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Appendix A.  SD model equations and their derivation.  The full model incorporates submodels 

for each of the key system components and interactions shown in Fig. 2 of the main text. 

Grass dynamics. — The submodel for grass dynamics has to incorporate a number of processes: 

production as a function of rainfall, the inhibitory influence of senescent biomass, fire, 

competition with trees, and herbivory.  In each cell of the model lattice, two grass compartments 

are simulated: green or live (G) and dry or senescing (D) grass.  The equations are given by: 
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The terms of Eq. A.1 are growth, decay, consumption by herbivores, and losses to fire.  The 

terms of Eq. A.2 are input from the decay of green grass, and decomposition, consumption, 

trampling, and losses to fire.  W and E are wildebeest and elephant population density, 

respectively, g is the proportion of the cell occupied by grass, and p(t) is the proportion of the 

cell that burns at time t.  As g declines, the herbivores currently occupying the cell become 

increasingly concentrated on the portion of cell containing grass (i.e. population density ∝1/ g), 

and grass consumption per unit area increases, leading to the terms W/g and E/g in Eqs. A.1 and 

A.2.  Note that the model is implemented so that G and D ≥ 0, and the various terms in Eqs. A.1 

and A.2 are applied sequentially: i.e., G and D are first updated with production and decay terms, 

followed by consumption, and finally, fire.  If p(t) = 1 for a given cell, G and D are zero at the 

start of the next daily time period. 

 i. Grass production and decay.  Grass production is simulated by combining a grass growth 

model from Fryxell et al. (1988) with Owen-Smith’s (2002) two-compartment model, fitted to 
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McNaughton’s (1985) empirical equation for grass production as a function of rainfall.  The two-

compartment model allows two key effects to be incorporated: the suppression of new growth of 

G due to shading by D (Owen-Smith 2002) in ungrazed and unburned areas (which has the effect 

of reducing wildebeest intake and fitness in these areas), and the build-up of D over time, which 

fuels fires (Pellew 1983, Stronach and McNaughton 1989).  As G dries up at the start of the dry 

season, D increases in biomass. 

 Both the maximum growth rate rmax and the grass carrying capacity KG in Eq. A.1 are 

functions of annual rainfall (Fryxell et al. 2005), ρ represents the shading effect of D on G, σ 

allows for aboveground growth when G = 0 (permitted by the presence of belowground reserves 

(Fryxell et al. 1988)), δG  and δD are decay rates, and f is the fraction of G that decays into D (we 

assume that some of G is lost directly as rapidly decomposed litter).  Whereas D decays at a 

constant rate throughout the year, growth and decay of G depends on the season (McNaughton 

1985).  McNaughton (1985) found a strong sigmoidal relationship between annual rainfall Rann 

and the length of the growing season (tgrow) in the Serengeti, given by (Fryxell et al. 2005): 
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We assume that rmax in Eq. A.1 depends linearly on daily rainfall Rday (McNaughton 1985) 

according to the equation 

 rmax = ψRday (A.4) 

when t < tgrow (we assume that it is zero otherwise).  Grass carrying capacity KG is in turn linearly 

related to annual rainfall (McNaughton 1985) by the equation 

 KG = µ0 + µ0Rann (A.5) 

We assume that the decay rate δG is 0 until the onset of the dry season, or the end of the growing 

season (whichever comes first, depending on rainfall according to Eq. A.3).  We obtained a value 
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for δG from McNaughton (1985), who provided an equation for conversion of G into D at the end 

of the wet season as a function of the initial value of G and rainfall; this results in a relatively 

invariant value of δG across a wide rainfall gradient.  We estimated the parameters µ0, µ1, σ, and 

ψ by fitting Eq. A.1 (minus the consumption and fire terms) to data on grass production (Fig. 2d 

in the main text), and δD and f by fitting Eq. A.2 to data on accumulated necromass 

(McNaughton 1985) as a function of time since the last recorded fire (see Appendix B for more 

detail on the protocol used for estimating parameters). 

i. Tree-grass competition.  Within each lattice cell, the area that can be occupied by grass is 

reduced by competition from trees.  Studies from a wide range of ecosystems with tree-grass 

mixtures, including the Serengeti (Metzger 2002), suggest that, as tree cover increases, grass 

biomass declines according to a negative exponential function (Jameson 1967, Walker et al. 

