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Unfortunately NO : Data is often  
 

• site-centric  

• ‘poor’ - particularly if no written records! 

• no inscriptions 

• poor proxy for ‘exchange’ 
 

Difficult to see the larger picture! 

 

Theory models can: 
 

• provide an understanding of agency/ large-scale narrative 

• ‘complete’ the data 
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  Motivation: understanding prehistoric exchange networks!  
 

  Question: Why do we need Theory Modelling?  Is data not enough!  
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  Motivation: understanding prehistoric exchange networks!  
 

  Question: Why do we need Theory Modelling?  Is data not enough!  

Starting point: 

Dwight Read (2008) ‘A formal explanation of formal explanation’, Structure and Dynamics 3 (2)  



Unfortunately NO : Data is often  
 

• site-centric  

• ‘poor’ - particularly if no written records! 

• no inscriptions 

• poor proxy for ‘exchange’ 
 

Difficult to see the larger picture! 

 

Theory models can: 
 

• provide an understanding of agency/ large-scale narrative 

• ‘complete’ the data 

 

   

      

  

     

Starting point: 

Dwight Read (2008) ‘A formal explanation of formal explanation’, Structure and Dynamics 3 (2)  

  Motivation: understanding prehistoric exchange networks!  
 

  Question: Why do we need Theory Modelling?  Is data not enough!  

‘Explanation can be characterised by ‘isomorphism’ between Data Models and Theory Models’  



I.   Definitions   Example: MBA S. Aegean 

 

II.   Example: planetary systems 

  

III. Data and Theory modelling 

   Example: SW USA 

IV.    Theory modelling in archaeology 

   - natural selection and creationism 

  

V.     This talk: Maximum entropy modelling 

 

VI.    Example of homomorphy:  N. American lithic artefact distributions 

 

VII.  Complementarity:  ‘Retail’ archaeology: formation of late geometric/Archaic Greek city  

              states  

VIII.  Conclusions 

 

      

  Talk outline: 



   I.   Data and theory modelling: Definitions 

Definition of terms:  
 

 

• Data modelling (DM) 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling (TM) 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational 
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 - phenomenological 
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• Theory modelling (TM) 

 

 - derived from theories about processes that  

   produce these patterned observations  
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   I.   Data and theory modelling: Definitions 

Definition of terms:  
 

 

• Data modelling (DM) 

 

 - derived from patterned observations in data 

 - ‘bricks and mortar’ 

  

 whereas  

 

• Theory modelling (TM) 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ‘architecture’ 
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   I.   Data and theory modelling: Definitions 

Definition of terms:  not a mathematical definition! 

 
 

 If models are isomorphic 

 

•  ‘identical’, to all intents and purposes 

  

  

 whereas  

 

 If models are homomorphic 

 

• structurally the ‘same’  

 

• i.e. one is a ‘coarse-grained’ version of the other  
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   I.   Data and theory modelling: Definitions 

Definition of terms:  not a mathematical definition! 

 
 

 If models are isomorphic 

 

•  ‘identical’, to all intents and purposes 

  

  

 whereas  

 

 If models are homomorphic 

 

• structurally the ‘same’  

 

• i.e. one is a ‘coarse-grained’ version of the other  
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At best:   ‘Explanation can be characterised by ‘homomorphism’   

          between Data Models and Theory Models’  



   II.  Data and theory modelling: Example 

Example: cosmology - planetary motion (Read) 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational 
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   II.  Data and theory modelling: Example 

Example: cosmology - planetary motion (Read) 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational 

  

 

 Dwight Read (2008), ‘A formal explanation of formal explanation’, Structure and Dynamics 3 (2)  

    Page 12 © Imperial College London 

DM: Kepler’s ‘laws’ 



   II.  Data and theory modelling: Example 

Example: cosmology - planetary motion (Read) 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational 

  

 

 Dwight Read (2008), ‘A formal explanation of formal explanation’, Structure and Dynamics 3 (2)  

    

TM: Newton’s laws 
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DM: Kepler’s ‘laws’ 



   II.  Data and theory modelling: Example 

Example: cosmology - planetary motion (Read) 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational      

‘homomorphism’:  Newton explains comets 
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DM: Kepler’s ‘laws’ 

TM: Newton’s laws 



   II.  Data and theory modelling: Example 

Example: cosmology - planetary motion 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational      

‘homomorphism’:  Newton explains comets 
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Arguably true for the biological domain 

and for culturally constructed idea 

systems (Read) 

DM: Kepler’s ‘laws’ 

TM: Newton’s laws 



   III. Data and theory modelling in archaeology 

 
    

 

    

    We cannot match that type of modelling in archaeology! 

 

 

    DM: archaeological data spans many scales 
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TM: No laws for social behaviour! 

 

• at best ‘tendencies’ 

• ‘agency’ 

 

 

 

 

   

      

  

      

          

   

   III. Data and theory modelling in archaeology 

 
    

 

    

    We cannot match that type of modelling in archaeology! 

 

 

    DM: archaeological data spans many scales 
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Data modelling:  Largely ‘descriptive’ 

 

Relational: Looks for similarities between 

 

• artefacts 

• assemblages 

• sites 

 

• Construct networks of ‘similar’ sites 

 and assume they are basis for social dynamics  

    - ‘back door’ approach 

 

• Construct social narratives for the system, which 

      may include ABM 

 

    Bottom up approach! 

