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Appendix

The deterministic fixed points

The deterministic system which arises in the limit as the number of patches tends to infinity

and the proportions of protected and susceptible patches remain constant is

dx

dt
= r(ρu − x)− sx,

dy

dt
= c(y + z)(x− y)− (e + s)y,

dz

dt
= c(y + z)(ρp − z)− ez.

Setting the three derivatives equal to 0 and solving for w∗ = (x∗, y∗, z∗) we get the trivial

fixed point w∗
0 = ( rρu

r+s
, 0, 0) and also w∗

1 = (x∗1, y
∗
1, z

∗
1), where

x∗1 =
rρu

r + s
,

y∗1 =
(e + s)(r + s)(c(ρp − α1)− e) + creρu

ec(r + s)
,

z∗1 = α1,

and α1 is a root of

α(z) = sc(r + s)z2 + ((r + s)(se− 2scρp)− ce(r + sρp)) z

+ceρp(r + sρp) + ρp(r + s)(scρp − se− e2).

We can see immediately that in order for this fixed point to be in the appropriate state space

S̄ = [0, ρu]
2 × [0, ρp] it is necessary that α1 ∈ [0, ρp]. In addition we observe numerically that

if α has two roots in the interval [0, ρp] then using the larger root results in y∗1 being negative.

The fixed point w∗
1 we seek is therefore that obtained by taking α1 as the smallest root of

α(z) in the interval [0, ρp], and if α has no such root then w∗
0 is the only fixed point in S̄.

One can then determine the stability of these fixed points by looking at the eigenvalues of



the Jacobian matrix

J(x, y, z) =


−(r + s) 0 0

c(y + z) c(x− 2y − z)− e− s c(x− y)

0 c(ρp − z) c(ρp − 2z − y)− e

 .

Although some progress can be made in this direction analytically, the formulae so derived are

cumbersome and relatively uninformative, so we evaluated the fixed points and determined

their stability numerically.

The transformation

Here we describe the transformation used to map the state space S to a set of the form

{1, 2, . . . , N}, so that numerical calculations could be performed. The state space S is the

triangular prismoidal set S = {(m, n, p) ∈ Z3 : 0 ≤ n ≤ m ≤ Mu, 0 ≤ p ≤ Mp} and we

wished to transform this to a set of the form {1, 2, . . . , N}. It can be easily shown that

N = (Mp + 1)(Mu + 1)(Mu + 2)/2. One mapping which achieves this is (m, n, p) → m + 1 +

n
(
Mu − n−1

2

)
+ p(Mu + 1)(Mu + 2)/2, which has the additional property that the absorbing

(extinct) states (m, 0, 0) map to {1, 2, . . . ,Mu + 1}, which simplified coding.

We also needed to invert this transformation following computations. To do this we firstly

noted that the transformation is of the form y = f1(n,m,Mu) + pf2(Mu), so that p = y − 1

(mod (Mu + 1)(Mu + 2)/2), and then j = y− p(Mu + 1)(Mu + 2)/2 is sufficient to determine

m,n ∈ {0 ≤ m ≤ n ≤ Mu}. We did this by checking successive possible values of n, and

subsequently found m.


