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1 INTRODUCTION 

What might mean “more than impossible”? For example, that could be what happens without 
any cause or that physical change which occurs without any physical force (interaction) to act. Then, 
the quantity of the equivalent physical force, which would cause the same effect, can serve as a 
measure of the complex probability. 

Quantum mechanics introduces those fluctuations, the physical actions of which are 
commensurable with the Plank constant. They happen by themselves without any cause even in 
principle. Those causeless changes are both instable and extremely improbable in the world perceived 
by our senses immediately for the physical actions in it are much, much bigger than the Plank 
constant. 

Even more, quantum mechanics involves complex probabilities as forces explicitly as follows. 
Any probability distribution may be represented by its characteristic function, which is its Fourier 
transformation and thus a complex function sharing one and the same phase, i.e. a constant phase. If 
two or more probability distributions do not overlap each other, their phases are orthogonal to each 
other, and the common complex Hilbert space of all characteristic functions can be decomposed as  
a tensor product of the Hilbert spaces corresponding to each characteristic function separately. If some 
of them overlap each other, that decomposition is impossible. That case corresponds to a system of 
entangled quantum subsystems and accordingly, entangled wave functions. 

The overlap of probability distributions imposes a corresponding restriction of the degrees of 
freedom in each space of events for the result in any of the overlapped spaces is transferred 
automatically in all the rest of them. That restriction of the degrees of freedom can be considered as a 
generalization of the physical concept of force (interaction) as to quantum mechanics. Indeed, any 
force (interaction) in the sense of classical physics causes a special kind of restriction of the degrees of 
freedom to a single one. Quantum force (interaction) also restricts, but to a more limited probability 
distribution with less dispersion and entropy rather than to a single one new value.  

Particularly, that consideration interprets negative probability as a particular case of complex 
probability, which is what is immediately introduced.  

The understanding of probability as a quantity, corresponding to the relation of part and 
whole, needs to be generalized to be able to include complex values. For example, probability can be 
thought as associable with the number of elementary permutations of two adjacent elements for a 
given element of a limited series to reach its last element (i.e. its upper limit) and more especially, to 
the ratio of that number to the corresponding number of those permutations as to the first element (i.e. 
the lower limit) of the series. Then, the introduction of negative probability requires only the reversion 
of the direction of elementary permutations from the upper limit to any element in the series.   

The force can be represented in the above visualization by means of the “length” of an 
elementary permutation of two elements arbitrary remoted from each other. Then the length is bigger, 
the effective probability is bigger. The considered construction demonstrates that interpreting the 
probability by the well-ordering of a series, one manages to introduce complex and negative 
probability unambiguously as the transformation of that well-ordering at issue into others. Physical 
force (interaction) is then the re-ordering from one order of things into another and thus it is closely 
relative to complex probability.  

The narrow purpose of the paper is to be introduced negative and complex probability relevant 
to special and general relativity and thus to events in our usual perceptive world rather than to 
microscopic or micro-energetic events studied by quantum mechanics (Section 3). 
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The prehistory and background (Section 2) include the generalization and utilization of 
‘negative and complex probabilities’ in quantum mechanics and probability theory, and Section 4 
compares their use in quantum mechanics and information, signal theory, probability theory, and in 
special and general relativity.    

2 NEGATIVE AND COMPLEX PROBABILITY IN QUANTUM MECHANICS, SYGNAL 
THEORY, AND PROBABILITY THEORY 

Negative probability appears in phase-space or statistically formulated quantum mechanics; 
after quantum correlations, and a for wave-particle dualism.  

Weyl’s paper (1927) is historically first. He considered abstractly and mathematically  
the transformation (Weyl 1927: 116-117) reversed to the Wigner (1932: 750) function. However Weyl 
did not interpret the function P(x,p) as probability or that it could obtain negative values.  

Ville (1948) was the first who reformulated the Wigner function from the argument of  
a phase-space cell (space coordinates, momentum coordinates) to that of time – frequency (energy). 
Cohen (1995) generalized the Wigner function in a way to include Wigner’s original formulation and 
that of Ville. 

One can link to Ville and Cohen a signal modification of Wigner’s phase-space reformulation 
of quantum mechanics and further, to Kripke‘s (1975) conception that a properly logical notion of 
truth can be introduced by infinite syntax. Feferman’s “reflexive closure” (1991) will help us to clear 
up the syntactic “kernel” shared by two possible worlds (descriptions, theories). Wave function 
interpreted semantically-syntactically describes one and the same, but in different ways in any possible 
world. Thus, it represents a catalog of all possible descriptions or of all expectations about its behavior 
(Schrödinger 1935 (49): 823-824).  