   

  

  

 

   III. Data and theory modelling in archaeology 
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Data modelling:  Largely ‘descriptive’ 

 

Relational: Looks for similarities between 

 

• artefacts 

• assemblages 

• sites 

 

• Construct networks of ‘similar’ sites 

 and assume they are basis for social dynamics  

    - ‘back door’ approach 

 

• Construct social narratives for the system, which 

      may include ABM 

 

    Bottom up approach! 

 

Often fails to accommodate higher levels of organisation! 

   

  

   III. Data and theory modelling in archaeology 
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Theory modelling:     Largely ‘prescriptive’/postdictive 

 

Takes into account 

 

• ‘geography’ 

• ‘technology’ 

• agency (‘front door’ approach to exchange) 

 

 

   ‘Middle up’/ top down approach! 

 

       

 

 

 
 

 

 

 

   III. Data and theory modelling in archaeology 
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Theory modelling:     Largely ‘prescriptive’/postdictive 

 

Takes into account 

 

• ‘geography’ 

• ‘technology’ 

• agency (‘front door’ approach to exchange) 

 

 

   ‘Middle up’/ top down approach! 

 

 

 

Often fails to accommodate lowest levels of organisation! 

 

       

 

 

 

   III. Data and theory modelling in archaeology 



Theory modelling:     Largely ‘prescriptive’/postdictive 

 

Takes into account 

 

• ‘geography’ 

• ‘technology’ 

• agency (‘front door’ approach to exchange) 

 

 

   ‘Middle up’/ top down approach! 

 

   

Large overlap:  explore possible homomorphy 

 

Small  overlap: TM and DM are complementary 

           rather than homomorphic! 

  

 

       

   III. Data and theory modelling in archaeology 



Theory modelling:     Largely ‘prescriptive’/postdictive 

 

Takes into account 

 

• ‘geography’ 

• ‘technology’ 

• agency (‘front door’ approach to exchange) 

 

 

   ‘Middle up’/ top down approach! 

 

Large overlap:  explore possible homomorphy 

 

Small  overlap: TM and DM merge/are complementary 

           rather than homomorphic 

 

           - although possibly stitched together by ABM!

  

  

 

   III. Data and theory modelling in archaeology 



Theory modelling:     Largely ‘prescriptive’/postdictive 

 

Takes into account 

 

• ‘geography’ 

• ‘technology’ 

• agency (‘front door’ approach to exchange) 

 

 

   ‘Middle up’/ top down approach! 

 

Large overlap:  explore possible homomorphy 

 

Small  overlap: TM and DM merge/are complementary 

           rather than homomorphic! 

    

   or disagreement! 

  

 

   III. Data and theory modelling in archaeology 



 

Problem:  How do we handle data? 

 

• DM: Data is too much! 

 

 

 

 

  

             

       

 
 

 

               so much detail!                  so many sherds - so little time! 
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   III. Data and theory modelling in archaeology: Data 



 

Problem:  How do we handle data? 

 

• DM: Data is too poor! 

 

 

 

 

  

 

     cf.                               to      for exchange 
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   III. Data and theory modelling in archaeology: Data 



 

Problem:  How do we handle data? 

 

• TM: Input and output data are too simple 

 

 

 

 

 

        cf.                         to links/nodes of      
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   III. Data and theory modelling in archaeology: Data 

single label to characterise all categories 

of exchange (including trade)!  



• coarse-graining  

• block analysis            e.g.                                            or 

• renormalisation 

 

 

 

        

  

 

 

 

       

 

 

  

 

Problem:  How do we handle data? 
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   III. Data and theory modelling in archaeology: Data 

•     TM:   Comparing DM to TM requires  



• coarse-graining  

• block analysis            e.g.                                            or 

• renormalisation 

 

 

 

        

  

 

 

 

       

 

 

  

 

Problem:  How do we handle data? 

 

 

 

 

 

 

• literal coarse-graining! 
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   III. Data and theory modelling in archaeology: Data 

•     TM:   Comparing DM to TM requires  



• coarse-graining  

• block analysis            e.g.                                            or 

• renormalisation 

 

 

 

        

  

 

 

 

       

 

 

  

 

Problem:  How do we handle data? 
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   III. Data and theory modelling in archaeology: Data 

•     TM:   Comparing DM to TM requires  

If coarse-grained DM ≈ TM at some scales then this: 

 

• gives insight into ‘agency’ as  

       to why the network ‘works’ 

• parallels social narratives that are  

       often part of the data modelling 

• enables us to fill in gaps in DM         DM                     TM 

 

 



Does not easily accommodate the ‘unusual’! 

   e.g. change in power structure!  

 

        

 Theory models are typically for the ’good’ times! 

 

May not be possible to match: 

 

TM describes generic (‘boring’) behaviour 

   

 

 

 

 

 

        

• coarse-graining  

• block analysis            e.g.                                            or 

• renormalisation 

 

 

        

  

 

 

 

 

           

 

 

  

   III. Data and theory modelling in archaeology: Data 

•     TM:   Comparing DM to TM requires  

 

Problem:  How do we handle data? 

 

 

 

 

 

 
 

 

   

   

   

  

     

  

            DM      

 

          

   



• coarse-graining  

• block analysis            e.g.                                            or 

• renormalisation 

 

 

 

        

  

 

 

 

       

 

 

  

 

Problem:  How do we handle data? 
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   III. Data and theory modelling in archaeology: Data 

•     TM:   Comparing DM to TM requires  

At best, do not expect too good a match, because of coarse-graining! 

 

 

 

    Meanwhile, there is a parallel with pre-Keplerian/Newtonian cosmology 

                    - ask less!  

 

 

 

Models are designed to help our understanding of how the ‘real world’ works rather than 

demonstrate what happens in detailed reality. 

