Participant details

Gender: a)Female; b)Male
Age:

Level of studies:

Level of expertise in ontology development: a)Beginner; b)intermediate; c)Advanced
Years of experience with Git:

Tasks
Use the following example as the base example:

:Vehicle
rdf:type owl:Class ;
rdfs:comment "Transportation Mean"@en ;
rdfs:label "Vehicle"@en .

:Bus
rdf:type owl:Class ;
rdfs:comment "Bus"@en ;
rdfs:label "Bus"@en ;
rdfs:subClassOf :Vehicle .

1. Changes in the local repository

1.1. Define new classes following the example above,

1.2. Define new instances following the example above,

1.3. Introduce a syntax error (bad namespace, remove a semicolon at the end of any
triple, etc) and commit,

1.4. Fix the syntax errors based on the received message and commit,

1.5. Push the changes to the remote repository.



2.4. View and explore how newly added classes and instances are rendered through
Documentation Generation and Visualization on VoCol

Objective: Testing VoCol on the local repositories and showing how the syntax
validation is performed on the commit phase and see the results after pushing to the
remote repository.

2. Changes on the TurtleEditor

2.1. Following the above example, create new classes using Turtle Editor,

2.2. Following the above example, create new instances using Turtle Editor,

2.2. Introduce syntactic errors and try auto-completion feature of the Turtle Editor.

2.3. Push the changes to the repository.

2.4. View and explore how newly added classes and instances are rendered through
Documentation Generation and Visualization on VoCol

Objective: Show the syntax validation and auto-completions features of TurtleEditor and
see the integration with VoCol and see the results after changes are pushed.

3. Check how the developed vocabulary is rendered in VoCol using all provided
services such as: Documentation Generation, Visualization, Evolution Report, etc.

Objective: User check more in detail all features provided by VoCol, see the changes
that are done by other users and how the vocabulary has evolved.

4. Modify existing SPARQL Queries or create new ones to obtain all or particular
concepts defined on the vocabulary.

Objective: Users explore further the vocabulary by executing SPARQL Queries on the
Query Service which is always synchronized with the latest version of vocabulary.



5. Test the following services after each push to the repository:
5.1. Content Negotiation using: curl -L -H "Accept: application/rdf+xml" http://<domain

url> or using any browser extension that supports defining of various header requests
5.2. Dereferenceability: http.//<domain url>/resource

Objective: Test functionalities for Content Negotiation and Dereferenceability provided
automatically by VoCol after each push to the repository.