The semantic-syntactic interpretation of von Neumann’s theorem (1932) about the absence of 
hidden parameters in quantum mechanics corresponds to the “standard” quantum logic, the base of 
which he founded in the same book (Neumann 1932). A semantic-syntactic interpretation of Bell’s 
revision (Bell 1964; 1966), or in other words, defining the limits of validity for the foregoing theorem 
would correspond rather to “holistic semantics” (Cattaneo, Chiara, Giuntini, Paoli 2009: 193). 

When the generalization of the Wigner function “was subsequently realized” (Cohen 1966: 
782; 1995: 136), it was also realized that an infinite syntax can be readily generated (Cohen 1989: 943; 
2008: 260).  

Groenewold (1946) offered a classically statistical interpretation of quantum mechanics, 
however needing negative probabilities, quantizing phase space. The negative probabilities of some 
states do appear, but they are easily interpreted physically by the regions of partial overlap between 
orthogonal probabilistic distributions.  

Moyal (1949) interpreted “quantum mechanics as a form of such a general statistical 
dynamics”, in which “there is the possibility of ‘diffusion’ of the probability ‘fluid’, so that the 
transformation with time of the probability distribution need not be deterministic in the classical 
sense” (Moyal 1949: 99). 

Pauli (2000: 71-72) also discussed the negative probabilities on the subject of Gupta-Bleurer’s 
theory.   

Einstein, Podolski, Rosen (1935) offered a “gedanken experiment”, in which negative 
probability appears “effectively”, i.e. by the restriction of the degrees of freedom (DOF) of any 
correlating quantum object, though not explicitly.  

Neumann’s theorem (1932: 167-173) about the absence of hidden parameters in quantum 
mechanics underlies both quantum correlation and quantum superposition as in Schrödinger “alive-
and-dead cat” (Schrödinger 1935 (48): 812).  

Bell’s criticism (1966) about von Neumann’s theorem partly rediscovered Grete Hermann’s 
objections (1935) independently revealing the connection between causality, quantum correlation, and 
negative probability. Bell’s inequalities (1964) imply negative probabilities, too. Kochen and Specker 
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(1968) generalized Neumann’s theorem in a link to them, utilizing a phase-space and statistical 
interpretation.   

Negative probability for wave-particle dualism involves Einstein’s papers from  
the “miraculous 1905” and might be discussed from the viewpoint of his “The principles of general 
relativity” (1918). The Kochen-Specker theorem can serve as a bridge between negative probabilities 
for wave-particle dualism and those for quantum correlations. 

The concept of actual infinity also admits interpretation in terms of two-dimensional 
probability for the relativity of ‘set’ after Skolem (1970: 138) and the axiom of choice. That approach 
can be linked to Bartlett’s (1944) for introducing negative probability by means of the characteristic 
function of random quantities and further, to Gleason’s theorem (1957) about the existence of measure 
in Hilbert space.  

 Dirac (1942: 8) thought negative probability as effective rather than as real and likening it  
to the “negative money” in a balance. The same understanding shared Feynman in an often cited 
article (1991) as well as Bartlett (1944: 73). One the contrary, Mermin (1998) discussed negative 
probability as a kind of substance. 

The brief historical review might culminate in a few philosophical questions: 
1. Whether is negative probability only a mathematical construction, or do there exist physical 

objects of negative probability? 
2. Whether are negative probability and pure relation (such a one which cannot be reduced  

to predications) equivalent, expressing one and the same case in different ways? 
3. Whether does negative probability imply the physical existence of probability?  
4. Can probabilities interact immediately (i.e. without any physical interaction of the things, 

phenomena, or events possessing those probabilities)? 
5. Whether is the physical existing information deducible from the interaction of probabilities?    

3 NEGATIVE AND COMPLEX PROBABILITY LINKED TO FORCES IN SPECIAL AND 
GENERAL RELATIVITY 

Meaning that negative and complex probabilities which have been already linked to physical 
forces in quantum mechanics valid in the Plank scale, one should research that way for them  
to be introduced in special and general relativity, which should be valid in both macroscopic and 
microscopic (Planck) scale. This implies one to use only the kinematic formulation neglecting  
the dynamical one for the latter involves mass and energy right distinguishing the scales from each 
other practically1 as the distances are unified as macroscopic according to the real apparatuses for 
quantum phenomena.  