 

  



   III. Data and theory modelling: Cosmology revisited 

Example: cosmology - planetary motion 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational  

 

        

DM:Wandering closed 

orbits + .... 
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TM: Copernican heliocentric  

spherical symmetry 

- unmoved mover? 



   III. Data and theory modelling: Cosmology revisited 

Example: cosmology - planetary motion 
 

 

• Data modelling 

 

 - derived from patterned observations in data 

 - phenomenological 

  

 whereas  

 

• Theory modelling 

 

 - derived from theories about processes that  

   produce these patterned observations  

 - ideational  

 

    Heliocentric universe! 

    Coarse-grained precursor     

                                  to Kepler/Newton 

DM:Wandering closed 

orbits + .... 
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TM: Copernican heliocentric  

spherical symmetry 

- unmoved mover? 



Example: cosmology - planetary motion 
 

 

 

         

    and        have much in common! 

  

 

 

          

   III. Data and theory modelling: Cosmology revisited 
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Forces (equations) are 

spherically symmetric 

Orbits (solutions) are 

spherically symmetric 



Example: cosmology - planetary motion 
 

 

 

         

    and        have much in common! 

  

 

 

 

 

 

Heliocentric universe is a great achievement (in comparison to geocentric universe) 

                                - even though Copernican relation to data is only roughly correct! 

 

This Copernican heliocentric universe is the level we try to achieve in archaeological model-

                  making! 

 

         

   III. Data and theory modelling: Cosmology revisited 
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Forces (equations) are 

spherically symmetric 

Orbits (solutions) are 

spherically symmetric 



Problem: To know when to stop looking for agreement with data 

 

Example:    – addition of epicycles! 

 

motion as metaphors for 

archaeological modelling 

 

 

 

TM: Theory of unmoved            keep spheres      ‘save the phenomena’  

mover – heliocentric    but drop theory  DM    

spheres (Copernicus) 

   

      

  

      

          

   

 

   III. Data and theory modelling: Cosmology revisited 

Consequences: 
 

• Learn nothing beyond heliocentricity 

 

• Duhem - Quine underdeterminacy!  i.e. we can get what want!    

pre-Newtonian planetary motion 



Problem:  How do we handle data? 
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       Use fossil reconstruction as a metaphor !       

  

 

 

 

 - a 

 

 

       

   III. Data and theory modelling in archaeology 



Problem:  How do we handle data? 

 

 

 

 

 

 

   
 

  

 

 

 Coarse-grain data at the family level!  
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       Use fossil reconstruction as a metaphor !       

  

 

 

 

 - a 

 

 

       

   III. Data and theory modelling in archaeology 



Problem:  How do we choose a theory? 

 

 

 

 

 

 

   
 

  

 

 

  

   

      

  

      

          

   

 

Use Natural Selection as a metaphor! 

          

  

 

 

 

 

     

 

   

  

 

 

 

       

• Networks that survive are those that do 

 something ‘best’ or, at least, ‘well enough’. 

 

• These different ‘somethings’  refer to  

 different ‘agency’ 

 

• Several ‘families’ of  Theory Models, each aligned to a different agency 

 

• Question then becomes one of identifying the family from the incomplete data set 

 and the species within the family 

 

• Possibility of a homomorphic equivalence between TM and DM 
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   IV. Theory modelling in archaeology: Natural selection   



Problem:  How do we choose a theory? 

 

 

 

 

 

 

   
 

  

 

 

  

   

      

  

      

          

   

 

Use Natural Selection as a metaphor! 

          

  

 

 

 

 

     

 

   

  

 

 

 

       

• Networks that survive are those that do 

 something ‘best’ or, at least, ‘well enough’. 

 

• These different ‘somethings’  refer to  

 different ‘agency’ 

 

• Several ‘families’ of  Theory Models, each aligned to a different agency 

 

• Question then becomes one of identifying the family from the incomplete data set 

 and the species within the family 

 

• Possibility of a homomorphic equivalence between TM and DM 
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   IV. Theory modelling in archaeology: Natural selection   

Epicyclic approach: 

 

No ‘optimal’ behaviour!     Creationism! 
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Families: 

 

Three main families of TM with different assumptions  

about agency: 

 

 

• Maximum entropy models (‘most likely’)  

 epistemic 

 BUT ‘middle up’ (IOM) 

• Intervening opportunity models (‘easiest’) 

 ontic 

 BUT ‘top down’ (ME) 

• Cost-benefit models (‘best’) 

 ontic 

 

 

 

 

 

 

   IV. Theory modelling in archaeology: Natural selection   
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Families: 

 

Three main families of TM with different assumptions  

about agency: 

 

 

• Maximum entropy models (‘most likely’)  

 - constrained gravity models (‘retail’ archaeology) 

 BUT ‘middle up’ (IOM) 

• Intervening opportunity models (‘easiest’) 

 e.g. PPA 

 BUT ‘top down’ (ME) 

• Cost-benefit models (‘best’) 

 ‘ariadne’ 

 

 

 

 

 

 

   IV. Theory modelling in archaeology: Natural selection   

Although the interpretation of the 

models may be very different, 

models can belong to more than 

one family! 



Generic behaviour: 

 

Clear that TM can only describe generic behaviour  

 

 

  A question of model morphology 

 

  Few calibration parameters! 

  

         e.g. Simini – Barabasi ‘radiation’ model  

         for mobility/exchange has NO free calibration  

         parameters (IOM). 

 

 

 - a question of inputs and outputs! 
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Sole input: site positions and sizes! 

