GLM Binomial
## Loading required package: ggplot2
## [1] "Foto" "Nivel.Intermareal"
## [3] "Año" "Cob.T"
## [5] "num_lapas" "RG_T"
## [7] "RM_T" "G_T"
## [9] "Monostroma.hariotti" "Adenocystis.utricularis"
## [11] "Ascoseira.mirabilis" "Desmarestia.menziesii"
## [13] "Desmarestia.antarcticus" "Phaeurus.antarcticus"
## [15] "Corallinaceae" "Gigartina.skottsbergii"
## [17] "Iridaea.cordata" "Palmaria.decipiens"
## [19] "Plocamium.cartilagineum" "Pyropya.endiviifolia"
## [21] "Ulvophyceae.NI" "H"
## [23] "S" "J"
## Warning: non-integer #successes in a binomial glm!
##
## Call:
## glm(formula = Cob.T ~ Año + Nivel.Intermareal + num_lapas, family = "binomial",
## data = sp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.18260 -0.27216 0.03981 0.43489 0.97714
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.71346 0.55810 1.278 0.201122
## Año2008 1.02048 0.65103 1.567 0.116999
## Año2009 -0.59887 0.56138 -1.067 0.286069
## Año2013 0.27069 0.56831 0.476 0.633855
## Nivel.IntermarealM -0.79776 0.40323 -1.978 0.047878 *
## Nivel.IntermarealS -2.10358 0.59542 -3.533 0.000411 ***
## num_lapas -0.02239 0.07671 -0.292 0.770402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 65.416 on 146 degrees of freedom
## Residual deviance: 38.860 on 140 degrees of freedom
## AIC: 162.25
##
## Number of Fisher Scoring iterations: 4
## Warning: non-integer #successes in a binomial glm!
## Warning: non-integer #successes in a binomial glm!
## Warning: non-integer #successes in a binomial glm!
## Single term deletions
##
## Model:
## Cob.T ~ Año + Nivel.Intermareal + num_lapas
## Df Deviance AIC LRT Pr(>Chi)
## <none> 38.860 162.25
## Año 3 47.515 164.91 8.6546 0.0342545 *
## Nivel.Intermareal 2 54.031 173.43 15.1710 0.0005078 ***
## num_lapas 1 38.945 160.34 0.0854 0.7701124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: non-integer #successes in a binomial glm!
##
## Call:
## glm(formula = Cob.T ~ Nivel.Intermareal + Año, family = "binomial",
## data = sp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.1721 -0.2847 0.0395 0.4470 0.9759
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6352 0.4887 1.300 0.193680
## Nivel.IntermarealM -0.8108 0.4008 -2.023 0.043087 *
## Nivel.IntermarealS -2.0794 0.5902 -3.523 0.000427 ***
## Año2008 1.0950 0.5989 1.828 0.067477 .
## Año2009 -0.5601 0.5450 -1.028 0.304053
## Año2013 0.3385 0.5187 0.652 0.514108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 65.416 on 146 degrees of freedom
## Residual deviance: 38.945 on 141 degrees of freedom
## AIC: 160.43
##
## Number of Fisher Scoring iterations: 4

## Loading required package: multcomp
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: TH.data
## Loading required package: MASS
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
## geyser
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = Cob.T ~ Nivel.Intermareal + Año, family = "binomial",
## data = sp)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## M - I == 0 -0.8108 0.4008 -2.023 0.10384
## S - I == 0 -2.0794 0.5902 -3.523 0.00109 **
## S - M == 0 -1.2686 0.5841 -2.172 0.07380 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = Cob.T ~ Nivel.Intermareal + Año, family = "binomial",
## data = sp)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 2008 - 2007 == 0 1.0950 0.5989 1.828 0.2580
## 2009 - 2007 == 0 -0.5601 0.5450 -1.028 0.7314
## 2013 - 2007 == 0 0.3385 0.5187 0.652 0.9140
## 2009 - 2008 == 0 -1.6552 0.5651 -2.929 0.0179 *
## 2013 - 2008 == 0 -0.7566 0.5407 -1.399 0.4975
## 2013 - 2009 == 0 0.8986 0.4643 1.935 0.2116
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