1972, Burrows et al. 1990, Tapia et al. 1990, Scholes and Archer 1997).  In the current 

implementation of the model we assume that trees are competitively dominant to grasses.  In 

terms of the mechanics of the model, this means that as tree biomass increases, the proportion of 

a cell g that is occupied by grasses declines according to the function 

 g = g0exp(-θC) (A.6) 

Here, C is tree canopy cover (between 0 and 1), θ is a parameter that controls the rate of decay in 

grass biomass as a function of tree cover, and g0 represents the maximum amount of area that is 

covered by grass (Anderson and Talbot 1965, Sinclair 1979), and is included to account for 

reductions in grazing area caused by the presence of bare ground, rocks, rivers, etc.  We 

estimated θ from Serengeti plot data collected by Metzger (2002).  In this data set, C quantifies 

the canopy cover of trees > 3 m in height (Metzger, pers. comm.), so in the model, 
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coefficient relating tree height to crown area. 

iii. Consumption by herbivores.  We assume that wildebeest feed on both high quality (G) and 

low quality (D) grass components, but that intake is higher for G than for D.  We modeled intake 

as a combination of two constraints, a cropping constraint with a type II functional response, and 

a digestive constraint that sets an upper limit to daily voluntary intake dvi (Wilmshurst et al. 

1999, Wilmshurst et al. 2000), resulting in the following equations for intake of green ( ) and 

dry ( ) grass in wildebeest, respectively: 
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In these equations, dviG and dviD are the maximum daily voluntary intakes of G and D, 

respectively.  The parameter αw represents the cropping constraint, and βw is the grass biomass at 

which intake is ½ of the maximum.  We used an empirical equation relating maximum daily 

voluntary intake to forage %NDF (neutral detergent fiber) and animal mass derived by 

Wilmshurst et al. (2000) to estimate dviG and dviD for a 135-kg wildebeest, assuming for 

simplicity that G and D are of fixed quality and represent the lower (high quality) and upper (low 

quality) ranges of NDF for Serengeti grasses (obtained from Wilmshurst et al. 1999), 

respectively.  We estimated the cropping constraint from an allometric equation derived by 

Shipley et al. (1994), and obtained βW from Murray & Brown (1993).  We also used allometric 

equations relating body mass with maximum intake (Shipley et al. 1994) and the half-saturation 
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parameter (Wilmshurst et al. 2000) to estimate αE  and βE  for elephants.  Given that elephants 

can survive on food of very low quality, we did not include a digestive constraint in the elephant 

intake equation. 

 In addition to removing grass through consumption, herbivores can contribute to biomass 

losses indirectly through trampling.  This effect can be substantial in herbivore-dominated 

environments such as the Serengeti (Cumming and Cumming 2003).  Since green grass is rapidly 

removed by consumption and decay each season, we introduced a trampling term only in the dry 

grass equation (Eq. A.2).  We estimated the trampling parameter τ for wildebeest from published 

values (Cumming and Cumming 2003). 

iv.  Fire.  We treat fire as a stochastic binary process that depends on the occurrence of an 

ignition event (i) and the fuel biomass (D) available (McNaughton et al. 1988, Holdo et al. 

2007).  It has an expected value pburn given by: 
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We treat the probability of an ignition event as an externally driven independent variable, 

whereas fuel load is a dynamic variable (we assume that fire probability is independent of green 

grass biomass).  In Eq. A.9, κ1 and κ2 are fitted parameters and g is the proportion of the cell 

occupied by grass.  When t = tburn, i = 0 when no fire occurs in the system and is i = 1 when fire 

is present, and is 0 at all other times (for some simulations we give i a value of 0.5 to simulate 

semi-annual burning).  Although we lack historic data on grass biomass in the Serengeti, we 

were able to estimate κ1 and κ2 (assuming annual ignition events) by fitting the model to data 