Simini, F., González, M.C., Maritan, A. and 

Barabási, A.-L. (2012). `A universal model for 

mobility and migration patterns`, Nature, 484, 

10856 

   IV. Theory modelling in archaeology: Natural selection  



Disagreement with data: 

 

Question: Have we 

 

• chosen the ‘wrong’ family 
 

 or 
 

• the ‘wrong’ species in the right family 
 

 or 
 

• are we trying to describe a  

 non-generic situation? 

 

 

 

 

 

  

 

 - a question of inputs and outputs! 
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   IV. Theory modelling in archaeology: Natural selection  



Disagreement with data: 

 

Question: Have we 

 

• chosen the ‘wrong’ family 
 

 or 
 

• the ‘wrong' species in the right family 
 

 or 
 

• are we trying to describe a  

 non-generic situation? 

 

 

  

 

 - a question of inputs and outputs! 
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   IV. Theory modelling in archaeology: Natural selection  

       Behaviour may not be so simple! 

     

 When the ‘generic’ has been stripped out,  

 what is left is the interesting stuff! 
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   V.  This talk: Maximum entropy modelling: 

 

Choose the most likely outcomes commensurate with your 

 knowledge of the system.  

 

This quantifies the statement ‘All other things being equal I 

 would expect that ......!’ 

   

       

What has entropy got to do with it!  

 

Entropy:  

   

# of questions with which you need to interrogate the  

system to have complete knowledge of it  

 

Most likely state of the system is the one with maximum 

entropy given our limited knowledge! 
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   V.  This talk: Maximum entropy modelling: 

 

Choose the most likely outcomes commensurate with your 

 knowledge of the system.  

 

This quantifies the statement ‘All other things being equal I 

 would expect that ......!’ 

   

       

What has entropy got to do with it!  

 

Entropy:  

   

# of questions with which you need to interrogate the  

system to have complete knowledge of it  

 

Most likely state of the system is the one with maximum 

entropy given our limited knowledge! 

 

 

 

      

•  Laplace: 

   Principle of Insufficient  Reason 

 

•  Maynard Keynes: 

   Principle of indifference 

 

•   Jaynes: 

    Principle of maximum ignorance 

 

 - flat Bayseian prior! 
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   V.  This talk: Maximum entropy modelling: 

 

Choose the most likely outcomes commensurate with your 

 knowledge of the system.  

 

This quantifies the statement ‘All other things being equal I 

 would expect that ......!’ 

   

       

What has entropy got to do with it!  

 

Entropy:  

   

# of questions with which you need to interrogate the  

system to have complete knowledge of it  

 

Most likely state of the system is the one with maximum 

entropy given our limited knowledge! 

 

 

 

      

Snapshot analogy: 

 

Take a picture of each way in which 

network can be implemented 

commensurate with (y)our knowledge 

and put them in a pile. 

 

The most typical picture represents the 

most likely outcome. 
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   V.  This talk: Maximum entropy modelling: 

 

Choose the most likely outcomes commensurate with your 

 knowledge of the system.  

 

This quantifies the statement ‘All other things being equal I 

 would expect that ......!’ 

   

       

What has entropy got to do with it!  

 

Entropy:  

   

# of questions with which you need to interrogate the  

system to have complete knowledge of it  

 

Most likely state of the system is the one with maximum 

entropy given our limited knowledge! 

 

 

 

      

Why not IOP models, cost- 

benefit models? 

 

Question of distance scales! 
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Data: One source site, many target sites (assemblages)  

 

 

 

 

Oversimplified, but sufficient to raise issues of 

 

•  parameter uncertainty 

•        model inadequacy 

•  data disagreement 

•  homomorphism 

 

   VI. Example: Lithic artefact distribution in Great Lakes  
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Lithic (chert) exchange: 

 

 

Archaic (6000 – 1000 BCE)  and  

Woodland (1000 BCE – 500 CE) periods 

 

 

Oversimplified description! 

 

Data: One source site, many target sites (assemblages) 

 

Artefacts (in assemblages) in several Great Lakes sites. 

Look for those obtained from particular sources –  specifically Kettle Point chert 

 

  

 
 

 

 

 

 

 
  

Peter Reid:  Models for Prehistoric Exchange in the Middle Great Lakes' Basin: 

     Ontario Archaeology 46, 33-44 (1986) 

 

   VI. Example: Lithic artefact distribution in Great Lakes  
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Coarse-grained data: just count KP artefacts without discrimination 

and measure their numerical fraction F of the assemblages 

 

Physical parameters: 
 

• ‘Effective’ lengths of journey d  (mix land/water transport) 
 

• On average artefacts travel a ‘distance ‘D 

 

Maximum Entropy: Assume 

 

• Once an artefact leaves KP it goes on single journey (Renfrew) 
 

 

• Number of artefacts fixed     

            constraints 

• Total effort in distributing artefacts is fixed 

 

 Make NO further assumptions about social behaviour! 

 

  

 

   VI. Example: Lithic artefact distribution in Great Lakes  
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Knowledge of ‘costs’  poor, apart from increasing with distance! 

Theory Modelling: ‘Most likely’ outcome 

 

At a site j, # of KP artefacts is   

     

 Nj  α exp(- β cj) 

 

where cj = effort/cost of moving artefact from KP to site j 

 

Extremise  

  S = - ∑j Nj (ln Nj -1) 

subject  to 

  ∑j Nj = N  ,  ∑j cj Nj = C 

 

   VI. Example: Lithic artefact distribution in Great Lakes  
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Minimal assumptions: ‘Deterrence function V(x) = exp(- β c(x))  

      x = d/D   

 

 

 

 

 

I. Equal effort/’cost’ for equal ‘distance’/time in  

 transport of artefacts (Blue line) 

 
 

 

 

 

 

   

2.  Smoothed out ‘so far and no further’  (Red line) 

V(x) – likelihood function for an artefact 

travelling a distance xD where D is typical 

distance over which artefacts are found. 