Particularly, ‘force’ is defined per a unit of mass (energy), and therefore equated to 
acceleration after kinematic consideration. ‘Reference frame’ is the key concept as it is properly 
kinematic. Still one restriction is representability in terms of quantum information, and more 
especially, by the concept of qubit. One needs it for the consistency and coherence of  
the considerations in quantum mechanics (and information) and both special and general relativity 

A qubit is defined as 𝛼𝛼|0⟩+ 𝛽𝛽|1⟩, where 𝛼𝛼 and 𝛽𝛽 are two complex numbers so that |𝛼𝛼|2 +
|𝛽𝛽|2 = 1, and |0⟩, |1⟩ are two orthogonal subspaces of the complex Hilbert space (abbreviated as 
“cHs” further). For any two successive axes (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑒𝑒𝑖𝑖(𝑖𝑖+1)𝑖𝑖) of cHs can be interpreted as 
those |0⟩, |1⟩, cHs or any point in it can be represented as a series of qubits (𝑄𝑄𝑖𝑖), correspondingly 
“empty” or “fulfilled” by the values (𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖  ∈  𝑄𝑄𝑖𝑖).  

Any qubit is isomorphic to a unit ball in the usual 3D Euclidean space if two points are chosen 
in that ball: the one in the ball (including its surface, which is a unit sphere), and the other in  
the surface. That isomorphism is both elementary and crucial for our consideration for it guarantees 

                                                                 
1 Physical bodies with macroscopic mass would share the laws of quantum mechanics at almost zero values of 
absolute temperature, too. 
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the equivalent transfer of negative and complex probabilities between quantum mechanics (the former, 
“left side” of isomorphism) and both special and general relativity (the latter, “right side”). 

Indeed, a qubit, already as a unit ball with two points “recorded” in it, allows for another 
interpretation as an inertial reference frame (𝒓𝒓𝟎𝟎 ,𝒗𝒗), where the point (vector) within the ball  
(𝜶𝜶 = 𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑦𝑦 , 0) corresponds to the zero of frame (𝒓𝒓𝟎𝟎 = 𝑥𝑥0,𝑦𝑦0,𝑧𝑧0) and that on its surface  
(𝜷𝜷 = 𝛽𝛽𝑥𝑥 , 0,𝛽𝛽𝑧𝑧) to the speed of inertial frame (𝒗𝒗 = 𝑣𝑣𝑥𝑥 ,𝑣𝑣𝑦𝑦 , 𝑣𝑣𝑧𝑧). The one-to-one mapping of  
the components of a qubit and those of an inertial frame follows: 

𝑥𝑥0 = 𝑐𝑐𝛼𝛼𝑥𝑥𝑡𝑡0; 𝑦𝑦0 = 𝑐𝑐𝛼𝛼𝑦𝑦𝑡𝑡0; 𝑧𝑧0 = 0; 
 𝑣𝑣𝑥𝑥 = 𝑐𝑐𝛽𝛽𝑥𝑥 ; 𝑣𝑣𝑦𝑦 = 0; 𝑣𝑣𝑧𝑧 = 𝑐𝑐𝛽𝛽𝑧𝑧 . 

The convention "𝑧𝑧0 = 0; 𝑣𝑣𝑦𝑦 = 0" means that the qubit is correspondingly oriented according 
to the reference frame unambiguously. Any nonzero rotation of the unit ball would define a different 
inertial frame. The parameter "𝑡𝑡0" is a conventionally chosen ordinary moment. 

Further, the probability "𝑝𝑝" associable with the inertial frame may be conventionally specified 
as "𝑝𝑝 = |𝛼𝛼|2" so that |𝛼𝛼| corresponds to the module of wave function just as in the Max Born 
interpretation of it. Indeed, then "𝑣𝑣 = |𝒗𝒗| = |𝛼𝛼|" or as “kinematic momentum” per a unit of mass 
(energy) might be the “length” of an elementary permutation defined as above, and its change in time 
would represent acceleration as “kinematic force”. 