##
## Call:
## glm(formula = H ~ Nivel.Intermareal + Año, family = "gaussian",
## data = sp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.80750 -0.31103 -0.03443 0.27443 1.13391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.87410 0.09553 9.150 5.81e-16 ***
## Nivel.IntermarealM 0.16671 0.07710 2.162 0.032293 *
## Nivel.IntermarealS -0.48572 0.10085 -4.816 3.73e-06 ***
## Año2008 -0.41452 0.11218 -3.695 0.000314 ***
## Año2009 -0.27123 0.10584 -2.563 0.011437 *
## Año2013 -0.25606 0.10201 -2.510 0.013194 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1722746)
##
## Null deviance: 34.491 on 146 degrees of freedom
## Residual deviance: 24.291 on 141 degrees of freedom
## AIC: 166.52
##
## Number of Fisher Scoring iterations: 2

## Single term deletions
##
## Model:
## H ~ Nivel.Intermareal + Año
## Df Deviance AIC scaled dev. Pr(>Chi)
## <none> 24.291 166.52
## Nivel.Intermareal 2 31.413 200.32 37.800 6.192e-09 ***
## Año 3 26.706 174.46 13.937 0.002992 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = H ~ Nivel.Intermareal + Año, family = "gaussian",
## data = sp)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## M - I == 0 0.1667 0.0771 2.162 0.0764 .
## S - I == 0 -0.4857 0.1008 -4.816 <0.001 ***
## S - M == 0 -0.6524 0.1016 -6.420 <0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = H ~ Nivel.Intermareal + Año, family = "gaussian",
## data = sp)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 2008 - 2007 == 0 -0.41452 0.11218 -3.695 0.0015 **
## 2009 - 2007 == 0 -0.27123 0.10584 -2.563 0.0505 .
## 2013 - 2007 == 0 -0.25606 0.10201 -2.510 0.0579 .
## 2009 - 2008 == 0 0.14329 0.10200 1.405 0.4944
## 2013 - 2008 == 0 0.15846 0.09782 1.620 0.3655
## 2013 - 2009 == 0 0.01517 0.08864 0.171 0.9982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Call:
## glm(formula = S ~ Nivel.Intermareal + Año, family = "poisson",
## data = sp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.50657 -0.40965 -0.09035 0.45408 1.77691
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.32615 0.12670 10.467 < 2e-16 ***
## Nivel.IntermarealM -0.08361 0.10533 -0.794 0.427
## Nivel.IntermarealS -1.06341 0.20610 -5.160 2.48e-07 ***
## Año2008 -0.23464 0.15810 -1.484 0.138
## Año2009 -0.13622 0.14648 -0.930 0.352
## Año2013 -0.17583 0.13962 -1.259 0.208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 91.34 on 146 degrees of freedom
## Residual deviance: 52.48 on 141 degrees of freedom
## AIC: 477.5
##
## Number of Fisher Scoring iterations: 4

## Single term deletions
##
## Model:
## S ~ Nivel.Intermareal + Año
## Df Deviance AIC LRT Pr(>Chi)
## <none> 52.480 477.50
## Nivel.Intermareal 2 88.270 509.29 35.789 1.692e-08 ***
## Año 3 54.939 473.95 2.459 0.4828
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = S ~ Nivel.Intermareal + Año, family = "poisson",
## data = sp)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## M - I == 0 -0.08361 0.10533 -0.794 0.697
## S - I == 0 -1.06341 0.20610 -5.160 <1e-04 ***
## S - M == 0 -0.97980 0.20770 -4.717 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Call:
## glm(formula = J ~ Nivel.Intermareal + Año, family = "gaussian",
## data = sp)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.51663 -0.15487 -0.03525 0.15975 0.78778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.44739 0.05913 7.566 4.53e-12 ***
## Nivel.IntermarealM 0.13887 0.04773 2.910 0.004204 **
## Nivel.IntermarealS -0.22745 0.06243 -3.644 0.000377 ***
## Año2008 -0.18469 0.06944 -2.660 0.008724 **
## Año2009 -0.08942 0.06551 -1.365 0.174455
## Año2013 -0.06963 0.06314 -1.103 0.271969
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.06600477)
##
## Null deviance: 12.1616 on 146 degrees of freedom
## Residual deviance: 9.3067 on 141 degrees of freedom
## AIC: 25.492
##
## Number of Fisher Scoring iterations: 2