 

- occur in many theory models! 

© Imperial College London 

   VI. Example: Lithic artefact distribution in Great Lakes  



Best-fitting curve for Archaic Kettle Point chert. 

Early/Middle Woodland Kettle Point chert. 

% of KP artefacts v. distance 

- ‘intensity’ I of the source 

   VI. Example: Lithic artefact distribution in Great Lakes  

 

Data modelling (ABM): Model data with social narratives corresponding  

    to particular parametrisations! 

 

 

 

 
 

 

 

 

  



 

Data modelling (ABM): Model data with social narratives corresponding                        

              to particular parametrisations! 

 

 

 

 
 

 

 

 

  

Best-fitting curve for Archaic Kettle Point chert. 

“Down-the-line exchange of bulky, low 

value goods from a source with a low 

production output, through a costly, time 

and effort consuming transportation 

network.” 

 

“Infrequent exchange between 

groups. Perhaps very high-value 

goods exchanged "politically". 

or 

regular and fairly frequent contacts 

between communities” Early/Middle Woodland Kettle Point chert. 

   VI. Example: Lithic artefact distribution in Great Lakes  

% of KP artefacts v. distance 

- ‘intensity’ I of the source 



 

Data modelling (ABM): Model data with social narratives corresponding 

              to particular parametrisations! 

 

 

 

 
 

 

 

 

  

Best-fitting curve for Archaic Kettle Point chert. 

“Down-the-line exchange of bulky, low 

value goods from a source with a low 

production output, through a costly, time 

and effort consuming transportation 

network.” 

 

“Infrequent exchange between 

groups. Perhaps very high-value 

goods exchanged "politically". 

or 

regular and fairly frequent contacts 

between communities” Early/Middle Woodland Kettle Point chert. 

   VI. Example: Lithic artefact distribution in Great Lakes  

% of KP artefacts v. distance 

- ‘intensity’ I of the source 



 

Theory modelling: Look for generic behaviour without need for  

     detailed social narratives! 

 

 

 

 
 

 

 

 

  

Best-fitting curve for Archaic Kettle Point chert. 

Not quite there! 

 

   I(x) = (1+a) V(x)/[1 + aV(x)] 

 

Early/Middle Woodland Kettle Point chert. 

   VI. Example: Lithic artefact distribution in Great Lakes  

% of KP artefacts v. distance 

- ‘intensity’ I of the source 

Most likely outcome given the facts 

that stuff gets made and it takes an 

effort to distribute it!  



 

Theory modelling: Look for generic behaviour without need for  

     detailed social narratives! 

 

 

 

 
 

 

 

 

  

Scattergram for Late Woodland Kettle Point chert. 

Not quite there! 

 

   I(x) = (1+a) V(x)/[1 + aV(x)] 

 

   VI. Example: Lithic artefact distribution in Great Lakes  

Total disagreement with TM! 

Most likely outcome given the facts 

that stuff gets made and it takes an 

effort to distribute it!  

 

•    Is this a sign of social agency? 

     or 

•    incorrect choice of model? 

 



 

Theory modelling: Look for generic behaviour without need for  

     detailed social narratives! 

 

 

 

 
 

 

 

 

  

Scattergram for Late Woodland Kettle Point chert. 

Not quite there! 

 

   I(x) = (1+a) V(x)/[1 + aV(x)] 

 

   VI. Example: Lithic artefact distribution in Great Lakes  

Social agency: 

Distribution centre away from KP  

Most likely outcome given the facts 

that stuff gets made and it takes an 

effort to distribute it!  

Scattergram for Late Woodland Kettle Point 

chert, using limited data. 
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Limiting uncertainty:  

 

More information – less uncertainty! 

 

 e.g. ‘radiation’ model!  

 

Knowing site distributions as well as distances fixes 

deterrence function  V(x) and hence distribution 

 

e.g. linear distribution of sites gives red curve 

           - equifinality? 

 

Tale is in the tail!   

 

Rare events the best discriminators  

 

This is where data is worst! 

 

 

 

 

   VI. Example: Lithic artefact distribution in Great Lakes  

Best fitting curve for Late Prehistoric Bayport chert, 
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Conclusions:  

 

TM:  The most likely distribution of artefacts  

        given simple constraints             

 

is commensurate with  

 

DM (ABM):  detailed social narratives based on coarse-grained data 

 

 

Data modelling and Theory modelling are homomorphic! 

 

 

 

 

 

 

 

 

 

   VI. Example: Lithic artefact distribution in Great Lakes  
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Conclusions:  

 

TM:  The most likely distribution of artefacts  

        given simple constraints             

 

is commensurate with  

 

DM (ABM):  detailed social narratives based on coarse-grained data 

 

 

Data modelling and Theory modelling are homomorphic! 

 

 

 

 

 

 

 

 

 

   VI. Example: Lithic artefact distribution in Great Lakes  

Don’t look for detailed social narratives: 

 

  The ‘generic’ has occurred! 

