Supplement to "A Multi-level Trend-Renewal Process for Modeling Systems with Recurrence Data"

Zhibing Xu^1 , Yili Hong¹, William Q. Meeker², Brock E. Osborn³, and Kati Illouz³

¹Department of Statistics, Virginia Tech, Blacksburg, VA 24061

²Department of Statistics, Iowa State University, Ames, IA, 50011

³Applied Statistics Laboratory, GE Global Research Center, Niskayuna, NY, 12309

1 Prediction for the Time-Dependent Covariate

To predict future recurrent events for a system with a time-dependent covariate, it is necessary to have a parametric model for the covariate process. we use a linear mixed effects model to describe the dynamic covariate data as an example. In particular,

$$
X_i(t_{ik}^x) = (\beta_x + \nu_i)t_{ik}^x + \epsilon_i(t_{ik}^x) \quad i = 1, \cdots, n, \quad k = 1, \cdots, m_i,
$$
 (1)

where β_x is the coefficient of time, ν_i is the random effect, and $\epsilon_i(t_{ik}^x)$ is the error term. We assume that $\nu_i \stackrel{\text{iid}}{\sim} N(0, \sigma_{\nu}^2)$, and $\epsilon_i(t_{ik}^x) \stackrel{\text{iid}}{\sim} N(0, \sigma_x^2)$ is independent of ν_i . The parameters in (1) are denoted by $\theta^x = (\beta_x, \sigma_y, \sigma_x)'$. The estimation of θ^x in the covariate model can be accomplished by using existing software packages (e.g., using the R function lme).

We use an approach that is similar to that used by Hong and Meeker (2013) in covariate prediction but for a different of failure-time model. Let $\boldsymbol{t}_i = (t_{i1}^x, \dots, t_{im_i}^x)'$, $\boldsymbol{t}_{it^*} =$ $(t_{i,m_{i+1}}^x, \dots, t_{i,m_i+2}^x)$ be the observed time points before τ_i and the predicted time points during $(\tau_i, \tau_i + t^*],$ respectively. Let $\mathbf{X}_i(t_i) = [X_i(t_{i1}^x), \cdots, X_i(t_{im_i}^x)]'$, and $\mathbf{X}_i(t_{it^*}) = [X_i(t_{i,m_{i+1}}^x), \cdots, X_i(t_{im_i+1}^x)]$ $X_i(t_{i,m_i+z_i}^x)$ ^{*'*} be the corresponding time-dependent covariate processes. Here, *z_i* is the number of predicted time points for system *i*. The joint distribution of $\mathbf{X}_i(t_i)$ and $\mathbf{X}_i(t_{it^*})$ can be expressed as

$$
\left[\begin{array}{c} \mathbf{X}_{i}(\boldsymbol{t}_{i}) \\ \mathbf{X}_{i}(\boldsymbol{t}_{it^{*}}) \end{array}\right] \sim N \left[\left(\begin{array}{c} \boldsymbol{t}_{i} \\ \boldsymbol{t}_{it^{*}} \end{array}\right) \beta_{x}, \begin{array}{c} \left(\begin{array}{c} \boldsymbol{\Sigma}_{i11} & \boldsymbol{\Sigma}_{i12} \\ \boldsymbol{\Sigma}_{i21} & \boldsymbol{\Sigma}_{i22} \end{array}\right)\right],
$$

where $\Sigma_{i11} = \sigma_{\nu}^2 t_i t'_i + \sigma_x^2 I_{m_i}$, $\Sigma_{i22} = \sigma_{\nu}^2 t_{it^*} t'_{it^*} + \sigma_x^2 I_{z_i}$, and $\Sigma_{i12} = \sigma_{\nu}^2 t_i t'_{it^*}$. Here, I_{m_i} and I_{z_i} are $m_i \times m_i$ and $z_i \times z_i$ identity matrices. The conditional distribution of $\mathbf{X}_i(t_i)|\mathbf{X}_i(t_{it^*})$ is

$$
N\bigg(\bm{t}_{it^*}\beta_x+\bm{\Sigma}_{i21}\bm{\Sigma}_{i11}^{-1}[\bm{X}_i(\bm{t}_i)-\bm{t}_i\beta_x],\ \bm{\Sigma}_{i22}-\bm{\Sigma}_{i21}\bm{\Sigma}_{i11}^{-1}\bm{\Sigma}_{i12}\bigg).
$$
 (2)

Based on (2), the time-dependent covariate processes can be predicted.