recording the extent of burning between 1960 and 2000 (Fig. 2f in the main text).  The actual 

occurrence of fire in any given cell represents the realization of a Bernoulli process with 

expected value pburn. 
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 Herbivore dynamics. —The numerically-dominant mammalian herbivores of the Serengeti 

ecosystem are highly mobile.  To understand their dynamics, we have to consider movement as 

well as local birth and death processes, as follows: 

 i. Wildebeest movement.  Fryxell et al. (2004) showed that herbivores in the Serengeti move 

adaptively, reflecting the value of resources across the landscape.  In SD, we assumed a priori 

that some measure of resource availability influences wildebeest movement choices, adopting the 

framework developed by Fryxell et al. (2004) for Thomson’s gazelles.  The probability of 

emigration Θ is given by: 
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The parameter φ in Eq. A.10 controls the shape of the migration function and Z equals resource 

availability in a cell.  When φ > 1, this equation results in a switching response that is a function 

of local energy gain (Z), relative to the expected gain averaged across the entire landscape 

[E(Z)].  Elsewhere, we show that , where N is plant N content (Holdo et al., 

submitted).  Z can thus be viewed as a composite function that multiplies food quantity  by a 

measure of food quality Nq to obtain an index of resource availability that maximizes wildebeest 

fitness.  We assume that immigration Ω into cell x due to emigration from cell y is equal to 

Zx/∑ZiΘy, provided that Zx ≥  Zy, where ∑Zi is the sum of Z over all cells for which Zi ≥  Zy.  

Wildebeest that emigrate from a cell thus distribute themselves proportionately throughout the 

subset of target cells in the landscape that are of greater value than the cell they have left.  We fit 

the SD model to monthly wildebeest distribution data for the entire GSE during the period 

August 1969-August 1972, driving the model with monthly rainfall data from this same period 

(Holdo et al., submitted). 

qW
G NgIZ =

W
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ii. Local population dynamics.  Pascual et al. (1997) tested a number of alternative models of 

wildebeest population dynamics by fitting these models to census data.  They concluded that 

models with constant recruitment and density-dependent mortality provide fits that are as good if 

not better than more complex models, so we chose to adopt such a model.   Different functions 

have been used to model ungulate mortality as a function of resource availability: e.g., 

Michaelis-Menton (Hilborn and Mangel 1997, Pascual et al. 1997), hyperbolic (Owen-Smith 

2002), and negative exponential (Fryxell et al. 1988).  These all have the same qualitative form, 

so we chose a negative exponential function, resulting in the following wildebeest population 

growth equation: 
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Here, bw and mw are the wildebeest birth and maximum mortality rates in a particular cell, 

respectively, aw is a parameter that relates food resources per capita to mortality, and Θ and Ω 

are emigration and immigration rates between the cell and the rest of the lattice, respectively.  

We assume that the measure of resource availability that controls mortality equals that which 

controls movement, i.e., the model is mechanistic in that wildebeest try to maximize their fitness 

by moving towards cells of relatively high food quantity and quality, and these same variables 

then control local population dynamics. 

 After fitting a wildebeest movement model (Holdo et al., submitted), we were able to obtain 

estimates for bw, mw, aw, by fitting the model to historical wildebeest census data by driving the 

model with rainfall data for the GSE for the period 1960-2001 (Fig. 3e in the main text, 

Appendix B).  In the present version of the model, we maintain elephant population density at a 

constant value over time.  We do this for two reasons.  First, unlike the case of wildebeest, for 
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which we have a good understanding of density-dependent effects of food availability on 

population dynamics (Mduma et al. 1999), we lack data to parameterize an elephant numerical 

response function.  Second, unlike wildebeest (Hilborn and Mangel 1997, pp. 199-200), elephant 

population numbers in the Serengeti have historically been largely determined by humans 

(mainly through poaching).  Moreover, elephants live considerably longer than do wildebeest, 

and so their numbers will typically change much more sluggishly.  We therefore treat elephant 

population density as an independent fixed parameter in the present paper.  Further, we assume 

for simplicity that elephants are evenly distributed throughout the savanna habitat of the 

ecosystem.  Our model is thus semi-dynamic in terms of the herbivore populations.  Among 

future extensions of the model that we contemplate will be an inclusion of elephant dynamics. 