Further, the unity of ‘pure imaginary probability’ and ‘force’ as above allows of still one 
interpretation of the relation of special and general relativity. The new interpretation is consistent to 
the standard one, but different from it. According to the latter, the demarcation line between special 
and general relativity is right the quantity of acceleration (𝒂𝒂) of the studied reference frames: zero in 
inertial reference frames (special relativity) and nonzero in noninertial reference (general relativity). 
According to the new interpretation, one should complement that distinction by the identification of 
any hypothetical superluminal inertial frame (𝒓𝒓𝟎𝟎 ,𝒗𝒗: |𝒗𝒗| = 𝑣𝑣 > 𝑐𝑐) with just one certain noninertial 
subluminal reference frame (𝒓𝒓𝟎𝟎,𝒗𝒗,𝒂𝒂: |𝒗𝒗| = 𝑣𝑣 < 𝑐𝑐). The hypothetical particles with superluminal 
velocity were called “tachyons”. The new interpretation would add the identification of the tachyons 
as accelerated subluminal particles. 

Indeed, special relativity identifies the pure imaginary values of speed with those of a 
reference frame moving with any superluminal relative velocity to an observer. The term 
“superluminal”, which is a real value (|𝒗𝒗| = 𝑣𝑣 > 𝑐𝑐), refers to the relative speed of a hypothetical 
inertial reference frame to an observer in any usual, subluminal inertial reference frame. That observer 
should register pure imaginary values as to the velocities in the other, observed reference frame. 
According to the generally accepted model of special relativity in Minkowski space, time is purely 
imaginary unlike distance, which is real. This implies for speed to be pure imaginary as time, and 
acceleration to be real as distance.  

Then, an observer in an inertial subluminal reference frame might not distinguish pure 
imaginary values of velocity from accelerations in other reference frames for both superluminal 
velocity and acceleration mean one and the same though expressed in two different kinds of terms: 
correspondingly mathematical or physical. Acceleration being a quantity different from velocity 
means a new dimension expressed physically. Superluminal velocity equated to pure imaginary 
velocity according to special relativity means a new dimension expressed mathematically, namely that 
of imaginary axis in relation to the real one.  

Further, the accelerated inertial frames already according to general relativity implies a force 
field indistinguishable from the gravitational one in turn represented by curving Minkowski space into 
pseudo-Riemannian one. Any tensor associable with a point in pseudo-Riemannian space is 
representable as the tensor product of vectors of Minkowski space as in its real as in its imaginary 
domain. Particularly, the tensor of curvature in a point transforms a vector to another between the 
imaginary and real domain. 
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Then, the formalism of general relativity is interpretable as presenting transformations within 
both domains of Minkowski space separately or together unlike that of special relativity restricted only 
to the one: that associated to the subluminal area usually identified with the imaginary cone (domain). 
The pair of contra- and covariant 4-vectors as to pseudo-Riemannian space is isomorphic to that of  
4-vectors in each of the real and imaginary domain as to Minkowski space.                   

4 THE PHILOSOPHICAL INTERPRETATION: THE UNITED NATURE OF FORCES AND 
PROBABILITIES IN QUANTUM MECHANICS AND INFORMATION, SPECIAL AND 
GENERAL RELATIVITY, AND PROBABILITY AND INFORMATION THEORY 

The introduction of complex probabilities unifies forces and probabilities as two dimensions, 
whether mathematically or physically interpreted, of one and the same nature, that of complex 
probabilities. Then both “more than impossible” and even the “squire root of that more than 
impossible” acquire a clear mathematical and physical meaning: 

All physical forces (interactions) as in quantum mechanics (and therefore in the Standard 
model) and in special or general relativity are a particular case of the generalized probabilities and 
relative to the classical, one-dimensional probabilities. Furthermore, the two dimensional (or complex) 
probabilities unify the subjective probabilities of the observer and the objective probabilities of the 
observed; and even the one dimension might be ascribed to the former, the other dimension to the 
latter. This allows of unifying further the concept of ‘observer’ in relativity and quantum mechanics.  

In the final analysis, the border between the physical theories of quantum mechanics and those 
of special and general relativity melts in probability and information theory turning out to underlie 
both.       

REFERENCES 

Bartlett, M. 1945. Negative Probability.  Mathematical Proceedings of the Cambridge 
Philosophical Society. 41(1), 71-73. 

Bell, J. 1964. On the Einstein ‒ Podolsky ‒ Rosen paradox. Physics (New York), 1(3), 195-
200.  

Bell, J. 1966. On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern 
Physics, 38(3), 447-452.  

