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Appendix A.  Details of prior distributions used in change-point and associated regression 

models. 

 

Priors for the number, timing and magnitude of change-points.  

We specified binomial prior distributions for the number of step changes kα and the number of 

trend changes kβ: kα ~ Bin(kmax, π), kβ ~ Bin(kmax, π)., where kmax is the maximum possible 

number of each type of change, and π is the binomial probability. Under these priors, the prior 

probability that there will be kα step changes was 
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The priors for the timing of change-points δ (step) and θ (slope) were conditional on kα and kβ, 

respectively. All models with a given number of change-points were equally probable a priori. 

That is, all combinations of kα step changes were treated as equally probable. For step changes, 

the prior probability of a specific combination of kα change-points (e.g. in 1973 and 1999, 

given that kα=2) was 
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where T is the number of possible change points (= number of survey years − 1). 

Therefore, the prior probability for a particular combination of step changes was 
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. 

The probability that any specific year y is included in the vector δ of kα change-points is kα / T . 

Accordingly, the prior probability for a change-point at any give year y was 
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These model priors are uninformative about the timing of change-points, but are somewhat 

informative about the number of change-points. A maximum number of change-points is 

specified, and there is a prior expectation of  π kmax step and slope changes. We used π  = 0.5 

and kmax = 4. Importantly, the prior also allows for no change points. In fact, the model with no 

change-points has higher prior probability ( =0.54 × 0!(T- 0)!/T!= 0.54) than any other single 

model (i.e., any specific combination of ≥ 1 change-points).  

The uninformative priors used for all other model parameters are shown in Tables A1 through 

A3. 

 

TABLE A1. Parameters and their prior distributions for trend models. 

The model 
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Parameters Description Prior Comments 

σ0t
2 Variance of observation 

error at time t:  

Point estimate 

calculated from catch 

uncertainty of 

estimated 



 

 

data abundance yt 

σp
2 Variance of process error IG(0.001,1000) Uninformative 

α1 Estimated initial 

abundance 

N(0,10000) Uninformative 

kα Number of step changes 

in abundance. 

Bin(4, 0.5) Maximum of 4 step 

changes, prior 

expectation of 2. 

δj, j = 1,…,kα year when the jth step 

change occurred !
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T= survey years −1. 

Prior is conditional 

on kα. All possible 

combinations of kα 

Step changes are 

equally likely 

χj, j = 2,…,kα Vector of step change 

sizes occurring at the kα 

change-points 

N(0, σα
2) Uninformative, 

exchangeable prior 

σα
2 Variance of the normal 

distribution of step 

change sizes 

96.1
)ln(ln minmax yy −  Point estimate 

derived from data 

range 

kβ Number of changes in the 

slope; number of times 

linear trend in abundance 

changes 

Bin(5, 0.5) Maximum of 5 

changes-in-slope. 

Prior expectation of 

2.5. 

θj j = 1,…, kβ year when the jth trend 

change (change in slope) 

occurred 
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All possible 

combinations of kβ 

changes-in-slope 

are equally likely 

βj, j = 1…, kβ Slope of linear trend N(0, σβ
2) Uninformative, 

exchangeable prior 

σα
2 Variance of the normal 

distribution of linear 

trend parameters 

96.14
)ln(ln minmax

×
− yy  Point estimate 

derived from data 

range 



 

 

Distributions: N= Normal, Bin = Binomial, IG = inverse Gamma. In WinBUGS, Normal 

distributions are specified with precisions (1/variance) and Gamma distributions with inverse 

scale parameters, e.g., Gamma(0.001,1000) is specified as dgamma(0.001,0.001). 

 

 

TABLE A2. Parameters and their prior distributions for variable selection models. 

The model 
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Parameters Description Prior Comments 

σ0t
2 Variance of observation 

error at time t:  

Point estimates 

calculated from 

catch data 

uncertainty of 

estimated 

abundance yt 

σp
2 Variance of process error IG(0.001,1000) Uninformative 

α Estimated initial 

abundance 

N(0,10000) Uninformative 

kj , j = 1,….,Q Number of linear 

segments in piecewise 

linear spline for variable j 

Cat(p0, p1, p2, p3) 

p0 = 0.5, p1 = 0.3, 

p2 = 0.1, p3 = 0.1 

pn is probability of 

n segments. 

p0 = 0.5 is prior 

probability of no 

effect of variable j 

Max. segments 

(knots) is 3 

φjm 

m=1,.., kj. 

j = 1,…,Q 

 

Knot value for mth 

segment of linear spline 

for variable j 

Cat(p1,….,p10) 

pn = 0.1is 

probability of knot 

at nth candidate 

value. There were 

10 evenly spaced 

candidate knot 

values starting at 

min(xj). 

Categorigal prior 

with 10 discrete 

knots used to limit 

model space (hence 

increase speed of 

MCMC) in variable 

selection  



 

 

βjm, 

m=1,.., kj. 

j = 1,…,Q 

 

Linear coefficient for mth 

segment of linear spline 

for variable j 

 N(0, σβ
2) Uninformative, 

exchangeable prior 

for non-zero 

coefficients 

kQ+1 Binary indicator for 

inclusion of 

autocorrelation term ρ 

Bin(1,0.5)  

ρ Autocorrelation 

coefficient  

N(0, σβ
2)  

σβ Standard deviation of the 

non-zero coefficients. 

