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Appendix

1. Model selection in linear models of allele frequency

We retained from an exhaustive search the most parsimonious sub-model with a R2

no more than 1 percent below the R2 of the following two large models, one where the

interaction between X1 and Y1 is the focus and the other where the interaction between X1

and Y2 is the focus.

E[X2|X1, Y1, Y2] = β0 + β1X1 + β2Y1 + β3Y2 + β4Y1Y2 + β5X1Y1 + β6X1Y1Y2

E[X2|X1, Y1, Y2] = β0 + β1X1 + β2Y1 + β3Y2 + β4Y1Y2 + β5X1Y2 + β6X1Y1Y2

In most instances, the SSE of the selected model did not exceed 1 percent of the total

variance. For scenarios where no model satisfied this criterion, we retained the model with

the lowest SSE and having at most three terms.

2. Simulating a bidimensional dichotomous phenotype in families

With a unidimensional dichotomous phenotype, dependance between relatives

due to additive polygenic effects is usually modeled via a normally distributed latent

variable u with correlation structure given by the kinship matrix of the relatives. The

latent variable u is added to the fixed effects of genotypes at susceptibility loci in the

mechanism, and the dichotomous status is obtained either by applying a threshold to the

latent sum [1] or by transforming the sum into a phenotype probability via a link func-

tion in what is known as a generalized linear mixed model [2]. We adopt the latter approach.

With a bidimensional dichotomous phenotype (Y1, Y2), the cross-dependance between

Y1 and Y2 within an individual as well as between relatives must also be included in
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the simulation scheme. Given the nature of endophenotypes as intermediate phenotypes

between genotype and disease status, we adopt a two-step approach: we first model the

distribution of the vector Y1, then the distribution of the vector Y2|Y1, in the spirit of

transition models. (Note however that the fixed effects of the genotypes at the loci in the

model can still be specified as a polytomous model, which is then reexpressed as a transition

model, see for instance the supplementary material of [3]).

2.1. Simulation of Y1 and genotypes

SIMLA was used to generate genotypes at two independent loci and at the same time

the endophenotype Y1. At each locus, one SNP was simulated which was perfectly linked to

the disease locus and in perfect linkage disequilibrium with the disease-susceptibility alleles.

The genotypes of pedigree founders were sampled under Hardy-Weinberg equilibrium using

risk allele frequencies of 0.1 at locus 1 and 0.3 at locus 2. For the transition scenarios,

simulation parameters could be obtained by computing marginal 2-locus penetrances for Y1

and by setting both weights of the modes of inheritance equal to 0.5 (value corresponding

to allelic mode). For polytomous scenarios, we had to approximate the simulation model by

choosing the combination of weights of modes of inheritance and 2-locus penetrances that

best fitted the Y1 penetrance matrices of our scenarios.

2.2. Simulation of Y2

In the model for Yi2|Y1 for subject i, Y1 is treated as a vector of fixed effect, with

the effect of the endophenotype of subject h, Yh1, modulated by the kinship coefficient

φih between i and h, inspired by an additive polygenic effect. Adopting the logistic link
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function, the model can be written:

log

(
P [Yi2 = 1|Y1, X, U ]

P [Yi2 = 0|Y1, X, U ]

)
= γ′(Xi, Yi1) + Ui + α

n∑
h �=i

(Yh1 − ν)φih (1)

U ∼ N(0, σ2φ) (2)

where φ is the kinship matrix between the family members and γ′(Xi, Yi1) in an abrevi-

ated expression of the model for the disease phenotype given the genotype at major loci and

endophenotype status of subject i (derived e.g. from a transition or polytomous model). In

the case of a polytomous model, γ′(Xi, Yi1) = Yi1(β3−β1)Xi+(1−Yi1)β2Xi. The parameter

σ2 controls the degree of polygenic dependence between the disease status Y2 of the family

members and the parameter α the degree of genetic dependance of Y2 on Y1 not captured by

the genotype at the loci in the model. The parameter ν, between 0 and 1, determines the

relative importance of the risk increase 1−ν due to observing an endophenotype impairment

and the risk decrease −ν due to observing the normal level of the endophenotype in a relative.

It is important to note here that epidemiological studies are not usually designed to

estimate disease prevalence in subjects with and without an endophenotype impairment

and their relatives. The association is usually measured in reverse, by estimating prevalence

of endophenotypes in disease patients, their non-affected relatives and unrelated controls.