  - all things being equal, what I would expect! 
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Major uncertainty:  

 

Model inadequacy over V(x): 

 

 

 

                  

 

    

 

 

 

 

 

 

 

 

 

 

 

   VI. Example: Lithic artefact distribution in Great Lakes  

Not using the data to ‘predict’ V(x) because of uncertainties in: 

 

•     missing data  

 

•    ‘effective’ distance 

 

•     conversion of  #  into  % 
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Major uncertainty:  

 

Model inadequacy over V(x): 

 

 

 

                  

 

    

 

 

 

In this case it doesn’t matter, but (unpredictable) deterrence functions are 

common ingredients in TM  

 

•     to deal with richer data sets need networks!  

 

 

 

 

   VI. Example: Lithic artefact distribution in Great Lakes  

Not using the data to ‘predict’ V(x) because of uncertainties in: 

 

•     missing data  

 

•    ‘effective’ distance 

 

•     conversion of  #  into  % 



•  Urbanisation – emergence of dominant settlements 

•  Synoikism – surrendering of local sovereignty 

   In particular, rise of Thebes, Corinth, Athens 

   as dominant city states 

      VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   
 

    

Data Modelling: 

 
No relational analysis (known to me) but data does exist! 

 

DM and TM complementary with common overlap! 
 

Cf. Mark Altaweel – ABM parallel analysis 
 

No ABM here! 

 
 

 

Rihll, T.E. & A.G. Wilson, 1987. 

  Spatial interaction and structural models in 
historical analysis: some possibilities and an 
example, Histoire & Mesure 2: 5-32.  



•  Urbanisation – emergence of dominant settlements 

•  Synoikism – surrendering of local sovereignty 

   In particular, rise of Thebes, Corinth, Athens  

   as dominant city states 

   
 

    

Coarse-grained data: 

 

• site sizes  

• site ‘importance’ 

• some understanding of exchange 

 

 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   

Rihll, T.E. & A.G. Wilson, 1987. 

  Spatial interaction and structural models in 
historical analysis: some possibilities and an 
example, Histoire & Mesure 2: 5-32.  



   

Theory Modelling: Top down ME 

 

First step:   Generalise lithic analysis 

 

Exchange from i to j: Tij 

 

 

 
 

 
 

Extremise  

 S = - ∑j Tij (lnTij -1) 

 

subject  to 

 ∑ij Tij = T  ,  ∑j cij Tj = C 

 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   



   

Theory Modelling: Top down ME 

 

First step:   Generalise lithic analysis 

 

Exchange from site i to j: Tij 

 

 

Outcome: 
 

 

 

 

 

 
 

 

Tij  α exp(- β cij) = V(xij) 

Not yet networked! 
 
Simple gravity model!   

 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   



Theory Modelling: Top down ME 

 

Second step:   incorporate benefits of concentrated   

          resources 

 

Urban Planning: 

Benefits of aggregating retail outlets 

in shopping malls! 

 

Collapse of the High Street! 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   



   

Theory Modelling: Top down ME 

 

Second step:   incorporate benefits of concentrated     
         resources 

 

Further constraint on inflows Ii = ∑j Tij 

 

 

 

 
 

 

W.l.o.g. take 
all sites equal 

∑j Ij (ln Ij -1) = X 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   

Outcome: 

 

Tij = Ai Oi (Ij )
ϒexp(- β cij) 

 

 

where ∑j  Tij =  Oi  are inputs. 

 

Ai ,Ii  determined self-consistently: 

 



Inputs: 

blue curve: 

 

2-dim. calibration space (D, ϒ ) 

• low sensitivity to D 

• high sensitivity to ϒ 

• ~ 150 sites 

Thebes, Athens, Corinth as the Tesco, Auchan, Carrefour of 
geometric/archaic Greece! 

   

In particular: 

• Thebes 

• Corinth 

• Athens 

• A few important sites grow at the 
expense of small sites  

 

• identifiable ‘regional structure’ 

 

• Key sites are ‘in good accord’ with 
historical record! 

 

 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   



Inputs: 

red curve: 

 

2-dim. calibration space (D, ϒ ) 

• low sensitivity to D 

• high sensitivity to ϒ 

• ~ 150 sites 

   

In particular: 

•  NO Thebes 

• Corinth           still important!                     

• Athens           still important! 

• A few important sites grow at the 
expense of small sites  

 

• identifiable ‘regional structure’ 

 

• Other key sites are ‘in good 
accord’ with historical record! 
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Inputs: 

red curve: 

 

2-dim. calibration space (D, ϒ ) 

• low sensitivity to D 

• high sensitivity to ϒ 

• ~ 150 sites 

   

In particular: 

•  NO Thebes 

• Corinth           still important!                     

• Athens           still important! 

• A few important sites grow at the 
expense of small sites  

 

• identifiable ‘regional structure’ 

 

• Other key sites are ‘in good 
accord’ with historical record! 

 

 

•   Athens and Corinth secure 
because of their positions and 
connectivity (obvious!) 
 
•   Thebes (in central plain) with 
less obvious connectivity is 
contingent on social forces –  

 
•  No necessity for Thebes! 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   



Inputs: 

red curve: 

 

2-dim. calibration space (D, ϒ ) 

• low sensitivity to D 

• high sensitivity to ϒ 

• ~ 150 sites 

   

In particular: 

•  NO Thebes 

• Corinth           still important!                     

• Athens           still important! 

• A few important sites grow at the 
expense of small sites  

 

• identifiable ‘regional structure’ 

 

• Other key sites are ‘in good 
accord’ with historical record! 

 

 

•   Athens and Corinth secure 
because of their positions and 
connectivity (obvious!) 
 
•   Thebes (in central plain) with 
less obvious connectivity is 
contingent on social forces –  

 
•  No necessity for Thebes! 

