Supplement to "A Multi-level Trend-Renewal Process for Modeling Systems with Recurrence Data"

Zhibing Xu¹, Yili Hong¹, William Q. Meeker², Brock E. Osborn³, and Kati Illouz³

¹Department of Statistics, Virginia Tech, Blacksburg, VA 24061

²Department of Statistics, Iowa State University, Ames, IA, 50011

³Applied Statistics Laboratory, GE Global Research Center, Niskayuna, NY, 12309

1 Prediction for the Time-Dependent Covariate

To predict future recurrent events for a system with a time-dependent covariate, it is necessary to have a parametric model for the covariate process. we use a linear mixed effects model to describe the dynamic covariate data as an example. In particular,

$$X_{i}(t_{ik}^{x}) = (\beta_{x} + \nu_{i})t_{ik}^{x} + \epsilon_{i}(t_{ik}^{x}) \quad i = 1, \cdots, n, \quad k = 1, \cdots, m_{i},$$
(1)

where β_x is the coefficient of time, ν_i is the random effect, and $\epsilon_i(t_{ik}^x)$ is the error term. We assume that $\nu_i \stackrel{\text{iid}}{\sim} N(0, \sigma_{\nu}^2)$, and $\epsilon_i(t_{ik}^x) \stackrel{\text{iid}}{\sim} N(0, \sigma_x^2)$ is independent of ν_i . The parameters in (1) are denoted by $\boldsymbol{\theta}^x = (\beta_x, \sigma_\nu, \sigma_x)'$. The estimation of $\boldsymbol{\theta}^x$ in the covariate model can be accomplished by using existing software packages (e.g., using the R function lme).

We use an approach that is similar to that used by Hong and Meeker (2013) in covariate prediction but for a different of failure-time model. Let $\mathbf{t}_i = (t_{i1}^x, \dots, t_{im_i}^x)'$, $\mathbf{t}_{it^*} = (t_{i,m_{i+1}}^x, \dots, t_{i,m_i+z_i}^x)'$ be the observed time points before τ_i and the predicted time points during $(\tau_i, \tau_i + t^*]$, respectively. Let $\mathbf{X}_i(\mathbf{t}_i) = [X_i(t_{i1}^x), \dots, X_i(t_{im_i}^x)]'$, and $\mathbf{X}_i(\mathbf{t}_{it^*}) = [X_i(t_{i,m_{i+1}}^x), \dots, X_i(t_{im_i+z_i}^x)]'$ be the corresponding time-dependent covariate processes. Here, z_i is the number of predicted time points for system *i*. The joint distribution of $\mathbf{X}_i(\mathbf{t}_i)$ and $\mathbf{X}_i(\mathbf{t}_{it^*})$ can be expressed as

$$\begin{bmatrix} \boldsymbol{X}_i(\boldsymbol{t}_i) \\ \boldsymbol{X}_i(\boldsymbol{t}_{it^*}) \end{bmatrix} \sim \mathrm{N} \left[\begin{pmatrix} \boldsymbol{t}_i \\ \boldsymbol{t}_{it^*} \end{pmatrix} \beta_x, \ \begin{pmatrix} \boldsymbol{\Sigma}_{i11} & \boldsymbol{\Sigma}_{i12} \\ \boldsymbol{\Sigma}_{i21} & \boldsymbol{\Sigma}_{i22} \end{pmatrix} \right],$$

where $\Sigma_{i11} = \sigma_{\nu}^2 t_i t'_i + \sigma_x^2 I_{m_i}$, $\Sigma_{i22} = \sigma_{\nu}^2 t_{it^*} t'_{it^*} + \sigma_x^2 I_{z_i}$, and $\Sigma_{i12} = \sigma_{\nu}^2 t_i t'_{it^*}$. Here, I_{m_i} and I_{z_i} are $m_i \times m_i$ and $z_i \times z_i$ identity matrices. The conditional distribution of $X_i(t_i) | X_i(t_{it^*})$ is

$$N\left(\boldsymbol{t}_{it^*}\beta_x + \boldsymbol{\Sigma}_{i21}\boldsymbol{\Sigma}_{i11}^{-1}[\boldsymbol{X}_i(\boldsymbol{t}_i) - \boldsymbol{t}_i\beta_x], \ \boldsymbol{\Sigma}_{i22} - \boldsymbol{\Sigma}_{i21}\boldsymbol{\Sigma}_{i11}^{-1}\boldsymbol{\Sigma}_{i12}\right).$$
(2)

Based on (2), the time-dependent covariate processes can be predicted.

