http://bibs.snu.ac.kr/software/LPEseq/LPEseq_tutorial.pdf

Analysing no replicate RNA-seq data with LPEseq package

Gim, Jungsoo

Biolnformatics and BioStatistics (BIBS) Lab,
Seoul National University,
Seoul, Korea (republic of)

iedenkim@gmail.com

2015-04-01 (version 0.99.3)

1. Introduction

The LPEseq is an R package for performing differential expression (DE) test with RNA sequencing data.
Briefly, LPEseq extends local pooled error method, which was developed for microarray data analysis, to
sequencing data even with non-replicated sample in each condition. A number of methods are available for both
count-based and FPKM-based RNA-Seq data. Among these methods, few (for example, EdgeR and DESeq) can
deal with no replicate data, but not accurately. LPEseq was designed for the RNA-Seq data with a small number
of replicates, especially with non-replicate in each class. Also LPEseq can be equally applied both count-base
and FPKM-based (non-count values) input data. This brief vignette is written for the users who want to use the
LPEseq for their DE analysis. An extended documentation about the method can be found in our original
manuscript (http://bibs.snu.ac.kr/software/LPEseq).

2. Installation

The source code and a package of LPEseq are freely available from our website (It will be soon available from
Bioconductor). You can use it by loading source code in our website,

> source ("http://bibs.snu.ac.kr/software/LPEseq/LPEseq.R")

> install.packages ("local folder/LPEseq version.tar.gz", repos=NULL,
type="source")

3. What’s in LPEseq

The LPEseq package comes with a number of functions to perform a differential expression test with
or without replicates. The main functions are LPEseq.normalise() and LPEseq.test(), which
are designed for running a normalization across the samples and a whole differential expression test,
respectively. All the functions that start with the same as the package are newly developed in our
method while others are from original LPE package. The most of the functions are described in the
manual available in our web-site.

4. Quick Example

A. Input Data: generation

mailto:iedenkim@gmail.com

The LPEseq package starts its analysis with read counts. Therefore you have to equip yourself with
RNA-Seq read count data sets on your hand first. The package expects count data in the form of a
matrix (or a vector) of integer values. But it is not limited to non-count data, for example, FPKM
values generated using Cufflinks. If you are not familiar with generating count table, please visit web-
sites to learn how to obtain such a data. Good references are GenomicRanges in Bioconductor, htseg-
count script written in Python framework, the well-known software and etc. In this LPEseq tutorial,
you do not need count dataset right away. Using generateData(), you can generate simulated
datasets and learn how to use LPEseq library without real dataset.

Now you are ready to generate the simulation datasets by typing

> set.seed (D)
> simData <- generateData(n.rep=3, n.deg=1000)
Let us take a look at the data generated using generateData() function.

> head (simbata)

conditionl.l conditionl.2 conditionl.3 condition2.1l condition2.2 condition2.3 DEG

gene 1 1299 541 1109 0 0 0 1
gene 2 0 0 0 0 0 0 0
gene_ 3 0 0 0 0 0 0 0
gene 4 26 39 41 27 36 31 0
gene 5 0 0 0 0 0 0 0
gene 6 0 0 0 0 0 0 0

The output of generated data consists of 20000 genes with 6 samples (three replicate per each
condition) and differential expression index in the last column (denoted by DEG). DEGs are indexed
with 1 otherwise 0.

If you have your own data, you can directly read the data with read.table().Once you loaded your
own data, the following analysis procedure is the same.

> yourData <- read.table("your data.txt", header = , sep =, ..)
To visualize mean and variance of the data, LPEseq provides AVplot() function.

> par (mfrow=c(1l,2))
> AVplot (simDatal,1:3])

> AVplot (simDatal[,1:3], logged=F)

Average-Variance plot Average-Variance plot

Be+07

|

2 3 4 5 8
|

Wariance
Wariance

4e+07
|

1
|

0
|

De+00
I

[= I I
0 5000 15000 02 4 6 8 12

Average Intensity Average Intensity

Figure 1 Variance versus mean intensity plot with original intensity (left) and normalized
intensity (right)

B. Normalization

As the first step of analysis, we need to remove the effect of sequencing depth. LPEseq follows the
similar idea of DESeq. LPEseq divides each column of the count table by the size factor for this
column. By doing so, the count values are brought to a common comparable scale. LPEseq adds
pseudo-count value 1 to all the values in the data and take log-2 transformation. Because of sparse
properties in average bins of RNA-Seq in raw scale, it is recommended to log-2 transform the original
data. LPEseq does this by typing

> simData.norm <- LPEseqg.normalise(simDatal,-7])

Note that DEG index is removed. If your own data consists of original count values, exactly the same
script will do,

> youData.norm <- LPEseg.normalise (yourData)

But when your data includes normalized count values, such RPKM or FPKM, just take log-
transformation to your data for further analyses. We recommend using log-transformed data for
LPEseq method.

> youData.norm <- log(yourData, base = 2)

C. Testing Differential Expression

LPEseq provides simple one-step procedure to perform differential expression test. Unlike other
methods, LPEseq is applicable to experiments without replicates. By simply providing expression
matrix (or vector) per each condition as arguments of LPEseq.test () function, LPEseq
automatically performs appropriate differential expression test, if the input data is properly given.
Replicates are essential to interpret biological experiments. Nevertheless, experiments without any
replicates per each condition are frequently undertaken, and LPEseq can deal with them. The
followings are the R scripts for differential expression test with or without replicates in each
condition, respectively.

