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Prehistory and background 
There are some statements referring the exceptionally famous papers of Gödel [1-2] and their 
interpretation, which turn out to be rather misleading. Their essence consists in linking (the 
logical) completeness [1] to finiteness, and correspondingly (the arithmetical or equivalent) 
incompleteness (or alternatively, inconsistency, [2]) to infinity.  
Their historical background and problematics have been reconstructed nowadays by means of 
(i) the crisis in the foundation of mathematics, being due to actual infinity in the “naïve” set 
theory, (ii) its axiomatiozations, reducing the problem of their completeness and consistence 
to that of their models in Peano arithmetic, (iii) Hilbert’s program for the arithmetical 
foundation of mathematic, and (iv) Russell’s construction in Principia.    
(v) Skolem’s conception (called also paradox) about the “relativity of the concept of set” [3], 
once the axiom of choice is utilized, should be specially added to that background to be 
founded the present viewpoint.  

A sketch of the present viewpoint  
(S1) One can trivially demonstrate that Peano arithmetic excludes infinity from its scope 
fundamentally: Indeed, 1 is finite; adding 1 to any natural number, one obtains a finite natural 
number again; consequently, all natural numbers are finite according to the axiom of 
induction. 
(S2) Utilizing the axiom of choice equivalent to the well-ordering principle (theorem), any set 
can be one-to-one mapped in some subset of the natural numbers. As Skolem emphasized 
expressively, this means that any set even being infinite (in the sense of set theory) admits an 
(“nonintrinsic” or “unproper”) one-to-one model by some subset of the natural numbers, 
which should be finite, rather than only by a countably infinite model. 
(S3) In fact, the so-called countable power of a set is introduced in the (Cantor, or “naïve”) set 
theory as the power equivalent to that of all natural numbers and different (and bigger) than 
that of any finite number. However, the number of all natural numbers should be a natural 
number and thus finite in Peano arithmetic as a corollary from (1) above.    
(S4) Consequently, if one compares Peano arithmetic and set theory (e.g. in ZFC 
axiomatization), a discrepancy about (countable) infinity is notable:  
(S4.1) Peano arithmetic is incomplete to set theory for that arithmetic does not contain any 
infinity (including the countable one). 
(S4.2) Furthermore, Peano arithmetic cannot be complemented by any “axiom of infinity” 
because it contains only finite numbers according (1) above. In other words, if it is 
complemented to become “complete” in the sense of S4.1, it would become inconsistent 
furthermore. Those statements (S4.1 ̶ S4.2) reconstruct Gödel’s incompleteness [2] argument 
in essence, but in a trivial way.        
(S5) If one considers a logical axiomatization in the sense of Principia (as in [1]) without any 
mapping and even correspondence to Peano arithmetic, some axiom of infinity is implicitly 
allowed, and thus completeness provable, but only nonconstrucively for whether explicit or 
implicit reference to infinity does not admit any constructiveness in a constructive way in 
principle. (One can mean some constructiveness in a nonconstructive way, i.e. as some 
constructiveness of “pure existing” by virtue of the axiom of choice, e.g. as the fundamentally 
random choice of some finite set to represent a given infinite set for Skolem’s relativeness of 
‘set’: this involves probability theory in the foundation of mathematics.) 



Thesis 
(T1) Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to 
infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be 
complemented by any axiom of infinity, there exists at least one (logical) axiomatics 
consistent to infinity. That is nothing else than right a new reading at issue and comparative 
interpretation of Gödel’s papers meant here. 
(T2) Peano arithmetic admits anyway generalizations consistent to infinity and thus to some 
addable axiom(s) of infinity. The most utilized example of those generalizations is the 
separable complex Hilbert space. 
(T3) Any generalization of Peano arithmetic consistent to infinity, e.g. the separable complex 
Hilbert space, can serve as a foundation for mathematics to found itself and by itself. 

A few main arguments 
(A1) Skolem’s relativeness of ‘set’ 
(A2) The viewpoint to Gödel’s papers sketched above (in S1 ̶ S5). 
(A3) The separable complex Hilbert space can be considered as a generalization of Peano 
arithmetic as follows. Hilbert space is an infinite series of qubits. A qubit is defined as usual 
and thus isomorphic to a unit ball in which two points are chosen: the one from the ball, the 
other from its surface. Any point in that space would representable as some choice (record) of 
values in each qubit. If the radiuses of all those unit balls are degenerate to 0, the complex 
Hilbert space is reduced to Peano arithmetic. On the contrary, if two choices, each one among 
a limited uncountable set and thus representable as a normed pair of complex numbers, are 
juxtaposed to any natural number, one obtains the complex Hilbert space as a series of qubits 
and as a generalization of Peano arithmetic. The essential property of the separable complex 
Hilbert space (together with its dual space) as that model is that the set of all natural numbers 
is mapped one-to-one to a series of infinite sets (which is identically doubled). Thus the set of 
all natural numbers is representable as a series of bits, e.g. the “tape” of Turing’s machine, 
and as a single qubit, e.g. a “cell” of the quantum Turing machine.     
(A4) The theorems of the absence of hidden variables in quantum mechanics [4-5] can be 
interpreted as a completeness proof of the above model based on the separable complex 
Hilbert space. Indeed, the separable complex Hilbert space is sufficient for the proof of those 
theorems, and the absence of hidden variables corresponds unambiguously to completeness. 
Any hidden variable would mean the incompleteness of the separable complex Hilbert space.  
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