for smaller L. 

 

Estimate of the distribution Rµ̂  from data, Eq. 4 

If 2
pσ  and 2

npσ  were known, it would be straight-forward to specify the distribution of Rµ̂ , 

(i.e, normal( 2
,,ˆ RR µσµ ) ) however, instead we have to use estimates of 2

pσ  and 2
npσ  which 

themselves have some distribution.  Below is outlined an estimate of the distribution of Rµ̂  which 

uses only 2ˆ slpσ .  Deriving a distribution based on both 2ˆ slpσ  and 2ˆ npσ  appears problematic given the 

nature of the distribution of 2ˆ npσ  (see below) and given that the 2ˆ npσ  estimate is not independent of 

2ˆ slpσ . 
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Point estimate of 2
npσ  

A point estimate of 2
npσ  can be calculated by noting that ( )( ) 22

1 2/lnvar pnptt OO σσ +=+ , 

thus ( ) ( ) 222
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