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Appendix B: Likelihood-Based Inference Using Particle Swarm Optimization and EM
Algorithm.

B.1 Optimization of the negative log-likelihood functions

In this section, we describe methods for obtaining maximum likelihood estimates of the
parameters in the finite mixture models for move angles, move distances, and both move
angles and distances. Finite mixture models can be difficult to optimize because they can
contain numerous local optima (McLachlan and Peel, 2000). Furthermore, most numeri-
cal optimization routines are prone to becoming trapped by these local optima (Hassoun,
1995). This is exacerbated by the fact that the optimum to which the algorithm converges is
strongly dependent on the initial parameter values supplied to the algorithm. Good initial
parameter values can be difficult to select, particularly for models with many parameters.
To remedy this situation, we repeat the overall optimization procedure multiple times and
retain the result with the lowest negative log-likelihood agreed upon for a given model. The
optimization procedure that we use consists of two steps: (1) particle swarm optimization
to find initial parameter values for numerical optimization and (2) numerical optimization
using an Expectation - Maximization algorithm.

Particle swarm optimization (PSO) is a stochastic optimization algorithm (Poli et al.,
2007). An advantage of PSO is that it is more resistant to being trapped by local optima
than most numerical optimization algorithms. The algorithm is motivated by natural sys-
tems that demonstrate swarm intelligence, such as flocking birds and swarming insects. In
PSO, a population of particles move through parameter space and share information with
each other while doing so. The movement of each particle is updated by adding a vector
giving the location of the particle in the previous iteration and a vector of velocities. Each
particle’s velocity is determined by a stochastically weighted sum of its velocity at the pre-
vious iteration, the difference between the particle’s best solution and its position at the
previous iteration, and the difference between the best solution found by all neighboring
particles and its position at the previous iteration. Numerous variations on the basic al-
gorithm exist. After PSO is performed for a predetermined number of iterations, the best
solution found by any particle is passed to the Expectation - Maximization algorithm as the
initial value for the parameters.

Following PSO, numerical optimization is performed using an Expectation - Maximiza-
tion (EM) algorithm (Dempster et al., 1977). It is possible to directly optimize the observed
(incomplete) data negative log-likelihood function, but from initial tests that we conducted
we concluded that use of the EM algorithm leads to better convergence. The main idea
behind the EM algorithm is to formulate the optimization problem as one of incomplete
data; that is, that we treat the component label Zg that identifies the mixture component
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that generated the ith observed response as missing data (McLachlan and Peel, 2000). The
algorithm consists of an E-step and an M-step. In the E-step, the expected probabilities that
Zg = zg given the current estimates of the parameters are computed. In the M-step, the
value of parameters that maximize the expectation of the complete-data log-likelihood (ℓc)
is found by numerical optimization. The E-step and M-step are iterated until convergence.
An example in which this approach is applied to simulated data is given in Appendix C.

B.2 EM Algorithm

B.2.1 Move angles

Let Y = (Y1, . . . , YI)
′ denote the vector of observed move angles. Also let R = (R1, . . . , RI)

′

denote the vector of observed response angles in relation to the angular covariates A =
(A1, . . . , AI)

′ andXi = (X′

i,0, . . . ,X
′

i,J)
′ denote the vector of covariates related to the selection

of a movement response by the animal at location si. Recall that the component mixing
proportion parameters are β = (β′

1
, . . . ,β′

G)
′ with β

1
= 0 and βg = (βg,0, . . . , βg,J)

′ when
g > 1. Also recall that the component pdf parameters are η = (η′

1
, . . . ,η′

G)
′, where ηg

= (µ′

g,κ
′

g,φ
′

g)
′, µg = (µg,1, . . . , µg,sg)

′, κg = (κg,1, . . . , κg,sg)
′, and φg = (φg,1, . . . , φg,sg)

′.
In addition, let θY = (β′,η′)′. Assuming conditional independence of the move angles
conditional on {Xi} and {Ai} the log-likelihood function for θY is:

ℓ(θY ;Y,A,X) =
I

∑

i=1

log {f(Yi|Xi, Ai;θY )}

=
I

∑

i=1

log

{

G
∑

g=1

pg(Xi;β)fg(Yi|Ai;ηg)

}

. (B.1)

Maximization of the log-likelihood function (B.1) can be obtained using an EM algorithm
(McLachlan and Peel, 2000) as follows. The observed move angles Y are associated with
component-labels U = (U′

1
, . . . ,U′

I), where Ui = (Ui1, . . . , UiG)
′, Uig = I(Yi arises from the

gth component). Suppose
Ui ∼ MultinomialG(1,pi),

where pi = (pi1, . . . , piG)
′ = (p1(Xi,β), . . . , pG(Xi,β))

′ and {Ui : i = 1, . . . , I} are indepen-
dent. Then the complete-data log-likelihood for θY is

ℓc(θY ;Y,A,U) =
G
∑

g=1

I
∑

i=1

Uig

{

log pg(Xi;β) + log fg(Yi|Ai;ηg)
}

.

