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 Appendix C. Loop analysis of a matrix population model in a periodic environment. 

In this section we demonstrate how the method of loop analysis can be applied for periodic 

matrix products. Generally, loop analysis is based on the recombination of the elasticity of 

population growth according to unbranched loops in the life cycle graph. This recombination 

and the interpretation of loop elasticities as the relative contribution of respective reproductive 

paths to population growth is based on two mathematical properties of elasticities (van 

Groenendael et al. 1994): 

(1) For each stage in the life cycle graph, the summed elasticity of incoming transitions 

equals the summed elasticity of outgoing transitions. 

(2) The elasticity of a loop is equal to the characteristic elasticity multiplied by the 

number of transitions in the loop. The elasticities of all loops in a matrix sum to one. 

For the periodic matrix model loop analysis is based on the elasticities eij
(h) of the growth rate 

of the cycle matrix C to annual transition rates of matrices Bh (cf. main text). To legitimate 

the interpretation of loop analysis also for periodic matrix models, here we thus discuss these 

properties in regard to the elasticities eij
(h).  

 

Periodic matrix products 

Consider the population dynamics in a cyclic environment of period r being described by a 

matrix model as 

         (C.1) ( ) (trt hhh nCn =+ )



with         hhrrhhh BBBBBBBC 11121 ...... +−−−=

where the index h denotes the position in the periodic cycle. It is given as subscript for 

matrices and as superscript for matrix entries. In case of annual matrices Bh or respective 

elements bij
(h), h identifies the matrix position itself. In case of Ch and other symbols referring 

to the entire cycle of r years, h denotes the respective cyclic permutation of C that begins with 

Bh. 

While the eigenvalue λ of C  is independent of the cyclic permutation, both the stable stage 

structure vector w (right eigenvector of C) and the reproductive value vector w (left 

eigenvector of C) depend on h and satisfy 

 hhh wwC λ=          (C.2) 

and           (C.3) TT
hhh vCv λ=

(Note: In this section λ, v and w always denote the dominant eigenvalue λ1 of C and 

associated eigenvectors, respectively) At the asymptotic stable state where we conduct the 

loop analysis, from nh+1 = Bhnh it follows that wh and vh, respectively, can be scaled to satisfy 

          (C.4) hhh wBw =+1

and          (C.5) hhh Bvv T
1

T
+=

The scalar product 〈vh, wh〉 of such scaled vectors is equal for all cyclic permutations of C. 

Examples of different cyclic permutations of C and respective eigenvectors are given in Table 

C1. 

 

Elasticities 

The elasticity of λ to annual transition rates bij
(h) is defined as 
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where SBh denotes the sensitivity of λ to annual transition rates bij
(h). Following Caswell and 

Trevisan (1994) this sensitivity can be calculated as 

hh h CB SDS T=  with  
wv
wvSC ,

T
hh

h
=      (C.7) 

and matrix Dh being defined as  

11121 ...... +−−−= hrrhhh BBBBBBD        

so that           hhh BDC =

and          (C.8) ( ) ( ) ( )h
l

h
k

h
klc ⋅⋅= bd

With C.8 elasticity (C.7) then is given by 
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Property 1 

In the periodic matrix model, for stage ni
(h) we can find the incoming transitions bij

(h-1), for all 

j, and the outgoing transitions bji
(h), for all j. Thus, from C.9 summed elasticities for stage i at 

position h are 
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where m × m is the dimension of the square matrices Bh. 

To demonstrate that property (1) is fulfilled for elasticities eij
(h), we show the equivalence of 

C.10 and C.11. From C.4 we get  
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and C.9 can be written as 
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From C.5 we get 
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With C.8 and C.3 this gives 
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Applying C.8 and C.3 we also can write C.11 as 
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Thus, both sums of elasticities are equal to the sensitivity of λ to cii
(h) (cf. Eq. C.7), as they are 

in case of a time-invariant matrix model (cf. van Groenendael et al. 1994). Further, it follows 

that the elasticity of each transition can be thought as being build up by the elasticities of 

loops passing through that transition. Thus, in each loop all transitions that belong exclusively 

to this loop have the same elasticity, i.e., this loop’s “characteristic elasticity” (van 

Groenendael et al. 1994; cf. Fig. C.1).  

 



Property 2 

The second property is fulfilled if the first property is true and if all elasticities sum to one 

(Claessen 2005). In case of constant matrix models it can be shown that elasticities eij sum to 

one (de Kroon et al. 1986, Mesterton-Gibbons 1993). However, this is not the case for 

periodic matrix products. 