The derivation of (2) is given as follows. Let $X_i(t_{ij})$ and $X_i(t_{ik})$ denote two random variables of the time-dependent covariate.It is easy to show that $\mathbf{E}[X_i(t_{ij})] = t_{ij}\beta_x$, $\mathbf{E}[X_i(t_{ik})] =$ $t_{ik}\beta_x$, $\text{Var}[X_i(t_{ij})] = \sigma_{\nu}^2 t_{ij}^2$, $\text{Var}[X_i(t_{ik})] = \sigma_{\nu}^2 t_{ik}^2$, and

$$
Cov[X_i(t_{ij}), X_i(t_{ij})] = Cov[t_{ij}(\beta_x + \nu_i) + \epsilon_i(t_{ij}), t_{ik}(\beta_x + \nu_i) + \epsilon_i(t_{ik})]
$$

$$
= Cov[t_{ij}\nu_i, t_{ik}\nu_i]
$$

$$
= \sigma_{\nu}^2 t_{ij} t_{ik}.
$$

Then, we can easily obtain the variance and covariance expressions for $X_i(t_i)$ and $X_i(t_{i t^*})$: $\Sigma_{i11} = \sigma_{\nu}^2 t_i t'_i + \sigma_x^2 I_{m_i}$, $\Sigma_{i22} = \sigma_{\nu}^2 t_{it^*} t'_{it^*} + \sigma_x^2 I_{z_i}$, and $\Sigma_{i12} = \sigma_{\nu}^2 t_i t'_{it^*}$. Based on the joint distribution of $\mathbf{X}_i(t_i)$ and $\mathbf{X}_i(t_{it^*})$, we can obtain the conditional distribution of $\mathbf{X}_i(t_i)|\mathbf{X}_i(t_{it^*})$:

$$
\mathrm{N}\bigg(\boldsymbol{t}_{it^*}\beta_x+\boldsymbol{\Sigma}_{i21}\boldsymbol{\Sigma}_{i11}^{-1}[\boldsymbol{X}_i(\boldsymbol{t}_i)-\boldsymbol{t}_i\beta_x],\ \boldsymbol{\Sigma}_{i22}-\boldsymbol{\Sigma}_{i21}\boldsymbol{\Sigma}_{i11}^{-1}\boldsymbol{\Sigma}_{i12}\bigg).
$$

2 Subsystem Event Simulations

Because the model for component events depends on the history of subsystem events, the simulation of subsystem events is needed in the prediction of component events. Let $\varsigma_i = \tau_i + t^*$ be the prediction ending time of system *i*, \widehat{F}^{s*} be the estimate of renewal distribution function F^{s*} , $\widehat{\Lambda}_i^*$ be the estimate of Λ_i^* , and $\widehat{\Lambda}_i^{*-1}(\cdot)$ be the corresponding inverse function given $\widehat{\boldsymbol{\theta}}^s$ and $\widehat{\theta}^x$. Here, $\widehat{\theta}^s$ and $\widehat{\theta}^x$ are ML estimates of θ^s and θ^x , respectively. Based on the definition of the TRP model, the gaps between two consecutive transformed subsystem event times follow distribution F^{s*} . That is, $\Lambda_i^*(t_{i,j+1}^s) - \Lambda_i^*(t_{ij}^s) \stackrel{\text{iid}}{\sim} F^{s*}$, where $i = 1, \dots, n$ and $j = 1, 2, \dots$. The subsystem events can be simulated as follows.