In the E-step, we compute the expectation of ℓc conditional on Y and evaluated at θ̂Y :

QY (θY ; θ̂Y ) = E
{

ℓc(θY ;Y,A,X,U)|Y,A,X; θ̂A

}

=
G
∑

g=1

I
∑

i=1

Ûig

{

log pig + log fg(Yi|Ai;ηg)
}

,
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where Ûig = E
(

Uig|Y; θ̂Y

)

. It is straightforward to show that,

Ûig = p̂igfg(Yi; η̂g)

{

G
∑

g=1

p̂igfg(Yi; η̂g)

}−1

; g = 1, . . . , G.

In the M-step, we maximize QY (θY ; θ̂Y ) with respect to θY .

B.2.2 Move distances

Let D = (D1, . . . , DI)
′ denote the vector of observed move distances. Also let Xi = (X′

i,0

,. . ., X′

i,J)
′ denote the vector of covariates related to the selection of a movement response

by the animal at location si. As above, β is a vector of mixing proportion parameters. Also
recall that the component pdf parameters are ζ = (ζ ′

1
, . . . , ζ ′

G)
′, where ζg = (α′

g,λ
′

g,φ
′

g)
′,

αg = (αg,1, . . . , αg,sg)
′, λg = (λg,1, . . . , λg,sg)

′, and φg = (φg,1, . . . , φg,sg)
′. In addition, let

θD = (β′, ζ ′)′ denote the parameters of the move distance model. Assuming conditional
independence of the move distances conditional on {Xi}, the log-likelihood function for θD

is:

ℓ(θD;D,X) =
I

∑

i=1

log {f(Di|Xi;θD)}

=
I

∑

i=1

log

{

G
∑

g=1

pg(Xi;β)hg(Di|ζg)

}

. (B.2)

Maximization of the log-likelihood function (B.2) again can be obtained using an EM
algorithm. The observed move distances D are associated with component-labels V =
(V′

1
, . . . ,V′

I), as specified in for the move angle model. Then the complete-data log-likelihood
for θD is

ℓc(θD;D,V) =
G
∑

g=1

I
∑

i=1

Vig

{

log pg(Xi;β) + log hg(Di|ζg)
}

.

In the E-step, we compute the expectation of ℓc conditional on D and evaluated at θ̂D:

QD(θD; θ̂D) = E
{

ℓc(θD;D,V)|D; θ̂D

}

=
G
∑

g=1

I
∑

i=1

V̂ig

{

log pg(Xi; β̂g) + log hg(Di|ζ̂g)
}

,

where V̂ig = E(Vig|D; θ̂D). As in the move angle model, we have,

V̂ig = p̂ighg(Di; ζ̂g)

{

G
∑

g=1

p̂ighg(Di; ζ̂g)

}−1

; g = 1, . . . , G,

where p̂ig = pg(Xi; β̂) for g = 1, . . . , G. In the M-step, we maximize QD(θD; θ̂D) with
respect to θD.
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B.2.3 Move angles and distances

Here we describe inference when modeling both move angles and distances. The parameters
follow the notation for the move angle and move distance models above. Here, we let θY D =
(β′,η′, ζ ′)′ denote the parameters of the combined move angle and distance model described
in (??). Assuming conditional independence of the move angles and distances conditional
on {Xi}, the log-likelihood function for θY D is:

ℓ(θY D;Y,D,A,X)

=
I

∑

i=1

log {f(Yi, Di|Ai,Xi;θY D)}

=
I

∑

i=1

log

{

G
∑

g=1

pg(Xi;β)fg(Yi|Ai;ηg)hg(Di|ζg)

}

. (B.3)

As before, maximization of the log-likelihood function (B.3) again can be processed using
the EM algorithm. The observed move distances D are associated with component-labels
W = (W′

1
, . . . ,W′

I), as specified in for the move angle models. Then the complete-data
log-likelihood for θY D is

ℓc(θY D;Y,D,A,W)

=
G
∑

g=1

I
∑

i=1

Wig

{

log pg(Xi;β) + log fg(Yi|Ai;ηg) + log hg(Di|ζg)
}

.

In the E-step, we compute the expectation of ℓc conditional on the observed data and
evaluated at θ̂Y D:

QY D(θY D; θ̂Y D) = E
{

ℓc(θY D|Y,D,A,W); θ̂Y D

}

=
G
∑

g=1

I
∑

i=1

Ŵig

{

log pg(Xi; β̂) + log fg(Yi|Ai;ηg) + log hg(Di|ζ̂g)
}

,

where Ŵig = E(Wig|D; θ̂D). As in the move angle model, we have,

Ŵig = p̂igfg(Yi|Ai; η̂g)hg(Di|ζ̂g)

{

G
∑

g=1

p̂igfg(Yi|Ai; η̂g)hg(Di|ζ̂g)

}−1

where p̂ig = pg(Xi; β̂) for g = 1, . . . , G. In the M-step, we maximize QY D(θY D; θ̂Y D) with
respect to θY D.
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