> sim.result <- LPEseq.test (simData.norm[,1:3], simData.norm[,4:6])

> sim.result.norep <- LPEseq.test(simData.norm[,1], simData.norm[,4])

The result of LPEseq.test includes average values in each condition, pooled standard deviation, Z type
statistics, nominal p-value and adjusted p-value (with Benjamini-Hochberg multiple testing
correction).

> head(sim.result)

mu. x mu.y pooled.std.dev z.stats p.value qg.value

gene 1 10.149991 0.000000 1.020765 -9.9435183 0.0000000 0.0000000
gene 2 0.000000 0.000000 1.273648 0.0000000 NA NA

gene 3 0.000000 0.000000 1.273648 0.0000000 NA NA

gene 4 5.299016 4.973103 0.804995 -0.4048625 0.6855786 0.9063719
gene 5 0.000000 0.000000 1.273648 0.0000000 NA NA

gene 6 0.000000 0.000000 1.273648 0.0000000 NA NA

> head(sim.result.norep)

mu.x mu.y pooled.std.dev z.stats p.value g.value

gene 1 10.353526 0.000000 1.715027 -6.03694650 1.570578e-09 2.843468e-08
gene 2 0.000000 0.000000 2.185038 0.00000000 NA NA
gene 3 0.000000 0.000000 2.185038 0.00000000 NA NA
gene 4 4.763784 4.847599 1.082377 0.07743624 9.382765e-01 9.961941e-01
gene 5 0.000000 0.000000 2.185038 0.00000000 NA NA
gene 6 0.000000 0.000000 2.185038 0.00000000 NA NA

To save the output to a file, use the write.table() function.

> write.table(sim.result, file="result file.txt", quote=F, sep="\t")

5. How LPEseq works?

Since LPEseq.test () directly performs differential expression calling without additional steps, it
would be worth describing how LPEseq.test () works. LPEseq first counts the number of input
data column. If the number of column is larger than 1, LPEseq estimates LPE variance curve exactly
the same way in original LPE method using 1pe.var(). However, if the number of column is equal
to 1, then LPEseq estimates LPE variance curve after performing the outlier-removing step using
LPEseq.var().

> sim.var <- lpe.var (simData.norm[,1:2], n.bin=100, df=10)
> sim.var.norep <- LPEseqg.var (simData.norm[,1:2], n.bin=100, df=10, d=3,

fudge.factor=1)

> head(sim.var)

A var.M

gene_1 9.706107 0.5613424
gene 2 0.000000 3.1211790
gene_3 0.000000 3.1211790
gene_4 5.031400 0.5846971
gene 5 0.000000 3.1211790
gene_6 0.000000 3.1211790

> names (sim.var.norep)

[1] "x" vvyvv " "yin" "data" "lev" "ov.crit" "pen.crit" "erit"

[10] "df" "spar" "lambda" "iparms" mEig" "call"

> par (mfrow=c (1,2))
> plot(sim.var)

> plot(sim.var.norep$x, sim.var.norep$y)

—° o

25
I
25

05

1 1
f@oooo & ©
3

15
varmM

sim.var.norep$y
15

o
o
©
o
4 o
)
o
3

05

sim.var.norep$x A

Figure 2 Comparison of LPE curve without replicates (left) and with replicates (right)

As can be seen in Fig. 2, LPE curve can be obtained from RNA-Seq data both with replicates and
without replicates. But when working without any replicates, LPEseq.var () conducts an extra
outlier-removing step. By removing these (possibly differentially expressed) genes or transcripts, the
remaining genes can be thought as in the same condition. For this purpose LPEseq needs the extra
argument, d, the expression difference between two different conditions. The default value is 1.2 (in
log-2 transformed scale). Thus any genes or transcript whose expression difference between
conditions is larger than 1.2 is depicted as outliers and is removed for evaluating LPE curve. This can
be changed according to the data type. If the data is thought to be largely varied, like biological
replicates do, the value can be larger. For the technical replicates, it is recommended to use 0.5 (please
see supplementary note).

Once LPE curve is obtained, it is straightforward to estimate gene-specific variance from the curve.

> LPEseq.predict.var(5.342, sim.var.norep)

[1] 0.5418984

Then p-value of differential expression can be obtained from z-type statistics as described in the
manuscript

> var.x <- LPEseqg.predict.var(5.342, sim.var.norep)

> var.y <- LPEseqg.predict.var(6.012, sim.var.norep)

> std.dev <- sqgrt(var.x + var.y)

> z.stats <- (6.012-5.342)/std.dev

\%

p.val <- as.numeric (2* (l-pnorm(abs(z.stats))))

\%

p.val

[1] 0.5253698

6. Session Info

> sessionInfo ()

R version 3.0.1 (2013-05-16)
Platform: 1386-w64-mingw32/1386 (32-bit)

locale:
[1] LC_COLLATE=Korean Korea.949 LC CTYPE=Korean Korea.949
[4] LC_NUMERIC=C LC_TIME=Korean Korea.949

attached base packages:
[1] stats graphics grDevices utils datasets methods

LC_MONETARY=Korean Korea.949

base

