
Generalized additive models for gigadata: modelling the UK black smoke
network daily data. Appendices B and C

B Convergence properties

Here we show that the section 4.1 iteration is guaranteed to converge when W is independent of β (e.g.
for a Gaussian with identity link, gamma with log link or Poisson with square root link). The notation
follows sections 3 and 4.

Theorem 1. Let V (β,λ) = D(β)/ϕ + βTSλβ + log |XTWX/ϕ + Sλ| − log |Sλ|+ have a single
(minimum) turning point and W be independent of β. Then the iteration of section 4.1 converges to the
minimum of V .

Proof. Under the stated assumptions ∂V/∂β coincides with the partial derivative of the penalized least
squares objective minimized to compute β̂λ. Since the step, ∆β to β̂λ is hence minus the product of
a positive definite matrix with ∂V/∂β, ∆β is a descent direction for V (see e.g. Wood, 2015, §5.1.1).
Since V only depends on β via D(β)/ϕ+ βTSλβ, then step 3 of the section 4.1 iteration is equivalent
to testing that V has decreased. Furthermore it is readily checked that dV/dρ given in (8) coincides
with ∂V/∂ρ. Since ∆ is again given by minus the product of a positive definite matrix and ∂V/∂ρ,
it is therefore a descent direction for V . Given the coincidence of derivatives, step 7 of the section 4.1
iteration is equivalent to applying the same test to V , which will guarantee reduction of V if it has a single
minimum (and will often do so when it is multimodal). Hence each step of the algorithm is guaranteed
to reduce V until its minimum is reached.

Obviously the strong assumption that W is independent of β is only sufficient, rather than neces-
sary, for convergence. The proof suggests that convergence should occur whenever the derivatives of
D(β)/ϕ + βTSλβ and V are ‘close’, but does not preclude convergence when this is not the case.
Note that V is a version of the Laplace approximate marginal likelihood (e.g. Wood, 2011) but with the
Hessian replaced by its expected value.

Practically the section 4.1 iteration typically takes around the same number of steps as a performance
iteration in which the working REML score is fully optimized at each step: that is 5-20 for most cases
but often around 10-40 for binary data. Since both the β updates and ρ updates are based on Newton
methods, which tend towards quadratic convergence, there is rather little dependence of iteration number
on tolerance, at least below the relative tolerances of around 10−6 used here (and little to be gained by
loosening that tolerance). Small sample sizes can promote increased numbers of iterations (in both the
old and new methods), as any identifiability/collinearity problems are then at their most acute, while the
quadratic approximation on which each Newton step is based can also be poor on the scale of the Newton
step at small sample sizes. There is little reason to expect sensitivity of the number of fitting steps to the
basis dimensions used, and simulation experiments tend to back this up.

C Multi-core computing

Several computational details cannot be ignored in multi-core computing, if algorithms are to scale well
with the number of cores used. These are briefly discussed here. We consider only the case of shared
memory multi-core machines — that is the kind of architecture typical of a server or desktop workstation
with 2 to 100 cores, rather than the distributed memory architecture of a supercomputer or GPU.

1. Current computers are memory bandwidth limited. While a floating point operation may take only
1 or 2 core cycles, retrieving the data on which to perform the operation may take 10 times as
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long. In consequence CPUs have a small amount of very fast access cache memory available as a
buffer between main memory and the CPU cores. There are big performance gains to be had from
structuring algorithms to re-use data already in cache. For numerical linear algebra this means
constructing algorithms in a block oriented manner, where most floating point work consists of
matrix-matrix multiplication. To see why this matter consider two operations with equal floating
point operation count: Forming Ay where A is 1000 × 1000 and y is a vector, and forming BC
where B and C are both 100× 100 matrices. The former involves no re-use of the elements of A,
whereas the latter involves multiple re-use of the elements of B and C.

2. Many modern CPUs use some form of ‘Hyper-threading’ where each physical core appears to the
operating system as 2 cores. The idea is that two programme threads will often be performing tasks
using different parts of the core, and hence can run at the same time on the same core. In floating
point intensive computations all threads spend most of their time using the floating point unit, and
there is no performance gain, but rather a loss, from hyper-threading. It is therefore usually better
to disable it.

3. A multi-core CPU can run at a higher speed without overheating when only a few cores are in use,
as opposed to all being in use. Most CPUs exploit this and run faster under low core loading. In
consequence using 10 cores of a 10 core CPU can never be 10 times as fast as using one core, even
with perfectly scalable code.

4. Under high energy efficiency settings it is possible for a thread doing relatively little work to fail to
increase the speed of its core, relative to cores running more intensive threads. This can lead to the
paradoxical situation in which the low work thread actually becomes the rate limiting one. Setting
the CPU control policy to favour high performance will remove the problem (note that for modern
CPUs the core speed is controlled in hardware and no longer directly by the operating system).

A further complication is the advent of non-uniform memory access (NUMA). When a machine has
multiple CPUs (each with multiple cores), then memory is often arranged in blocks associated with a
CPU. A CPU can still access all memory, but access is fastest from its associated block. In the work
reported here we were unable to make good use of NUMA.

References

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology) 73(1), 3–36.

Wood, S. N. (2015). Core Statistics. Cambridge University Press.

2


