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The ASA statement is a step forward for the profession that I am happy to endorse. 

Nonetheless, as a compromise among many conflicting views it is bound to leave many readers 

dissatisfied in some respects. I should like to express my chief concern via this quote from 

Neyman (1977, p. 106; emphasis added) discussing a hypothetical example of a possibly 

carcinogenic chemical A:  

“Here we come to the subjectivity of judging importance. From the point of view of the 

manufacturer the error in asserting the carcinogenicity of A is (or may be) more 

important to avoid than the error in asserting that A is harmless. Thus, for the 

manufacturer of A, the 'hypothesis tested' may well be: 'A is not carcinogenic'. On the 

other hand, for the prospective user of chemical A the hypothesis tested will be 

unambiguously: 'A is carcinogenic'. In fact, this user is likely to hope that the 

probability of error in rejecting this hypothesis be reduced to a very small value!”  

With this passage, Neyman makes clear that testing the “no effect” hypothesis favors only the 

manufacturer, precisely because it assumes asymmetrically that the cost of erroneously 

concluding there is an effect (a false positive) is higher than the cost of erroneously assuming 

there is no effect (a false negative). Note also that Neyman uses the phrase 'the hypothesis tested' 

(as opposed to “null hypothesis”) making clear that the tested hypothesis could be that there is an 

effect.  

Like most discussions of statistical testing I have seen, the ASA statement fails to 

appreciate Neyman’s basic points. Against my objections, the statement maintained use of the 

term “null hypothesis” to designate any hypothesis being subject to a statistical test, whether that 

hypothesis is that there is no effect or that there is an effect. This is in flat contradiction of 

ordinary English, in which “null” means “nothing,” as in “no association” (e.g., Merriam-

Webster 2016, Oxford 2016a) – just as in mathematics it refers to the additive identity element – 

and “null hypothesis” refers to no difference (Oxford 2016b). But in the field of statistics, many 

statisticians use “null” to mean “the hypothesis one is attempting to nullify” or refute. Thus the 
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term “null hypothesis” joins “significance” and “interaction” as a term whose meaning in 

statistical jargon deviates from common usage, resulting in profoundly confused views of 

inference among users and even among statistics professors and textbooks.  

This ingrained (and not always inadvertent) null bias in standard statistical expositions 

leads to a profound violation of scientific neutrality in disputes, as illustrated in Neyman’s 

example. An extreme form of this bias is seen in testing only the no-effect hypothesis, then 

claiming the evidence supports no effect because the test was “nonsignificant” (P>0.05) (see 

Greenland 2004, 2011, 2012 and Greenland & Poole 2011 for examples of this practice among 

statistics and epidemiology professors when acting as expert witnesses) – even though tests of 

other effect sizes would show the same statistical evidence even better supports many nonzero 

effects.  

The falsificationist ideal that (quite independently of Popper) inspired Fisher and even 

more so Neyman was that tests do no more than help us see what our data cannot refute or reject 

under an assumed data-generation model. A failure to reject may thus allow us to proceed as if 

an unrejected effect size is correct; but it does not and cannot tell us which effect size to proceed 

with among the many that would remain unrejected by the same testing procedure. Testing only 

the no-effect hypothesis simply assumes, without grounds, that erroneously defaulting to no 

effect is the least costly error, and in this sense is a methodologic bias toward the null. 

Likelihoodists and Bayesians were among the earliest to recognize the problem of 

focusing on single hypotheses. As Edwards (1972, P. 180) wrote of significance testing,  

“What used to be called judgement is now called prejudice, and what used to be called 

prejudice is now called a null hypothesis. In the social sciences, particularly, it is 

dangerous nonsense (dressed up as ‘the scientific method’), and will cause much trouble 

before it is widely appreciated as such.”  

Ironically though, the same null bias found in significance tests is tightly integrated into the 

confirmationist version of “objective Bayesian” testing, which assigns a spike (point prior mass) 

to test a point null hypothesis against a continuous composite alternative (Jeffreys, 1961; Berger 

& Sellke, 1987). That isolated spike identifies the null as the point with special added cost to 

falsely reject, and the mass of the spike is a surrogate for that added cost. Again Neyman’s 

example should be borne in mind, for in such cases the spike serves only the parties invested in 

maintaining the null.  
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As Neyman’s example made clear, defaulting to “no effect” as the test hypothesis 

(encouraged by describing tests as concerning only “null hypothesis”, as in the ASA statement) 

usurps the vital role of the context in determining loss, and the rights of stakeholders to use their 

actual loss functions. Those who benefit from this default (either directly or through their clients) 

have gone so far as to claim assuming “no effect” until proven otherwise is an integral part of the 

scientific method. It is not; when analyzed carefully such claims hinge on assuming that the cost 

of false positives is always higher than the cost of false negatives, and are thus circular.  

Yes, in many settings (such as genomic scans) false positives are indeed considered most 

costly by all research participants, usually because everyone expects few effects among those 

tested will be worth pursuing. But treating these settings as if scientifically universal does 

violence to other contexts in which the costs of false negatives may exceed the costs of false 

positives (such as side effects of polypharmacy), or in which the loss functions or priors vary 

dramatically across stakeholders (as in legal and regulatory settings).  

Those who dismiss the above issues as mere semantics or legal distortions are evading a 

fundamental responsibility of the statistics profession to promote proper use and understanding 

of methods. So far, the profession has failed abjectly in this regard, especially for methods as 

notoriously contorted and unnatural in correct interpretation as statistical tests. It has long been 

argued that much of harm done by this miseducation and misuse could be alleviated by 

suppression of testing in favor of estimation (Yates, 1951, p. 32-33; Rothman, 1978). I agree, 

although we must recognize that loss functions also enter into estimation, for example via the 

default of 95% for confidence or credibility intervals, and in the default to unbiased instead of 

shrinkage estimation. Nonetheless, interval estimates at least help convey a picture of where each 

possible effect size falls under the same testing criterion, thus providing a more fair assessment 

of competing hypotheses, and making it easier for research consumers to apply their own cost 

considerations to reported results. 

In summary, automatically defaulting to the no-effect hypothesis is no less mindless of 

context and costs than is defaulting to a 0.05 rejection threshold (which is widely recognized as 

inappropriate for many applications). Basic statistics education should thus explain the integral 

role of loss functions in statistical methodology, how these functions are hidden in standard 

methods, and how these methods can be extended to deal with settings in which loss functions 

vary or costs of false negatives are large.  
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