   VII. ‘Retail’ Archaeology: Settlement structure in 9th/8th C BC Greece   

R.J. Rivers & T.S. Evans, 

New approaches to Greek Settlement Structure  

Les Nouvelles de l’archéologie 135, 21-28, 2014 



   VII. Conclusions: re-examination of Data and Theory modelling  
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• Read article a provocation for re-examination of modelling rather than a useful routemap 

 

• DM: Relational DM and/or ABM? 

  

• TM: Natural selection v. Creationism 

  - structured attempt to avoid ‘epicycles’                     v. 

 

• Choice of family not straightforward!  ME v. IOM v. CB 

 

• Generic behaviour! 

 

• Example: Success for simple models: DM ≈ TM   

  - the generic (‘obvious’) has occurred 

      

• Don’t look for detailed social narratives: 

   - tale lies in the tail 

 

• More often than not, DM and TM occur at different scales 

    - do they merge, or not? ‘horses for courses’  
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 Further metaphor for modelling the ‘good times’: 

  

• TM provides the ground bass/basso ostinato to which society provides  

                the melodic line 

 

     Present in Keplerian cosmology: 

 

 - modification of ‘music of the spheres’ to accommodate elliptic motion! 

 

 

 

 

 

 

 

 

 

 

 

 

 

   VII. Conclusions: re-examination of Data and Theory modelling  



Thank you! 
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 Bronze Age E. Mediterranean maritime networks:   
 

 

 

         

  

 

     EBA   MBA     LBA 
 

Settlement formation and structure:  

 

 

 

 

 

 

  LBA/IA             9th – 8th C  BC  4th – 1st C  BC 

           Khabur triangle                Greek city states                    Celtic W. Europe 

   In practice:   TM for large scale exchange networks is useful: 



Appendix I: Modelling prehistoric exchange  

 

•      No Decay:       y = a: 

 

Nomadic groups visit source seasonally. 

No exchange between groups. 

 

•     Linear:   y = a +bx¹  

 

Settled groups visit source directly.  

No exchange between groups. 

 

•     Single Log:  log y = a + bxm 

 

Down-the-line exchange between groups to source. 

 

b varies directly with `cost' of exchange, inversely 

with value of goods.  

m varies directly with value of goods and scale of production at source, and 

also with efficiency of exchange system. 

 

•    Single Logit:  log ( y/ 1-y ) = a + bxm 

 

As above, when amount of exchange is represented  fractionally. 

 

•    Double Log:   log y = a + b log xm  

 

Infrequent exchange between groups. Perhaps very high-value goods 

exchanged "politically". 

 

•     Double Logit:   log (y/1-y ) = a + b log xm 

 

 As above, when amount of exchange is represented fractionally 

Models for Prehistoric Exchange in the Middle Great Lakes' Basin: 

Peter Reid (1986) Ontario Archaeology 46, 33-44  



                         A =    (quality)(extent of source) 

                 (cost of extraction)(size)(scarcity) 

 

Maximise (relative) entropy with this additional information 

 

 

Data: One target site, many source sites 
 

 

New information/data.      Need to weight sources!  

 

 

Source  

attractiveness: 

 

Ti   α
    Ai exp( - β ci ) 

   Further example: Lithic artefact distribution in Vaucluse  

Understanding Prehistoric Lithic Raw Material 

Selection: Application of a Gravity Model 

Lucy Wilson, J. Archaeol. Method Theory (2007) 14: 

 



                         A =    (quality)(extent of source) 

                 (cost of extraction)(size)(scarcity) 

 

Maximise (relative) entropy with this additional information 

 

 

Data: One target site, many source sites 
 

 

New information/data.      Need to weight sources!  

 

 

Source  

attractiveness: 

 

Ti   α
    Ai exp( - β ci ) 

   Further example: Lithic artefact distribution in Vaucluse  

Understanding Prehistoric Lithic Raw Material 

Selection: Application of a Gravity Model 

Lucy Wilson, J. Archaeol. Method Theory (2007) 14: 

 

 

Wilson proposed deterrence function   - 
‘Newtonian’  

 

‘Unnatural’ in the context of ‘all things  
being equal’ - problematic at small d ! 

 

      



                         A =    (quality)(extent of source) 

                 (cost of extraction)(size)(scarcity) 

 

Maximise (relative) entropy with this additional information 

 

 

Data: One target site, many source sites 
 

 

New information/data.      Need to weight sources!  

 

 

Source  

attractiveness: 

 

Ti   α
    Ai exp( - β ci ) 

   Further example: Lithic artefact distribution in Vaucluse  

Understanding Prehistoric Lithic Raw Material 

Selection: Application of a Gravity Model 

Lucy Wilson, J. Archaeol. Method Theory (2007) 14: 

 

 

Not able to match data in the same way 
as for KP chert!  

 

 Homomorphism? 
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What further conclusions? 

 

Very simple systems! 

 

•  N. America:   no relationships between targets  

  

•  France:    no relationships between sources 

  

 

Binary relationships typical of simple gravity models: 

 

To deal with richer data sets need networks 

 

Borrow from models for urban development! 

 

 

 

 
 

 

   Conclusions?  