 Tree dynamics. —Pellew (1983) gathered an extensive amount of data on growth rates, fire 

effects, and elephant damage on Acacia tortilis and other species in the Seronera area of the 

Serengeti, and used these data to parameterize a model of tree population dynamics as a function 

of fire and browser population density.  With minor modifications, we have adopted Pellew’s 

model to simulate tree dynamics in SD.  We used A. tortilis as a model tree for the system, given 

its spatial ubiquity and numerical dominance throughout much of the Serengeti (Pellew 1983).  

Pellew’s model is size-structured, with six tree height classes (0-1, 1-2, 2-3, 3-4, 4-6, and > 6 m).  

He used field observations to obtain parameters for fire and elephant damage and growth as a 

function of height (Pellew 1983).  We adapted Pellew’s model as a matrix submodel in SD, with 

an annual time step and density-dependent growth and recruitment.  In the submodel, trees are 

first exposed to elephant herbivory, followed by fire, growth, and recruitment, as follows. 

 Elephant damage is represented by two matrices E1 and E2 (given in Appendix C).  The 

default coefficients of E1 and E2 are based on an estimated elephant population density of 0.2 
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elephants km-2 in Seronera during the 1970s (Pellew 1983).  In our model simulations, we 

assumed that departures in elephant population density from this default value lead to 

proportional changes in the coefficients.  E1 and E2 are used to generate a vector of trees that 

revert to smaller size classes rE, and a vector of undamaged trees uE, as follows: 

 rE = E1n(t) (A.12) 

 uE = n(t) – E2n(t) (A.13) 

Here, n(t) is the vector of tree size classes in given cell at time t.  Fire then affects those trees that 

have escaped elephant damage, producing two vectors: trees that have reverted to smaller size 

classes following fire (rF) and trees that have escaped both elephant and fire damage (uF): 

 rF = F1uE (A.14) 

 uF = uE – F2uE (A.15) 

F1and F2 are fire damage matrices (given in Appendix C).  The vector of trees at t+1 is equal to 

the sum of trees that grow and establish from the undamaged population, plus those trees that 

have reverted to smaller size classes: 

 n(t+1) = GuF + rE + rF (A.16) 

G is the growth and recruitment transition matrix (given in Appendix C).  Recruitment occurs as 

a result of seedling establishment from seeds produced by the largest size class (Pellew 1983).  

Recruitment and growth are density-dependent and limited by the carrying capacity of each cell. 

 A meta-analysis conducted by Sankaran et al. (2005) showed that maximum canopy cover in 

savannas increases with rainfall, saturating at about 80% cover.  This yields a tree carrying 

capacity KT equal to 400 trees ha-1 in our model if we assume an average crown area of 20 m2 for 

the 6-m height class (see below).  We added logistic-like density-dependence to the model by 

multiplying the growth coefficients (gij) of matrix G (given in Appendix C) by (1-n6/KT), where 
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n6 is the mature size class.  Pellew (1983) argued that by the time a seedling is fully established, 

natural spacing due to intra-specific competition has already occurred, and little further 

competition occurs until maturity (height > 6 m).  At this stage, trees escape giraffe browsing and 

their canopies expand.  Since A. tortilis has a low shade tolerance (Pellew 1983), we assume that 

immature classes suffer reduced growth as the mature tree canopy expands, and thus density-

dependent growth limitation is due only to the largest size class n6.  To model recruitment 

limitation, on the other hand, we assume that all size classes limit the ability of seedlings to 

become established, so the coefficient s (the per capita rate of seedling recruitment, see matrix G 

in Appendix C) is multiplied by (1-Σini/KT).  Pellew (1983) was unable to provide a reliable 

estimate for the rate of seedling recruitment as a function of the number of mature trees, so we 

fitted a value of s by running the model over an 8-year period between 1971-78 for which initial 

and ending tree height distributions, the fire regime and elephant population density were known 

in the system.  We adopted the value of s that maximized the fit between the 1978 model size 

class distribution and the data.  To estimate the amount of woody cover represented by a 

particular size distribution n, (for model output and to estimate C in Eq. A.6) we used an 

allometric relationship between tree height and crown area obtained from Metzger’s (2002) data 

set on Serengeti acacias to generate a set of coefficients c, with rounded values of 1, 3, 6, 9, 14, 

and 20 m2 for size classes 1 through 6, respectively. 

