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S1 Derivation of Algorithm 1.

Following Witten & Tibshirani (2011), (5) can be recast as a biconvex optimization problem

maximizeu,v

{
2u>Q1/2v − λ

p∑
j=1

|vj| − u>u

}
subject to v>v ≤ 1, (S1)

since maximizing with respect to u gives u = Q1/2v. The problem (S1) is convex with
respect to u when v is fixed and is convex with respect to v when u is fixed. This property
allows the use of Alternate Convex Search (ACS) to find the solution (Gorski et al. 2007,
Section 4.2.1). ACS ensures that all accumulation points are partial optima and have the
same function value (Gorski et al. 2007, Theorem 4.9).

Starting with an initial value v(0) the algorithm proceeds by iterating the following two
steps:

Step 1 u(k) = arg maxu
{

2u>Q1/2v(k) − u>u
}

= Q1/2v(k)

Step 2 v(k+1) = arg maxv

{
2(u(k))>Q1/2v − λ

∑p
j=1 |vj|

}
subject to v>v ≤ 1.

Following Witten & Tibshirani (2011, Proposition 2), it is useful to reformulate Step 2 as

q(k+1) = arg max
q

{
2(u(k))>Q1/2q − λ

p∑
j=1

|qj| − q>q

}
(S2)

where, if q(k+1) = 0, then v(k+1) = 0, else v(k+1) = q(k+1)/
√

(q(k+1))>q(k+1). Since problem
(S2) is convex with respect to q, the solution q(k+1) satisfies KKT conditions (Boyd &
Vandenberghe 2004)

2Q1/2u(k) − 2q(k+1) − λΓ = 0, (S3)

where Γ is a p-vector and each Γj is a subgradient of |q(k+1)
j |, i.e. Γj = 1 if q

(k+1)
j > 0,

Γj = −1 if q
(k+1)
j < 0 and Γj is between −1 and 1 if q

(k+1)
j = 0. From (S3)

q
(k+1)
j = sign((Q1/2u(k))j)

(
|(Q1/2u(k))j| −

λ

2

)
+

. (S4)

Algorithm 1 results from combining Steps 1 and 2 with the update (S4).
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S2 Proofs.

Proof of Proposition 1. Let qi be the ith row ofQ and qi(k) be the subvector of qi of length k
with the maximal `2 norm. If v satisfies ‖v‖0 ≤ k, then |q>i v| ≤ ‖qi(k)‖2‖v‖2. Furthermore,
if v>Cv ≤ 1, then ‖v‖2 = ‖C−1/2C1/2v‖2 ≤ ‖C−1/2‖‖C1/2v‖2 ≤ ‖C−1/2‖, where ‖C−1/2‖ is
the spectral norm of matrix C−1/2. Let σmin(C) be the smallest eigenvalue of C. It follows
that for all v such that ‖v‖0 ≤ k and v>Cv ≤ 1,

v>Qv − λ‖v‖1 =

p∑
i=1

|vi|
(
sign(vi)q

>
i v − λ

)
≤

p∑
i=1

|vi|(‖qi(k)‖2‖v‖2 − λ)

≤
p∑
i=1

|vi|

(
‖qi(k)‖2√
σmin(C)

− λ

)
.

Let q̃ ∈ Rp be a vector with elements q̃i =
(
‖qi(k)‖2 − λ

√
σmin(C)

)
+

, where x+ =

max(x, 0), and let q̃(k) be the subvector of q̃ of length k with the maximal `2 norm. From
above, for all v such that ‖v‖0 ≤ k and v>Cv ≤ 1

v>Qv − λ‖v‖1 ≤
1√

σmin(C)

p∑
i=1

|vi|q̃i

≤ 1√
σmin(C)

‖q̃(k)‖2‖v‖2

≤ 1

σmin(C)
‖q̃(k)‖2.

Proof of Proposition 2. Fix any λ ≥ 0 and let vλ be the solution to (4). It follows that for
any v such that v>v ≤ 1,

v>λQvλ − λ‖vλ‖1 ≥ v>Qv − λ‖v‖1. (S5)

Consider (6) with τ = ‖vλ‖1. From (S5), for each v such that v>v ≤ 1 and ‖v‖1 ≤ τ ,

v>λQvλ ≥ v>Qv + λ(‖vλ‖1 − ‖v‖1) = v>Qv + λ(τ − ‖v‖1) ≥ v>Qv.

This means vλ is the solution to (6), hence vτ = vλ.