The derivation of (2) is given as follows. Let $X_i(t_{ij})$ and $X_i(t_{ik})$ denote two random variables of the time-dependent covariate. It is easy to show that $\mathbf{E}[X_i(t_{ij})] = t_{ij}\beta_x$, $\mathbf{E}[X_i(t_{ik})] = t_{ik}\beta_x$, $\operatorname{Var}[X_i(t_{ij})] = \sigma_{\nu}^2 t_{ij}^2$, $\operatorname{Var}[X_i(t_{ik})] = \sigma_{\nu}^2 t_{ik}^2$, and

$$Cov[X_i(t_{ij}), X_i(t_{ij})] = Cov[t_{ij}(\beta_x + \nu_i) + \epsilon_i(t_{ij}), t_{ik}(\beta_x + \nu_i) + \epsilon_i(t_{ik})]$$
$$= Cov[t_{ij}\nu_i, t_{ik}\nu_i]$$
$$= \sigma_{\nu}^2 t_{ij}t_{ik}.$$

Then, we can easily obtain the variance and covariance expressions for $\mathbf{X}_i(\mathbf{t}_i)$ and $\mathbf{X}_i(\mathbf{t}_{it^*})$: $\mathbf{\Sigma}_{i11} = \sigma_{\nu}^2 \mathbf{t}_i \mathbf{t}'_i + \sigma_x^2 \mathbf{I}_{m_i}, \ \mathbf{\Sigma}_{i22} = \sigma_{\nu}^2 \mathbf{t}_{it^*} \mathbf{t}'_{it^*} + \sigma_x^2 \mathbf{I}_{z_i}, \text{ and } \mathbf{\Sigma}_{i12} = \sigma_{\nu}^2 \mathbf{t}_i \mathbf{t}'_{it^*}.$ Based on the joint distribution of $\mathbf{X}_i(\mathbf{t}_i)$ and $\mathbf{X}_i(\mathbf{t}_{it^*})$, we can obtain the conditional distribution of $\mathbf{X}_i(\mathbf{t}_i) | \mathbf{X}_i(\mathbf{t}_{it^*})$:

$$N\left(\boldsymbol{t}_{it^*}\beta_x + \boldsymbol{\Sigma}_{i21}\boldsymbol{\Sigma}_{i11}^{-1}[\boldsymbol{X}_i(\boldsymbol{t}_i) - \boldsymbol{t}_i\beta_x], \ \boldsymbol{\Sigma}_{i22} - \boldsymbol{\Sigma}_{i21}\boldsymbol{\Sigma}_{i11}^{-1}\boldsymbol{\Sigma}_{i12}\right).$$

2 Subsystem Event Simulations

Because the model for component events depends on the history of subsystem events, the simulation of subsystem events is needed in the prediction of component events. Let $\varsigma_i = \tau_i + t^*$ be the prediction ending time of system i, $\hat{F}^{s\star}$ be the estimate of renewal distribution function $F^{s\star}$, $\hat{\Lambda}^{\star}_i$ be the estimate of Λ^{\star}_i , and $\hat{\Lambda}^{\star-1}_i(\cdot)$ be the corresponding inverse function given $\hat{\theta}^s$ and $\hat{\theta}^x$. Here, $\hat{\theta}^s$ and $\hat{\theta}^x$ are ML estimates of θ^s and θ^x , respectively. Based on the definition of the TRP model, the gaps between two consecutive transformed subsystem event times follow distribution $F^{s\star}$. That is, $\Lambda^{\star}_i(t^s_{i,j+1}) - \Lambda^{\star}_i(t^s_{ij}) \stackrel{\text{iid}}{\sim} F^{s\star}$, where $i = 1, \dots, n$ and $j = 1, 2, \dots$. The subsystem events can be simulated as follows.

