Supplement: An exemplary computation of the quantities

’L'fli), &, and o

Here, we consider the case where the distribution P is specified by: the random
variable X is univariate and distributed according to some unknown distribution Py,
and the joint distribution of (Y,X) is given by the simple model ¥ = ffy + 1 X + &,
where £ ~ .4 (0,06%) with By and 6> unknown. The goal is to compute the quantities
Tg(ll) ,&c, and o analytically.

Since By = E(Y — B1X), one has BAO =g 'Y, (¥Y;— B1X;) and I takes the form

I(1,...,8:8+ 1) =G((X1,11),...,(Xg, Vg )5 (Xg+1,Yg11))

g
= (¢! Y (Vi — BiXi) + BiXs *Yg+1)2,
i=1

using the mean squared error as the loss function. By a slight abuse of notation, let us
write Z; :=Y; — B1X; = Bo + &. (Correctly, one would have to use yet another notation,
say W; instead of Z;; however, one would then obtain

G(Zla' . 7Zg;Zg+l) = G(Wla' o 7Wg;Wg+l)

as equality of random variables on the entire probability space which is why we use
the notation Z; in the first place.) Then, Z; is i.i.d. from Z ~ 4" (Bo, 62) and I" can be
written in terms of these variables as

8 g
L(1,...,8:8+ 1) =G(Z1,..., 25 Ze1) = (8" Y. Zi = Z 1) = (g7 Y & —€¢11)".
i=1 i=1

Therefore, I is 62(1/g+ 1) times a chi-square variable with one degree of freedom.
Moreover, ® = EI' = V(g7 ! Y%, & — &.41) = 62(1 + g~ !). This formula is similar
to Zhang and Qian (2013, (9), (10)).

Recall that the covariance between two chi-square random variables can be computed
as follows. Let (P, Q) be a bivariate normal distribution with covariance matrix (Z ’?)

and mean (0,0)”. Then, Cov(P?,Q%) = 2b*. Hence, all rigl) are non-negative in this
case.

Some care has to be taken: the degree of @ is two rather than g + 1; thus, Assump-
tion 1 is not valid in this case. However, in this chapter we will only make use of the
non-degeneracy of the associated U-statistic which is a slightly weaker statement than
the assumption; non-degeneracy still remains valid. On a related note, let s> denote the
usual unbiased variance estimator for o2, which is a U-statistic of degree two. Then
one can check that the symmetrized form I'g of T coincides with s?(1 +g~!), which
also follows from the uniqueness of the U-statistic for a regular parameter.



Another possibility to resolve the issue would be to add a negligibly small term of
degree g+ 1 to I'; in other words, the collection of choices of I' such that the assump-
tion is violated is a null set in some sense.

Letus abbreviate A=Y &,C=Y¢ ;. & D=Y;%,{;" &. Then, A~ (dc?)'/2.4(0,1),
C~((g—d)o?)' 24 (0,1),D~ ((g—d)c?)"/>.#(0,1). Furthermore, EA* = 3(dc?)?
due to the normal kurtosis, EA3 = EA =EC=ED = 0,EA> =do?,EC>? =ED? =
(g—d)o>.

Note that for type one, the overlap is only between the two learning sets, thus d =

¢, and we only use the letter d. Making use of the mutual independences between
A,C,D, & 1,E442_4, We Obtain:

2tV = Cov((g7(A+C) —£g41)%, (g (A+D) — 2412 )?) =
= 2(Cov(z§’_1 (A+C) —€41,8 ' (A+D) - 82g+27c»2 =
_ 62[2g—464]

This is remarkable because there seem to be few places in the literature where the quan-
tities o, of a U-statistic are explicitly calculated. In particular, no variance formulae
for the leave-p-out error of linear regression are known, except in the “leave-one-out”-
case.

For type two, we have d = ¢+ 1 and it is convenient to choose the following abbrevia-
tions: A=Y{ & C=Y% . & andD= Zfﬁ;z €;. Note that the symmetry between
C and D is lost and we have EC? = (g —c)o? and ED? = (g — ¢ — 1)0. We prefer to
perform the index shift ¢ + 1 on the left hand-side of the equation in order to stress the
analogy of the computation with type one above. We then have

— - 2
=20 [(g7 A+ O — &), (8T At g D) — e )]
=?2¢ 0% +c[-4g 30 +2¢ 20"

For type three, we have d = ¢+ 2 and it is convenient to choose the following abbrevi-

ations: A and D as above, but C = Zﬁ 2 &ir ‘We then have

_ _ 2
1%, = 2Cov[(g7 " (A+ 1 +C) — 1), (8 (A+ €1 +D) — &11)]

2
= ?2¢ 0" +c[-8¢ 30" + 8¢ 20"

For type four, we abbreviate A=Y{_, &,C=Y{ &, and D= 21.25;;1 g;. Using that

Es; = 0 because the third central moment of a normal random variate vanishes, we
obtain:

4 _ _ 2
) = 2Cov[(g (A+C) — 1), (g (A+D) —g41)]
=*2g Y0 +c[4g 20 + 20
By (3.5), the expressions for the quantities 7 as functions of ¢ yield for &.:

4 2 2c¢ 2Pn 4en 2n Pn?
8 8 8 8 8 8



By (3.12), we have

oy =20* [72g+n+2ng_1}
2 4n 1 2n n?

o =20 -2 -5 +5+5+5+1
[g 2 g2 B ]
o = 4c* [g72 + 2ng73 +n2g74]

oy=0, y>3.
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