Algorithm S1

- 1. Simulate a realization of $\mathbf{X}_i(t_{it^*})$, the *i*th time-dependent covariate process, based on $\widehat{\boldsymbol{\theta}}^x$ using the conditional distribution (2).
- 2. Compute $\widehat{\Lambda}_{i}^{\star}(\varsigma_{i})$ as the prediction ending time for unit *i*.
- 3. Generate a sequence of random variables U_{ij} from distribution \widehat{F}^{s*} and obtain the sequence of simulated event times in a transformed time scale, $T_{ij}^* = \hat{\Lambda}_i^* [t_{i,N_{is}(\tau_i)}^s] + \sum_{k=1}^j U_{ik}$, $j = 1, \dots, C_i^s$, until $T_{i,C_i^s+1}^* > \widehat{\Lambda}_i^*(\varsigma_i)$. Here, $T_{ij}^*, j = 1, \dots, C_i^s$ are the event times in the transformed time scale according to the $RP(F^{s*})$ model. Then, C_i^s is the random number of simulated subsystem events for unit *i*.
- 4. Compute the simulated subsystem event times $T_{ij}^s = \widehat{\Lambda}_i^{*-1}(T_{ij}^*), j = 1, \cdots, C_i^s$.
- 5. Repeat steps 1-4 for each system *i*, where $i = 1, \dots, n$.

Note that in step 3, the time of the first simulated subsystem event T_{i1}^s should be larger than *τi* , because the simulation is conditioned on the history. Otherwise it needs to be re-simulated.

3 Prediction Interval Computing Algorithm

Algorithm S2

1. Simulate $\hat{\boldsymbol{\theta}}^{x*}$, $\hat{\boldsymbol{\theta}}^{s*}$, $\hat{\boldsymbol{\theta}}^{s*}$, and \hat{v}^* from $N(\hat{\boldsymbol{\theta}}^x, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\theta}}^x})$, $N(\hat{\boldsymbol{\theta}}^s, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\theta}}^s})$, $N(\hat{\boldsymbol{\theta}}^c, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\theta}}^c})$ and $N(\hat{v}, \hat{\sigma}_{\hat{v}}^2)$, respectively.

2. Replace $\hat{\boldsymbol{\theta}}^x$ by $\hat{\boldsymbol{\theta}}^{x*}$, $\hat{\boldsymbol{\theta}}^s$ by $\hat{\boldsymbol{\theta}}^{s*}$, $\hat{\boldsymbol{\theta}}^c$ by $\hat{\boldsymbol{\theta}}^{c*}$, and \hat{v} by \hat{v}^* , and repeat steps 1-7 in **Algorithm 2** to obtain $\widehat{N}_c^*(t^*; \widehat{\boldsymbol{\theta}}^{c*}, \widehat{\boldsymbol{\theta}}^{s*}, \widehat{\boldsymbol{\theta}}^{x*}).$

3. Repeat steps 1-2 B times to obtain $\widehat{N}_c^{*(b)}(t^*; \widehat{\boldsymbol{\theta}}^{c*}, \widehat{\boldsymbol{\theta}}^{s*}, \widehat{\boldsymbol{\theta}}^{x*})$, where $b = 1, \cdots, B$.

4. The 100(1 – α)% PI for N_c is the ($\alpha/2$, 1 – $\alpha/2$) quantile of the *B* ordered values of $\widehat{N}_{c}^{*(b)}(t^{\ast}; \widehat{\boldsymbol{\theta}}^{c\ast}, \widehat{\boldsymbol{\theta}}^{s\ast}, \widehat{\boldsymbol{\theta}}^{x\ast}).$

References

Hong, Y. and W. Q. Meeker (2013). Field-failure predictions based on failure-time data with dynamic covariate information. *Technometrics 55*, 135–149.