σα= |ζ|×σz
-0.5 

 ζ~N(0, A) 

σz ~G(0.5,2) 

A=0.5 

Half-Cauchy prior 

 

Distributions: N= Normal, Bin = Binomial, IG = inverse Gamma, Cat = Categorical 

(equivalent to Multinomial with n = 1). 

 

TABLE A3. Parameters and their prior distributions for covariate-conditioned change-point 

models. 

The model 
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In the single species model,  
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In the multi-species model, αt for species s (denoted αst in text), was  
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Parameters Description Prior Comments 

σ0t
2 Variance of observation 

error at time t: relative 

uncertainty of estimate, 

y.obst 

Point estimates calculated 

from catch data 

 

σp
2 Variance of process error IG(0.001,1000) Uninformative 

α1 Estimated initial 

abundance 

N(0,10000) Uninformative 

kα (ksα in 

multi-species 

model) 

Number of step changes 

in abundance.  

kα ~ Bin(4, 0.5) 

ksα ~ Bin(2, 0.5) 

 

 

Maximum of 4 (2) 

step changes, prior 

expectation of  

2 (1) 

δj, j = 1,…,kα year when the jth step 

change occurred !
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T= survey years −1. 

Prior is conditional 

on kα. All possible 

combinations of kα 

Step changes are 

equally likely 

χj, j = 2,…,kα Size of jth step change  N(0, σα
2) Uninformative, 

exchangable prior 

σα
2 Variance of the normal 

distribution of step 

change sizes 

96.1
)ln(ln minmax yy −  Point estimate 

derived from data 

range 

kj , j = 

1,….,Q 

Number of linear 

segments in piecewise 

linear spline for variable j 

1+ κj  

κj ~ Bin(3,0.3) 

At least 1 segment 

(linear effect), up 

to 3 changes in 

slope 

φjm 

m=1,.., kj. 

j = 1,…,Q 

Knot value for mth 

segment of linear spline 

for variable j 

U(min(xj), max(xj)) Uniform prior for 

continuous knots  



 

 

 

βjm, 

m=1,.., kj. 

j = 1,…,Q 

 

Linear coefficient for mth 

segment of linear spline 

for variable j 

N(0, σβ
2) Uninformative, 

exchangeable prior 

for non-zero 

coefficients 

ρ Autocorrelation 

coefficient  

N(0, 0.001) for striped bass 

0 for all other species 

Uninformative. 

Included only for 

striped bass 

σβ Standard deviation of the 

non-zero coefficients. 

σβ = |ζ|×σz
-0.5  

 ζ~N(0, A) 

σz ~G(0.5,2) 

A=0.04 

Half-Cauchy prior 

 

kCα Number of step changes 

common to all species 

Bin(2, 0.5) Multi-species 

model only 

ζj, j = 1, 

,kCα 

year when the jth common 

step change occurred !
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T= survey years −1. 

Multi-species 

model only 

ψj, j = 1, 

,kCα 

Size of jth common step 

change 96.1
))(ln)(ln( minmax ymeanymean − Multi-species 

model only 

Distributions: N= Normal, Bin = Binomial, IG = inverse Gamma, U = Uniform, G= Gamma 

(note G(0.5,2) is equivalent to a χ2 distribution with 1 d.f.) 

 

Sensitivity of change-point detection to prior distributions 

Absolute posterior probabilities of change-points obviously will be sensitive to the prior 

distributions on the numbers of change-points kα and kβ (in trend models). Posterior 

probabilities for change-points in particular years will generally increase with the prior 

expectation for the number of change-points. Clearly it is important to use prior distributions 

that reflect appropriate definitions of change-points and plausible expectations about the 

numbers of such change points (e.g., priors that allowed up to 40 change-points would not be 

sensible). Across a range of sensible priors for kα and kβ  (e.g. kmax = 4 vs. kmax = 2) the relative 

probabilities of change-points and odds ratios (which mostly remove the influence of prior 



 

 

model probabilities) generally should be consistent. Therefore, inferences about the timing of 

change-points will rarely be sensitive to the exact choice of priors for kα or kβ (within 

reasonable limits). This was certainly true in sensitivity tests for our trend models in which we 

fitted models with kmax = 1, 2, 4 and 6 (for both kα and kβ). 

The prior variances σα
2 and σβ

2
 control the possible magnitudes of any change-points in 

trend models (and covariate-conditioned change-point models for σα
2). Posterior model 

probabilities can also be sensitive to these parameters, because the degree to which integrated 

likelihoods penalize complexity largely depends on the prior variance for model parameters. 

Larger prior variances will tend to favor less complex models, and vice versa. In regression 

models, the prior variance essentially specifies the expected magnitudes of effects. Thus, large 

prior variances will favor models with few large effects, whereas small prior variances will 

favor models that include a greater number of variables with relatively small effects. For 

change-point models, this equates to a choice between favoring few large change-points, or 

relatively many (up to kmax) smaller changes.  

