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1 Prediction for the Time-Dependent Covariate

To predict future recurrent events for a system with a time-dependent covariate, it is necessary

to have a parametric model for the covariate process. we use a linear mixed effects model to

describe the dynamic covariate data as an example. In particular,

Xi(t
x
ik) = (βx + νi)t

x
ik + ϵi(t

x
ik) i = 1, · · · , n, k = 1, · · · ,mi, (1)

where βx is the coefficient of time, νi is the random effect, and ϵi(t
x
ik) is the error term. We

assume that νi
iid∼ N(0, σ2

ν), and ϵi(t
x
ik)

iid∼ N(0, σ2
x) is independent of νi. The parameters in

(1) are denoted by θx = (βx, σν , σx)
′. The estimation of θx in the covariate model can be

accomplished by using existing software packages (e.g., using the R function lme).

We use an approach that is similar to that used by Hong and Meeker (2013) in covari-

ate prediction but for a different of failure-time model. Let ti = (txi1, · · · , tximi
)′, tit∗ =

(txi,mi+1
, · · · , txi,mi+zi

)′ be the observed time points before τi and the predicted time points during

(τi, τi + t∗], respectively. Let X i(ti) = [Xi(t
x
i1), · · · , Xi(t

x
imi

)]′, and X i(tit∗) = [Xi(t
x
i,mi+1

), · · · ,
Xi(t

x
i,mi+zi

)]′ be the corresponding time-dependent covariate processes. Here, zi is the number

of predicted time points for system i. The joint distribution of X i(ti) and X i(tit∗) can be

expressed as [
X i(ti)

X i(tit∗)

]
∼ N

[(
ti
tit∗

)
βx,

(
Σi11 Σi12

Σi21 Σi22

)]
,
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where Σi11 = σ2
νtit

′
i + σ2

xImi
, Σi22 = σ2

νtit∗t
′
it∗ + σ2

xIzi , and Σi12 = σ2
νtit

′
it∗ . Here, Imi

and Izi

are mi ×mi and zi × zi identity matrices. The conditional distribution of X i(ti)|X i(tit∗) is

N

(
tit∗βx +Σi21Σ

−1
i11[X i(ti)− tiβx], Σi22 −Σi21Σ

−1
i11Σi12

)
. (2)

Based on (2), the time-dependent covariate processes can be predicted.

The derivation of (2) is given as follows. Let Xi(tij) and Xi(tik) denote two random vari-

ables of the time-dependent covariate.It is easy to show that E[Xi(tij)] = tijβx, E[Xi(tik)] =

tikβx, Var[Xi(tij)] = σ2
νt

2
ij, Var[Xi(tik)] = σ2

νt
2
ik, and

Cov[Xi(tij), Xi(tij)] =Cov[tij(βx + νi) + ϵi(tij), tik(βx + νi) + ϵi(tik)]

=Cov[tijνi, tikνi]

=σ2
νtijtik.

Then, we can easily obtain the variance and covariance expressions for X i(ti) and X i(tit∗):

Σi11 = σ2
νtit

′
i + σ2

xImi
, Σi22 = σ2

νtit∗t
′
it∗ + σ2

xIzi , and Σi12 = σ2
νtit

′
it∗ . Based on the joint distri-

bution of X i(ti) and X i(tit∗), we can obtain the conditional distribution of X i(ti)|X i(tit∗):

N

(
tit∗βx +Σi21Σ

−1
i11[X i(ti)− tiβx], Σi22 −Σi21Σ

−1
i11Σi12

)
.

2 Subsystem Event Simulations

Because the model for component events depends on the history of subsystem events, the

simulation of subsystem events is needed in the prediction of component events. Let ςi = τi+t∗

be the prediction ending time of system i, F̂ s⋆ be the estimate of renewal distribution function

F s⋆, Λ̂⋆
i be the estimate of Λ⋆

i , and Λ̂⋆−1
i (·) be the corresponding inverse function given θ̂

s
and

θ̂
x
. Here, θ̂

s
and θ̂

x
are ML estimates of θs and θx, respectively. Based on the definition of

the TRP model, the gaps between two consecutive transformed subsystem event times follow

distribution F s⋆. That is, Λ⋆
i (t

s
i,j+1)−Λ⋆

i (t
s
ij)

iid∼ F s⋆, where i = 1, · · · , n and j = 1, 2, · · · . The
subsystem events can be simulated as follows.

Algorithm S1

1. Simulate a realization of X i(tit∗), the ith time-dependent covariate process, based on

θ̂
x
using the conditional distribution (2).

2. Compute Λ̂⋆
i (ςi) as the prediction ending time for unit i.
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3. Generate a sequence of random variables Uij from distribution F̂ s⋆ and obtain the se-

quence of simulated event times in a transformed time scale, T ∗
ij = Λ̂⋆

i [t
s
i,Nis(τi)

]+
∑j

k=1 Uik,

j = 1, · · · , Cs
i , until T

∗
i,Cs

i +1 > Λ̂⋆
i (ςi). Here, T ∗

ij, j = 1, · · · , Cs
i are the event times in

the transformed time scale according to the RP(F s⋆) model. Then, Cs
i is the random

number of simulated subsystem events for unit i.

4. Compute the simulated subsystem event times T s
ij = Λ̂⋆−1

i (T ∗
ij), j = 1, · · · , Cs

i .

5. Repeat steps 1-4 for each system i, where i = 1, · · · , n.

Note that in step 3, the time of the first simulated subsystem event T s
i1 should be larger than

τi, because the simulation is conditioned on the history. Otherwise it needs to be re-simulated.

3 Prediction Interval Computing Algorithm

Algorithm S2

1. Simulate θ̂
x∗
, θ̂

s∗
, θ̂

c∗
, and υ̂∗ from N(θ̂

x
, Σ̂θ̂

x), N(θ̂
s
, Σ̂θ̂

s), N(θ̂
c
, Σ̂θ̂

c) and N(υ̂, σ̂2
υ̂),

respectively.

2. Replace θ̂
x
by θ̂

x∗
, θ̂

s
by θ̂

s∗
, θ̂

c
by θ̂

c∗
, and υ̂ by υ̂∗, and repeat steps 1-7 inAlgorithm 2

to obtain N̂∗
c (t

∗; θ̂
c∗
, θ̂

s∗
, θ̂

x∗
).

3. Repeat steps 1-2 B times to obtain N̂
∗(b)
c (t∗; θ̂

c∗
, θ̂

s∗
, θ̂

x∗
), where b = 1, · · · , B.

4. The 100(1 − α)% PI for Nc is the (α/2, 1 − α/2) quantile of the B ordered values of

N̂
∗(b)
c (t∗; θ̂

c∗
, θ̂

s∗
, θ̂

x∗
).
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