Proof of Proposition 3. The result for τmax follows from the fact that v(0) is the solution to
the unconstrained GEP:

v(0) = arg max
v

v>Qv

s.t. v>Cv ≤ 1.
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The result for τ = 1 follows from v>Qv ≤ ‖v‖21 maxij |qij| ≤ maxi qii . If qkk = maxi qii,
then the upper bound is obtained when vk = 1 and vi = 0 for i 6= k. Since this v satisfies
the constraints v>Cv ≤ 1 and ‖v‖1 ≤ 1, it follows that ‖vτ‖0 = 1.

The result for τ > 1 follows from ‖v‖1 > 1 and v>v ≤ 1 implying ‖v‖0 ≥ 2.

Lemma 1. Define T (λ) as

T (λ) =

∑p
i=1(|ai| − λ)+√∑p
i=1(|ai| − λ)2+

,

where a ∈ Rp has elements |a1| ≥ |a2| ≥ ... ≥ |ap| > 0 and λ ∈ [0, |a1|). Then T (λ) is a
decreasing function of λ.

Proof. Consider the strict inequality |as| > |as+1| for some s = 1, ..., p (with the convention
ap+1 = 0) and let λ ∈ [|as+1|, |as|]. For such λ, by definition

T (λ) =

∑s
i=1(|ai| − λ)√∑s
i=1(|ai| − λ)2

.

Since T ′(λ) < 0, it follows that T (λ) is decreasing on λ ∈ [|as|, |as+1|]. By continuity, it
follows that T (λ) is decreasing for all λ satisfying maxi |ai| > λ ≥ 0.

Proof of Proposition 4. Since Q is rank one, it follows that maximization of v>Qv is equiv-
alent to the maximization of l>v, where l is the eigenvector of Q. Hence,

vτ = arg max
v

{l>v}

s.t. v>v ≤ 1

‖v‖1 ≤ τ.

From KKT conditions, the solution vτ has components vτ,j, i = 1, ..., p, where

vτ,j =
(|lj| − λ)+√∑p
i=1 (|li| − λ)2+

,

and λ ≥ 0 is such that ‖vτ‖1 = τ . Moreover, if λ ∈ (|ls|, |ls + 1|], then vτ has exactly s
nonzero components. Let

T (λ) =

∑p
i=1 (|li| − λ)+√∑p
i=1 (|li| − λ)2+

.

Then T (λ) is a continuous and decreasing function of λ for all 0 ≤ λ < |l1| (Lemma 1).
Therefore, for every λ̃ ∈ (|ls|, |ls + 1|], there exists τ ≥ 1 such that T (λ̃) = τ . Since T (λ)
is strictly decreasing, it means that there exists τ such that T−1(τ) ∈ (|ls|, |ls + 1|], and as
a result ‖vτ‖0 = s.
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Assumption 1. Matrices Q and C are such that for any s ∈ {2, ..., p− 1}

max
v

v>Qv < max
v

v>Qv < max v>Qv

s.t. v>Cv ≤ 1 s.t. v>Cv ≤ 1 s.t. v>Cv ≤ 1

‖v‖0 = s− 1 ‖v‖0 = s ‖v‖0 = s+ 1

This assumption states that different sparsity levels lead to different values of v>Qv.
When Q is rank one, and C = I, it reduces to the conditions of Proposition 4.

Assumption 2. If τ is such that

max v>Qv < max
v

v>Qv

s.t. v>Cv ≤ 1 s.t. v>Cv ≤ 1

‖v‖1 ≤ τ ‖v‖0 = k,

then ‖vτ‖0 ≤ k + tk, where 0 ≤ tk ≤ p− k.

This assumption states that in case the restriction on `1 norm eliminates the best k-
sparse solution, the resulting vτ can have at most k + tk non-zero elements. It is always
satisfied for tk = p− k.

Proof of Proposition 5. For every s ∈ {1, ..., p}, define

vs = arg max
v

v>Qv

s.t. v>Cv ≤ 1

‖v‖0 = s

Let qs = v>s Qvs and τs = ‖vs‖1. From Proposition 3, τ1 = 1 and τp = τmax. Since
v>τ Qvτ is nondecreasing and continuous in τ , and 0 < q1 < ... < qp by Assumption 1, for
every s ∈ {2, ..., p}, there exists τ ∈ (1, τmax) such that qs−1 < v>τ Qvτ < qs. The first
inequality, qs−1 < v>τ Qvτ , implies that ‖vτ‖0 ≥ s (as qs−1 is the maximal value obtained
when ‖v‖0 ≤ s− 1). The second inequality implies ‖vτ‖0 ≤ s+ ts by Assumption 2.
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