 

 

Example: Bilateral trade in age of High Imperialism (1870  - 1913) 

      Trade and Empire, Michener and Wiedenmier (2008) 

 

Aim:  Understand the importance of ‘empire’ on colonies below 

 

• Aden, Algeria, Australia (New South Wales, Western Australia, 

• Queensland, South Australia, Tasmania, Victoria), Bahamas, Barbados, Belgium Congo, 

Bermuda, British Guiana, 

• British Honduras, Brunei, Canada, Ceylon, Cuba, Cyprus, Djibouti, Dutch Guiana, Egypt, 

Falkland Islands, Fiji, 

• French Guiana, French Indochina, Gambia, German East Africa, German SW Africa, 

German West Africa, 

• Gibraltar, Gold Coast, Guadeloupe, Hawaii, Hong Kong, India, Jamaica, Labuan, Lagos, 

Madagascar, Maldives, 

• Malta, Martinique, Mauritius, Morocco, Netherlands East Indies, New Caledonia, New 

Hebrides, New Zealand, 

• Newfoundland, Nyasa, Philippines, Portonovo, Portuguese West Africa, Puerto Rico, 

Reunion, Sarawak, Senegal, 

• Seychelles, Sierra Leone, Somalia, South Africa (Natal Province, Cape Province, and 

Transvaal), Southern Nigeria, 

• St. Helena, St. Pierre/Miquelon, Straits Settlement, Togo, Trinidad and Tobago, Tunis, 

Uganda, UK East Africa, and Zanzibar. 

 

 

   Appendix II: Historical networks 



Generalised Gravity Model: Fij = trade from site i to site j (single label!) 

 
Fij = [(Pi Pj)

a /(rij)
b ]  exp[cEij]. exp[dRiRj]. exp[eLij]. exp[fBij].exp[gWij] .exp[hGij].exp[jCij]. exp[kVij] .expεij  

   

 

 

 

• Pi: population of i                epicycles! 

• rij: distance in miles between i and j 

• Eij is a binary variable which is unity if both countries are part of the same empire 

• Ri is railroad track miles of i 

• Lij is the number of landlocked countries in the country-pair dyad (0,1, or 2) 

• Bij is a binary variable which is unity if i and j share a border, zero otherwise 

• Wij is a binary variable which is unity if countries i and j are at war 

• Gij is a binary variable which is unity if i and j both are on the gold standard 

• Cij is a binary variable which is unity if both countries are part of either the Latin or Scandinavian currency 

unions 

• Vij is mutual exchange rate volatility 

• εij is a white noise error term capturing other influences on bilateral trade. 

 

Not the way to proceed – not networked! 

 

   Appendix II: Historical networks 



Generalised Gravity Model: Fij = trade from site i to site j (single label!) 

 
Fij = [(Pi Pj)

a /(rij)
b ]. exp[cEij]. exp[dRiRj]. exp[eLij]. exp[fBij].exp[gWij] .exp[hGij].exp[jCij]. exp[kVij] .expεij  

   

 

 

 

• Pi: population of i                epicycles 

• rij: distance in miles between i and j 

• Eij is a binary variable which is unity if both countries are part of the same empire 

• Ri is railroad track miles of i 

• Lij is the number of landlocked countries in the country-pair dyad (0,1, or 2) 

• Bij is a binary variable which is unity if i and j share a border, zero otherwise 

• Wij is a binary variable which is unity if countries i and j are at war 

• Gij is a binary variable which is unity if i and j both are on the gold standard 

• Cij is a binary variable which is unity if both countries are part of either the Latin or Scandinavian currency 

unions 

• Vij is mutual exchange rate volatility 

• εij is a white noise error term capturing other influences on bilateral trade. 

 

Not the way to proceed – not networked! 

 

   Appendix II: Historical networks 



Generalised Gravity Model: Fij = trade from site i to site j (single label!) 

 
Fij = [(Pi Pj)

a /(rij)
b ]. exp[cEij]. exp[dRiRj]. exp[eLij]. exp[fBij].exp[gWij] .exp[hGij].exp[jCij]. exp[kVij] .expεij  

   

 

 

 

• Pi: population of i                 

• rij: distance in miles between i and j 

• Eij is a binary variable which is unity if both countries are part of the same empire 

• Ri is railroad track miles of i 

• Lij is the number of landlocked countries in the country-pair dyad (0,1, or 2) 

• Bij is a binary variable which is unity if i and j share a border, zero otherwise 

• Wij is a binary variable which is unity if countries i and j are at war 

• Gij is a binary variable which is unity if i and j both are on the gold standard 

• Cij is a binary variable which is unity if both countries are part of either the Latin or Scandinavian currency 

unions 

• Vij is mutual exchange rate volatility 

• εij is a white noise error term capturing other influences on bilateral trade. 

 

Can almost get what we want!     Duhem-Quine thesis! to proceed – 

not networked!  

   Appendix II: Historical networks 



Theory Modelling: Middle up 

 

Second step:   incorporate benefits of concentration of 
         resources 

 

Alternative approach: Strong ‘retail’ narrative  

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

   

 

   

 
i. Interaction between two places is proportional to the size of the 

origin zone and the importance and distance from the origin 

zone of all the other sites which compete as destination zones 

 

ii.  the ‘importance’ of a place is proportional to the interaction it 

attracts from other places 

 

iii. ‘size’ of a site  ~  site ‘importance’ 

– NO mention of entropy, but same results! 

 

Solved with Lotka-Volterra equation 

   – predator-prey equation!  

   Appendix III. ‘Retail’ Archaeology:   
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Example: Khabur triangle 

 

       

 

 

 

 
 

 

 

 

 

 

       

       

`Application of an entropy maximizing and 

dynamics model for understanding settlement 

structure: the Khabur Triangle in the Middle 

Bronze and Iron Ages’ 

Davies et al. (2014), Journ. Arch. Sci. 43, 143-154 

   Appendix III. ‘Retail’ Archaeology:   