 The Pellew tree population model does not take into account the effects of rainfall on tree 

growth (Pellew 1983), since the model was developed for a single site within the Serengeti 

ecosystem.  The SD model, however, is designed to be applied over a much broader spatial scale, 

and given the marked rainfall gradient within the GSE, we considered it important to account for 

variation in tree growth across this gradient.  We used a data set documenting tree radial 
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increments as a function of annual precipitation over 25 years from Mariaux (1975) to derive a 

linear relationship between growth and rainfall in A. tortilis.  Assuming that the relationship 

between these two variables is similar in the Serengeti and West African Sahel, we used the 

slope of the regression conducted on Mariaux’s (1975) data set to adjust our tree growth 

coefficients (gij) as follows: 
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where a and b are the slope and intercept of the rainfall-growth regression, respectively, and d0 is 

the mean radial increment of A. tortilis at Seronera. 
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TABLE A1.  State variables and parameters used in the SD model (parameters used in the 

sensitivity analysis are in bold font).  Intermediate or derived variables (e.g., tgrow) are not listed.  

Fitted parameters are denoted with an asterisk. 

Symbol Value Units Description 

G  g m-1 green grass 

D  g m-1 dry grass 

W  ha-1 wildebeest 

E  ha-1 elephants 

T1-6   trees (six size classes) 

Rann  mm annual rainfall 

Rday  mm daily rainfall 

N  % plant nitrogen 

ψ* 0.0167 mm-1 rainfall effect on maximum grass growth 

θ 2.5  neg. exponential parameter for tree-grass competition 

µ0
* 141 g m-1 rainfall effect on grass carrying capacity (intercept) 

µ1
* 0.264 g m-1  mm-1 rainfall effect on grass carrying capacity (slope) 

ρ 0.5  shading effect of D on production of G 

σ* 46 g m-1 parameter to shift incremental growth curve of grass towards origin 

δG 0.061 d-1 decay rate for G 

δD
* 0.0012 d-1 decay rate for D 

f* 0.42  fraction of decaying G moving into compartment D 

τ 0.01 ha d-1 grass losses to trampling 

g0 0.6  maximum proportion in a cell occupied by grass 

κ1
* 0.061 g-1 m2 slope for effect of biomass D on area burned 

κ2
* 3.7  intercept for effect of biomass D on area burned 

s 1.7 y-1 seedling recruitment rate 

m 0.01 y-1 adult tree natural mortality rate 
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gi,j   tree growth coefficients in matrix G 

ei,j   elephant damage coefficients in matrices E1 and E2  

fi,j   fire damage coefficients in matrices F1 and F2 

a 0.0071 mm mm-1 rainfall effect on tree growth (slope) 

b 0.61 mm rainfall effect on tree growth (constant) 

d0 6.6 mm tree annual diameter increase at mean rainfall 

αW 1.05 g ha m-2 d-1 max wildebeest cropping rate 

βW 9.9 g m-2 biomass at which wildebeest intake is 50% of max 

dviG 0.54 g ha m-2 d-1 wildebeest max. daily voluntary intake of G 

dviD 0.44 g ha m-2 d-1 wildebeest max. daily voluntary intake of D 

αE 9.5 g ha m-2 d-1 max elephant grass cropping rate 

βE 172 g m-2 biomass at which elephant grass intake is 50% of max 

bW
* 0.00049 d-1 max per capita population growth for wildebeest 

mW
* 0.0032 d-1 max mortality rate for wildebeest 

aW
* 0.21 ha g-1 m2 effect of G on wildebeest mortality 

q* 3.15  habitat preference parameter 

φ 2.0  emigration threshold parameter 
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