Algorithm S1

- 1. Simulate a realization of $X_i(t_{it^*})$, the *i*th time-dependent covariate process, based on $\hat{\theta}^x$ using the conditional distribution (2).
- 2. Compute $\widehat{\Lambda}_i^{\star}(\varsigma_i)$ as the prediction ending time for unit *i*.

- 3. Generate a sequence of random variables U_{ij} from distribution $\widehat{F}^{s\star}$ and obtain the sequence of simulated event times in a transformed time scale, $T_{ij}^* = \widehat{\Lambda}_i^*[t_{i,N_{is}(\tau_i)}^s] + \sum_{k=1}^j U_{ik}$, $j = 1, \dots, C_i^s$, until $T_{i,C_i^s+1}^* > \widehat{\Lambda}_i^*(\varsigma_i)$. Here, $T_{ij}^*, j = 1, \dots, C_i^s$ are the event times in the transformed time scale according to the RP($F^{s\star}$) model. Then, C_i^s is the random number of simulated subsystem events for unit i.
- 4. Compute the simulated subsystem event times $T_{ij}^s = \widehat{\Lambda}_i^{\star-1}(T_{ij}^*), \ j = 1, \cdots, C_i^s$.
- 5. Repeat steps 1-4 for each system i, where $i = 1, \dots, n$.

Note that in step 3, the time of the first simulated subsystem event T_{i1}^s should be larger than τ_i , because the simulation is conditioned on the history. Otherwise it needs to be re-simulated.

3 Prediction Interval Computing Algorithm

Algorithm S2

1. Simulate $\widehat{\boldsymbol{\theta}}^{x*}$, $\widehat{\boldsymbol{\theta}}^{s*}$, $\widehat{\boldsymbol{\theta}}^{c*}$, and \widehat{v}^* from $N(\widehat{\boldsymbol{\theta}}^x, \widehat{\boldsymbol{\Sigma}}_{\widehat{\boldsymbol{\theta}}^x})$, $N(\widehat{\boldsymbol{\theta}}^s, \widehat{\boldsymbol{\Sigma}}_{\widehat{\boldsymbol{\theta}}^s})$, $N(\widehat{\boldsymbol{\theta}}^c, \widehat{\boldsymbol{\Sigma}}_{\widehat{\boldsymbol{\theta}}^c})$ and $N(\widehat{v}, \widehat{\sigma}_{\widehat{v}}^2)$, respectively.

2. Replace $\hat{\boldsymbol{\theta}}^x$ by $\hat{\boldsymbol{\theta}}^{x*}$, $\hat{\boldsymbol{\theta}}^s$ by $\hat{\boldsymbol{\theta}}^{s*}$, $\hat{\boldsymbol{\theta}}^c$ by $\hat{\boldsymbol{\theta}}^{c*}$, and $\hat{\boldsymbol{v}}$ by $\hat{\boldsymbol{v}}^*$, and repeat steps 1-7 in Algorithm 2 to obtain $\hat{N}_c^*(t^*; \hat{\boldsymbol{\theta}}^{c*}, \hat{\boldsymbol{\theta}}^{s*}, \hat{\boldsymbol{\theta}}^{x*})$.

3. Repeat steps 1-2 *B* times to obtain $\widehat{N}_{c}^{*(b)}(t^{*};\widehat{\theta}^{c*},\widehat{\theta}^{s*},\widehat{\theta}^{x*})$, where $b = 1, \cdots, B$.

4. The $100(1-\alpha)\%$ PI for N_c is the $(\alpha/2, 1-\alpha/2)$ quantile of the *B* ordered values of $\widehat{N}_c^{*(b)}(t^*; \widehat{\theta}^{c*}, \widehat{\theta}^{s*}, \widehat{\theta}^{x*})$.

References

Hong, Y. and W. Q. Meeker (2013). Field-failure predictions based on failure-time data with dynamic covariate information. *Technometrics* 55, 135–149.