## Single term deletions
##
## Model:
## J ~ Nivel.Intermareal + Año
## Df Deviance AIC scaled dev. Pr(>Chi)
## <none> 9.3067 25.492
## Nivel.Intermareal 2 11.5769 53.579 32.087 1.077e-07 ***
## Año 3 9.7954 27.015 7.524 0.05696 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = J ~ Nivel.Intermareal + Año, family = "gaussian",
## data = sp)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## M - I == 0 0.13887 0.04773 2.910 0.00994 **
## S - I == 0 -0.22745 0.06243 -3.644 < 0.001 ***
## S - M == 0 -0.36632 0.06291 -5.823 < 0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: pander
##
## ---------------------------------------------------------------------
## Nivel.Intermareal H_mean S_mean J_mean H_se S_se J_se
## ------------------- -------- -------- -------- ------- ------ -------
## I 0.6218 3.238 0.3636 0.05412 0.1496 0.02907
##
## M 0.8054 3.033 0.5003 0.06129 0.1301 0.03577
##
## S 0.1316 1.125 0.1316 0.05967 0.1096 0.05967
## ---------------------------------------------------------------------
NMDS of macroalgal species
## [1] "Foto" "Nivel.Intermareal"
## [3] "Año" "Cob.T"
## [5] "num_lapas" "RG_T"
## [7] "RM_T" "G_T"
## [9] "Monostroma.hariotti" "Adenocystis.utricularis"
## [11] "Ascoseira.mirabilis" "Desmarestia.menziesii"
## [13] "Desmarestia.antarcticus" "Phaeurus.antarcticus"
## [15] "Corallinaceae" "Gigartina.skottsbergii"
## [17] "Iridaea.cordata" "Palmaria.decipiens"
## [19] "Plocamium.cartilagineum" "Pyropya.endiviifolia"
## [21] "Ulvophyceae.NI" "H"
## [23] "S" "J"
## [1] "Foto" "Nivel.Intermareal"
## [3] "Año" "Cob.T"
## [5] "num_lapas" "RG_T"
## [7] "RM_T" "G_T"
## [9] "Monostroma.hariotti" "Adenocystis.utricularis"
## [11] "Ascoseira.mirabilis" "Desmarestia.menziesii"
## [13] "Phaeurus.antarcticus" "Gigartina.skottsbergii"
## [15] "Iridaea.cordata" "Palmaria.decipiens"
## [17] "H" "S"
## [19] "J"

## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.4-0
## Run 0 stress 0.1527
## Run 1 stress 0.1324
## ... New best solution
## ... Procrustes: rmse 0.04369 max resid 0.3022
## Run 2 stress 0.1568
## Run 3 stress 0.1525
## Run 4 stress 0.1536
## Run 5 stress 0.1484
## Run 6 stress 0.1585
## Run 7 stress 0.1488
## Run 8 stress 0.1448
## Run 9 stress 0.1609
## Run 10 stress 0.1515
## Run 11 stress 0.1495
## Run 12 stress 0.1482
## Run 13 stress 0.1465
## Run 14 stress 0.1759
## Run 15 stress 0.143
## Run 16 stress 0.1543
## Run 17 stress 0.142
## Run 18 stress 0.1484
## Run 19 stress 0.1605
## Run 20 stress 0.1411
## Run 21 stress 0.1697
## Run 22 stress 0.1416
## Run 23 stress 0.1436
## Run 24 stress 0.1762
## Run 25 stress 0.1621
## Run 26 stress 0.1492
## Run 27 stress 0.1517
## Run 28 stress 0.1342
## Run 29 stress 0.151
## Run 30 stress 0.1604
## Run 31 stress 0.1402
## Run 32 stress 0.1702
## Run 33 stress 0.1646
## Run 34 stress 0.1342
## Run 35 stress 0.1496
## Run 36 stress 0.1324
## ... Procrustes: rmse 0.001855 max resid 0.01701
## Run 37 stress 0.1547
## Run 38 stress 0.1472
## Run 39 stress 0.15
## Run 40 stress 0.1448
## Run 41 stress 0.1602
## Run 42 stress 0.1324
## ... Procrustes: rmse 0.001707 max resid 0.01709
## Run 43 stress 0.1549
## Run 44 stress 0.1505
## Run 45 stress 0.1389
## Run 46 stress 0.1718
## Run 47 stress 0.1453
## Run 48 stress 0.1617
## Run 49 stress 0.1604
## Run 50 stress 0.1519
## Run 51 stress 0.1402
## Run 52 stress 0.1378
## Run 53 stress 0.1501
## Run 54 stress 0.1662
## Run 55 stress 0.1519
## Run 56 stress 0.1761
## Run 57 stress 0.15
## Run 58 stress 0.1441
## Run 59 stress 0.1324
## ... Procrustes: rmse 0.001704 max resid 0.01706
## Run 60 stress 0.1694
## Run 61 stress 0.1535
## Run 62 stress 0.1431
## Run 63 stress 0.1481
## Run 64 stress 0.1697
## Run 65 stress 0.1556
## Run 66 stress 0.155
## Run 67 stress 0.1389
## Run 68 stress 0.1564
## Run 69 stress 0.1343
## Run 70 stress 0.1631
## Run 71 stress 0.1578
## Run 72 stress 0.1525
## Run 73 stress 0.163
## Run 74 stress 0.142
## Run 75 stress 0.1493
## Run 76 stress 0.1491
## Run 77 stress 0.1478
## Run 78 stress 0.1633
## Run 79 stress 0.1506
## Run 80 stress 0.1675
## Run 81 stress 0.1545
## Run 82 stress 0.1735
## Run 83 stress 0.1593
## Run 84 stress 0.1324
## ... Procrustes: rmse 0.00171 max resid 0.01704
## Run 85 stress 0.1552
## Run 86 stress 0.1324
## ... Procrustes: rmse 0.001856 max resid 0.01702
## Run 87 stress 0.168
## Run 88 stress 0.1552
## Run 89 stress 0.1483
## Run 90 stress 0.1505
## Run 91 stress 0.1584
## Run 92 stress 0.157
## Run 93 stress 0.1579
## Run 94 stress 0.1516
## Run 95 stress 0.1672
## Run 96 stress 0.1535
## Run 97 stress 0.1481
## Run 98 stress 0.1389
## Run 99 stress 0.1547
## Run 100 stress 0.159
## *** No convergence -- monoMDS stopping criteria:
## 1: no. of iterations >= maxit
## 96: stress ratio > sratmax
## 3: scale factor of the gradient < sfgrmin
## NMDS1 NMDS2
## Monostroma.hariotti 1.4868 0.2805
## Adenocystis.utricularis 1.4122 0.3861
## Ascoseira.mirabilis -1.1242 0.5874
## Desmarestia.menziesii -0.3740 -0.1389
## Phaeurus.antarcticus -1.3912 1.0168
## Gigartina.skottsbergii -0.6848 -0.6945
## Iridaea.cordata -0.5724 -0.3939
## Palmaria.decipiens 1.9000 -1.3233

## Loading required package: RColorBrewer
## Warning in brewer.pal(ngrp, "Set1"): minimal value for n is 3, returning requested palette with 3 different levels
## Warning in match.fun(FUN)(...): "kind" is not a graphical parameter
## Warning in match.fun(FUN)(...): "conf" is not a graphical parameter
## Warning in match.fun(FUN)(...): "kind" is not a graphical parameter
## Warning in match.fun(FUN)(...): "conf" is not a graphical parameter