We tested the sensitivity of posterior probabilities for change-points to prior variances 

by fitting models with point priors set at 0.5, 1, and 2 times the data-range values described in 

the main text (and table A1). We also fitted models with hyper-priors on the variances or 

standard deviations σα and σβ .  This approach reflects prior uncertainty (ignorance) about the 

expected magnitudes of any effects (e.g., change-points, covariate effects). We fitted models 

using three different hyper-prior specifications discussed by Gelman 2006 (inverse uniform on 

standard deviations, inverse Gamma on variances, and Half-Cauchy priors), each with 3 

different scale parameters that define the credible effect sizes (Table A4). Results generally 

were consistent in relative probabilities and odds ratios for change-points in particular years, 

and invariably led to consistent inferences about the most probable change-points. The absolute 

probabilities of change-points were generally lower with the hyper-priors because these placed 

relatively more prior weight on large effect sizes, including some extreme values.  

 

TABLE A4. Priors used in sensitivity analysis for change-point parameters. 

 

Prior name Details Scale parameters for σα σβ  scales  

point σα
2 = (scale / 1.96)2 scale=range/2, range, 2×range scale/4 

Gamma σα
2~InverseGamma(a,1/a) a = 0.1, 0.01, 0.001 a 

Uniform σα ~Uniform(0, 0.8×scale) scale=range/2, range, 2×range scale/4 



 

 

Half-Cauchy  σα= |ζ|×σz
-0.5 

 ζ~N(0, 100/scale2) 

σz ~Gamma(0.5,2) 

scale=range/2, range, 2×range scale/4 

range = ln ymax-ln ymin 

 

Sensitivity of variable selection model to prior distributions 

In variable selection models, posterior model probabilities can be sensitive to the prior 

on regression coefficients β. We used a Half-Cauchy prior (see Table B2) with scale parameter 

chosen so that ca. 90% and 95% of the prior probability mass was in the interval (-1,1) and (-

2,2) respectively. This prior puts most weight on more plausible coefficients while still 

allowing larger effects. We tested sensitivity of model posterior probabilities to the prior on β 

by fitting models with a range specifications for the prior variance σβ
2 of the regression 

coefficients (the jump interface in WinBUGS allows only exchangeable normal priors for the 

vector of coefficients β). We varied the scale parameter of the Half-Cauchy prior and fitted 

models with a range of different priors on σβ
2, including point estimates (0.25, 0.5, 1,2), 

uniform on σβ with upper limits (0.5, 1, 2, and 5). and inverse Gamma (0.01,0.01). We also 

implemented an approximation to the unit information prior (corresponding to Bayesian 

Information Criterion penalty when all models are equally probable, George and Foster 2000). 

Posterior model probabilities (hence probabilities of variable inclusion, Pr(kj > 0)) varied 

predictably with the prior (more diffuse priors yielded lower probabilities), but the relative 

values among variables were consistent. Pr(kj > 0) values for variables with strongest effects 

(e.g., spring X2 for longfin smelt, water clarity for striped bass) always were high (> 0.9) 

regardless of the prior used, and the set of variables with Pr(kj >0)> 0.75 was generally 

consistent among different prior specifications (though Pr(kj > 0) for some variables varied 

between 0.7 and 0.85). Pr(kj > 0) values for winter exports in the delta smelt and winter and 

spring exports in threadfin shad models were the most sensitive to prior specifications. This 

sensitivity to priors suggests that only relatively small effects of winter exports on abundances 

of fishes are supported by the data.  

We also tested the sensitivity of odds ratios to prior probabilities of inclusion (i.e., to 

prior Pr(kj >0) by increasing the probability of 0 in the categorical prior for the number of 

linear segments in nonlinear variable selection models. A consistent set of variables with odds 

ratio > 3 emerged from each analyses. 

 



 

 

Note on change-point detection in autoregressive models 

The inclusion of an autoregressive term, ρnt-1, in change-point models alters the 

interpretation of parameters and therefore complicates the detection and interpretation of 

change-points. In the covariate condition change-point model (Eq. A.6), if ρ = 0, then eα is the 

initial abundance, and a step change in year y is modelled well by a new intercept value for 

year y and all subsequent years (as in Eq. A.3). But if ρ = 1, then eα is the proportional change 

in abundance from year y-1 to year y, and a sustained change in α (Eq. A.3) would model a 

trend change (a change in the annual rate of change in y). With ρ = 1 a step change in year y is 

better modelled by a change in α at year y only, which can be achieved by modifying the α 

submodel: 
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Either or both types of change-point (Eqns. A.3 or A.8) can be included in change-point 

models. But when 0 < ρ < 1 it is not clear which model is most appropriate because the 

interpretation of α, and any change in it, is difficult. This difficulty of interpretation makes the 

specification of appropriately bounded priors (i.e., credible effect sizes) difficult, which in turn 

may affect the probability of detecting change-points.  
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