From C.2 it follows that λ is a homogeneous function of the bij
(h) of degree r, i.e., 

        ( )( ) ( ) 1111 ... wwBBB λrrr cccc =−

Thus, Euler´s theorem on homogeneous functions (cf. Mesterton-Gibbons 1993) states that 
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For periodic matrix products elasticities eij
(h) thus do not sum to one but to the period r. 

According to this, loop elasticities of periodic matrix models are calculated by multiplying the 

loop’s characteristic elasticity with the length of the loop l, i.e., the number of transitions it 

contains, divided by r. In other words, the “effective length” l/r of a loop is its length in units 

of the projection interval Δt = r of the periodic matrix product C (cf. Eq. C.1).  

 

Besides the difference in calculating loop elasticities, i.e. the need to relate the length of loops 

to the time step of matrix C to which the growth rate λ refers, the discussion of elasticities 

eij
(h) corresponds to the fundamentals of the method given by van Groenendael et al. (1994). 

It, thus, can be stated that loop analysis can be conducted and interpreted for periodic matrix 

products, as well. 

 



 

FIG. C1. Life cycle graph for Thlaspi perfoliatum in a cyclic environment with period r = 4 

yrs.  

(a) Population stages nij
(h) and annual transitions bij

(h) at different positions h in the cycle. 

Stages and corresponding transitions that do not contribute to population growth and are, thus, 

not considered in loop analysis are displayed gray.  

(b) Loops derived from the graph and elasticities of the dominant eigenvalue of the cycle 

matrix C to annual transitions. The loops a–d represent life history pathways of pure annual 

vegetation cycles (a) and with residence times in the soil seed bank of 1 year (b), 2 years (c) 

or 3 years (d), respectively. Numbers at the arcs give the elasticities eij
(h) in %. It can be seen 

that the elasticity of each transition is build up by the elasticities of loops passing through that 

transition. Transitions that are unique to a certain loop have the same elasticity that is equal to 

the “characteristic elasticity” of this loop. 



TABLE C1. Cyclic permutations of the matrix product C and respective annual transition matrices, eigenvectors, and elasticities. 

C1 = C2 = C3 = C4 = 
0.0047 0.0068 0.0068 0.0068 1 0 0 0 0.0574 0.1646 0 0 0.0056 0.0048 0.0032 0 
0.0006 0.0009 0.0009 0.0009 0 0 0 0 0.3289 0.9426 0 0 0.0608 0.0518 0.0345 0 
0.0362 0.0518 0.0518 0.0518 0 0 0 0 0.0013 0 0 0 1.6588 1.4138 0.9426 0 
0.6583 0.9426 0.9426 0.9426 0 0 0 0 0.0004 0 0 0 0.0431 0 0 0 
B1 = B2 = B3 = B4 = 
11.073 15.855 15.855 15.855 0.0277 0 0 0 0.0146 0 0 0 1.0604 0 0 0 
0.1083 0 0 0 0.1585 0 0 0 0.1537 0 0 0 0.1394 0 0 0 

0 0.4031 0 0 0 0.75 0 0 0 0.75 0 0 0 0.75 0 0 
0 0 0.2687 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 

D1 = D2 = D3 = D4 = 
0.0004 0 0 0 2.0747 5.9457 0 0 0.3863 0.3292 0.2195 0 0.0045 0.0064 0.0064 0.0064 
0.0001 0 0 0 0.0017 0 0 0 2.2117 1.8851 1.2567 0 0.0482 0.0691 0.0691 0.0691 
0.0033 0 0 0 0.0008 0 0 0 0.0861 0 0 0 1.3165 1.8851 1.8851 1.8851 
0.0594 0 0 0 0.0317 0 0 0 0.0281 0 0 0 0.0406 0 0 0 

w1 = v1 = w2 = v2 = w3 = v3 = w4 = v4 = 
23.1 0.374 53858 0.0338 1491.1 0.071 21.8 0.4712 

3 0.5355 3 0 8538 0.2008 234.6 0.4016 
176 0.5355 1 0 1.9 0 6403.5 0.2677 

3201.8 0.5355 47 0 0.6 0 0.9 0 
〈v1, w1〉 = 1818.9 〈v2, w2〉 = 1818.9 〈v3, w3〉 = 1818.9 〈v4, w4〉 = 1818.9 

EB1 [%] = EB2 [%] = EB3 [%] = EB4 [%]= 
0.47 0.09 5.18 94.26 5.74 0 0 0 0.56 0 0 0 0.47 0 0 0 

0 0 0 0 94.26 0 0 0 5.18 0 0 0 0.09 0 0 0 
0 0 0 0 0 0 0 0 0 94.26 0 0 0 5.18 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 94.26 0 

 
All matrices are evaluated for populations in the stable state under a rototilling return interval of 4 years. For notation see the text. 
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