Cattaneo, G., M. Chiara, R.  Giuntini, F. Paoli.  2009. Quantum Logic and Nonclassical Logics. In: 
Handbook of Quantum Logic and Quantum Structures. Quantum Logic (eds. K. Engesser, D.  
Gabbay, D. Lenmann). Amsterdam, etc.: Elsevier, 127-226. 
Cohen, L. 1966. Generalized phase-space distribution functions. Journal of Mathematical 
Physics, 7(5), 781-786. 

Cohen, L. 1989. Time-Frequency Distributions – A Review. Proceedings of the  IEEE, 77(7), 
941–981. 

Cohen, L. 1995. Time-Frequency Analysis. New York: Prentice-Hall 

Cohen, L. 2008. The Weyl transformation and its generalization. Rendiconti del Seminario 
Matematico. Università Politecnico di Torino, 66(4), 259-270.  
Dirac, P. 1942. Bakerian Lecture. The Physical Interpretation of Quantum Mechanics. 
Proceedings of the Royal Society of London, A, 180(980), 1-40.  

Einstein, A. 1905. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen 
der Physik, 18(13), 639–641.  

Einstein, A. 1905. Über einen die Erzeugung und Verwandlung des Lichtes  betreffenden 
heuristischen Gesichtspunkt. Annalen der Physik, 17(6), 132–148. 

Einstein, A. 1918. Prinziplelles zur allgemeinen Relativitätstheorie. Annalen der Physik , 55(4), 



6 
 

241-244. 

Einstein, A., B. Podolsky and N. Rosen. 1935. Can Quantum-Mechanical Description of Physical 
Reality Be Considered Complete? Physical Review, 1935, 47(10), 777-780. 

Feferman, S. 1991. Reflecting and Incompleteness. The Journal of Symbolic Logic, 56(1), 1-49. 

Feynman, R. 1991. Negative Probability. In: Quantum Implications: Essays in Honour of David 
Bohm (eds. B.Hiley, D. Bohm, D. Peat). London – New York: Routledge, 235-248. 

Gleason, A. 1957. Measures on the Closed Subspaces of a Hilbert Space. Journal of 
Mathematics and Mechanics, 6(6), 885-893.  
Groenewold, H. 1946. On the Principles of Elementary Quantum Mechanics. Physica, 12(7), 
405-460. 

Hermann, G. 1935. The circularity in von Neumann's proof. (Translation by Michiel Seevinck of 
"Der Zirkel in NEUMANNs Beweis", section 7 from the essay by Grete Hermann, Die 
Naturphilosophischen Grundlagen de Quantenmechanik. Abhandlungen der fries'schen Schule, 
6, 1935) ‒ http://www.phys.uu.nl/igg/seevinck/trans.pdf  

Kochen, S., E. Specker. 1968. The problem of hidden variables in quantum mechanics. – 
Journal of Mathematics and Mechanics, 17(1), 59-87. 

Kripke, S. 1975. Outline of a Theory of Truth. The Journal of Philosophy, 72(19), 690-
716. 

Mermin, D. 1998. What Is Quantum Mechanics Trying to Tell Us? American Journal of 
Physics, 66(9), 753-767. 

Moyal, J. 1949. Quantum mechanics as a statistical theory. Proceedings of the Cambridge 
Philosophical Society, 45(1), 99-124.  

Neumann, J. von. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. 
Pauli, W. 2000. Pauli lectures on physics. Vol. 6. Selected topics in field quantization. 
(ed. C. Enz.) New York: Courier Dover Publications, 71-73. 

Schrödinger, E. 1935. Die gegenwärtige situation in der Quantenmechanik.  
Die Naturwissenschaften, 23(48), 807-812; 23(49), 823-828, 23(50), 844-849.  

Skolem,  T.  1970.  Einige   Bemerkungen   zur   axiomatischen   Begründung   der   
Mengenlehre. In: Selected works in logic (ed. E. Fenstad), Oslo, etc.: Univforlaget, 137-152. 

Ville, J. 1948. Théorie et Applications de la Notion de Signal Analytique. Cables et 
Transmission, 2A (janvier), 61-74. 

Weyl, H. 1927. Quantenmechanik und Gruppentheorie. Zeitschrift  für  Physik,  46(1-2), 1-46. 

Wigner, E. 1932. On the Quantum Correction For Thermodynamic Equilbrium. Physical Review, 
40(5), 749-759. 

    

http://www.phys.uu.nl/igg/seevinck/trans.pdf