Adonis and envfit
##
## Call:
## adonis(formula = spo[, 9:16] ~ Nivel.Intermareal * Año * num_lapas * Cob.T, data = spo)
##
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2
## Nivel.Intermareal 1 4.1 4.13 31.11 0.131
## Año 3 3.6 1.19 8.94 0.113
## num_lapas 1 0.2 0.17 1.26 0.005
## Cob.T 1 2.2 2.23 16.79 0.071
## Nivel.Intermareal:Año 3 3.2 1.07 8.03 0.101
## Nivel.Intermareal:num_lapas 1 0.2 0.17 1.27 0.005
## Año:num_lapas 3 0.6 0.21 1.59 0.020
## Nivel.Intermareal:Cob.T 1 0.7 0.70 5.27 0.022
## Año:Cob.T 3 1.9 0.64 4.83 0.061
## num_lapas:Cob.T 1 0.2 0.21 1.55 0.007
## Nivel.Intermareal:Año:num_lapas 3 0.8 0.25 1.91 0.024
## Nivel.Intermareal:Año:Cob.T 3 0.6 0.21 1.57 0.020
## Nivel.Intermareal:num_lapas:Cob.T 1 0.2 0.18 1.35 0.006
## Año:num_lapas:Cob.T 3 0.7 0.23 1.74 0.022
## Nivel.Intermareal:Año:num_lapas:Cob.T 3 0.4 0.12 0.91 0.011
## Residuals 91 12.1 0.13 0.382
## Total 122 31.6 1.000
## Pr(>F)
## Nivel.Intermareal 0.001 ***
## Año 0.001 ***
## num_lapas 0.284
## Cob.T 0.001 ***
## Nivel.Intermareal:Año 0.001 ***
## Nivel.Intermareal:num_lapas 0.279
## Año:num_lapas 0.089 .
## Nivel.Intermareal:Cob.T 0.003 **
## Año:Cob.T 0.001 ***
## num_lapas:Cob.T 0.152
## Nivel.Intermareal:Año:num_lapas 0.028 *
## Nivel.Intermareal:Año:Cob.T 0.097 .
## Nivel.Intermareal:num_lapas:Cob.T 0.223
## Año:num_lapas:Cob.T 0.057 .
## Nivel.Intermareal:Año:num_lapas:Cob.T 0.561
## Residuals
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "Analisis de la dispersion por nivel intermareal"
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 1 0.95 0.954 18.3 0.000038 ***
## Residuals 121 6.31 0.052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
## diff lwr upr p adj
## M-I 0.1762 0.0946 0.2577 0

## [1] "Analisis de la dispersion por Año"
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 3 0.89 0.2957 5.92 0.00084 ***
## Residuals 119 5.94 0.0499
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
## diff lwr upr p adj
## V2-V1 0.11931 -0.04887 0.28750 0.2561
## V3-V1 -0.02378 -0.18511 0.13755 0.9806
## V4-V1 -0.11349 -0.26270 0.03571 0.2006
## V3-V2 -0.14309 -0.30073 0.01454 0.0895
## V4-V2 -0.23281 -0.37801 -0.08760 0.0003
## V4-V3 -0.08971 -0.22692 0.04749 0.3263
## [1] "Analisis de la dispersion por Lapas"
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 11 1.32 0.1205 1.76 0.069 .
## Residuals 111 7.58 0.0683
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "Analisis de la dispersion por Cobertura"
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 106 3.99 0.0377 18 0.000000039 ***
## Residuals 16 0.03 0.0021
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ***VECTORS
##
## NMDS1 NMDS2 r2 Pr(>r)
## num_lapas 0.481 0.877 0.02 0.256
## Cob.T -0.207 -0.978 0.46 0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2
## Nivel.IntermarealI -0.53 -0.09
## Nivel.IntermarealM 0.55 0.10
## AñoV1 0.25 0.03
## AñoV2 0.74 -0.30
## AñoV3 -0.07 0.38
## AñoV4 -0.49 -0.10
##
## Goodness of fit:
## r2 Pr(>r)
## Nivel.Intermareal 0.21 0.001 ***
## Año 0.19 0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
## png
## 2
## png
## 2