The invariance of the OR with respect to the sampling design can here be exploited, since

the marginal ORs for Y2 given Y1 equals the OR of Y1 given Y2 estimated in epidemiological

studies. Values of α and γ can then be selected to obtain in simulated data sets marginal

ORs between Y1 and Y2 close to epidemiological estimates.
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2.3. Family Ascertainment

At the step of simulation of Y1, the SIMLA program selected families having at least

the proband with the endophenotype impairment. Then among those families selected by

SIMLA, we selected the ones having at least one cousin pair with the disease (Y2). Given

the high prevalence of the endophenotype impairment, especially among affected subjects,

the selection step by SIMLA represents a negligible ascertainment on the endophenotype,

the probability of having at least one subject with an endophenotype impairment being

close to one in families having at least one affected cousin pair.

3. Proof of properties 10 and 13

Under the polytomous logistic model assume that the logistic function contrasting

Y2 = 1 and Y2 = 0 when Y1 = 0 is a general function h(X2, Z) of X2 and a vector of other

variables Z. Then

P [X2 = u|Y1 = 0, Y2 = 1]

=
P [Y1 = 0, Y2 = 1|X2 = u]P [X2 = u]∑

u∗ P [Y1 = 0, Y2 = 1|X2 = u∗]P [X2 = u∗]

=

∑
z P [Y1 = 0, Y2 = 1|X2 = u, Z = z]P [X2 = u, Z = z]∑

u∗,z P [Y1 = 0, Y2 = 1|X2 = u∗, Z = z]P [X2 = u∗, Z = z]

=

∑
z P [Y1 = 0, Y2 = 0|X2 = u, Z = z] exp(h(X2 = u, Z = z))P [X2 = u, Z = z]∑

u∗,z P [Y1 = 0, Y2 = 0|X2 = u∗, Z = z] exp(h(X2 = u∗, Z = z))P [X2 = u∗, Z = z]

We want the above expression to equal

P [X2 = u|Y1 = 0, Y2 = 0] =
P [Y1 = 0, Y2 = 0|X2 = u]P [X2 = u]∑

u∗ P [Y1 = 0, Y2 = 0|X2 = u∗]P [X2 = u∗]

This is achieved only when h() does not depend on X2 and either h() does not depend

on Z neither, i.e. h(X2 = u, Z) = β20 a constant, or h(X2 = u, Z) depends on Z alone
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h(X2 = u, Z) = g(Z) and P [Z] = p a constant. Since P [Z] is not in general equal for all

values of Z, we require h(X2 = u, Z) = β20. This holds for all values of u.

If instead one considers the less stringent version of the property restricted to a fixed

value of Z, then h(X2 = u, Z) = g(Z) is sufficient.

Under the transition model, we have

P [X2 = u|Y1 = 0, Y2 = 1]

=
P [Y1 = 0, Y2 = 1|X2 = u]P [X2 = u]∑

u∗ P [Y1 = 0, Y2 = 1|X2 = u∗]P [X2 = u∗]

=
P [Y2 = 1|Y1 = 0, X2 = u]P [Y1 = 0|X2 = u]P [X2 = u]∑

u∗ P [Y2 = 1|Y1 = 0, X2 = u∗]P [Y1 = 0|X2 = u∗]P [X2 = u∗]

=

∑
z P [Y2 = 1|Y1 = 0, X2 = u, Z = z]P [Y1 = 0|X2 = u, Z = z]P [X2 = u, Z = z]∑

u∗,z P [Y2 = 1|Y1 = 0, X2 = u∗, Z = z]P [Y1 = 0|X2 = u, Z = z]P [X2 = u∗, Z = z]

We want the above expression to equal

P [X2 = u|Y1 = 0, Y2 = 0]

=
P [Y1 = 0, Y2 = 0|X2 = u]P [X2 = u]∑

u∗ P [Y1 = 0, Y2 = 0|X2 = u∗]P [X2 = u∗]

=

∑
z P [Y2 = 0|Y1 = 0, X2 = u, Z = z]P [Y1 = 0|X2 = u, Z = z]P [X2 = u, Z = z]∑

u∗,z P [Y2 = 0|Y1 = 0, X2 = u∗, Z = z]P [Y1 = 0|X2 = u, Z = z]P [X2 = u∗, Z = z]

We can see that the equality requires P [Y2 = 1|Y1 = 0, X2 = u, Z = z] = 1 − P [Y2 =

0|Y1 = 0, X2 = u, Z = z] to be constant with respect to u and z, which is achieved when

condition 12 is satisfied.



– 7 –

References

1. Falconer DS. Introduction to quantitative genetics. 3rd ed. LongmanWiley; 1989.

2. Papachristou C, Ober C, Abney M. Genetic variance components estimation for binary

traits using multiple related individuals. Genet Epidemiol. 2011;35(5):291–302.

3. Bureau A, Croteau J, Couture C, Vohl MC, Bouchard C, Perusse L. Estimating genetic

effect sizes under joint disease-endophenotype models in presence of gene-environment

interactions. Front Genet. 2015;6:248.


