Ideas from multiple testing of high dimensional data provide insights about

reproducibility and false discovery rates of hypotheses supported by p-values.

Much of the statistical testing literature focuses on false rejection of the null
hypothesis, also called false discovery. Individual p-values of pre-specified
hypotheses provide protection against a single false discovery if rejection of the null
is done at some pre-specified threshold such as p<.05. In many contexts, however,
false non-discovery (i.e. failure to reject the null hypothesis when it is false) is
equally important, as it may lead to lack of follow-up of important hypotheses or

failure to understand all the determinants of a system under study.

Both false positives and false negatives lead to irreproducibility of results. For
example, sample sizes are often determined by the specification of "80% power
(probability of false non-discovery) when rejecting at p<0.05". In this case, with
two independent studies of the process both of which achieve the specified power
and use rejection threshold p<0.05, the probability of discordant results is 9.5% if
the null hypothesis is true and 32% if it is false. The probability of two rejections in
two trials when the null hypothesis is false is the square of the power -- 64%. Fora
fixed sample size, decreasing the significance threshold improves the probability of
concordant results if the null hypothesis is true, but decreases the power to detect
true discoveries. If the power is reduced to 70%, then the probability of two
rejections in two trials in which the null distribution is false is only 49% and the

probability of discordant results increases.

Improved study design, including larger sample size, increases power for any fixed
significance threshold. What is less appreciated is that if some proportion mo of the
hypotheses under test are truly null (and the remainder are truly not) then
increased power reduces both the false discovery rate (FDR, the expected
proportion of rejections for which the null is true) and the false non-discovery rate

(the expected proportion of failures to reject that are actually non-null). If m



independent hypotheses are tested, with significance threshold o and power 3, we
expect astom false discoveries and (3(1- ;wo)m rejections, so that the FDR is amo/ (oo
+ (3(1- 7o) ) which is a decreasing function of . Similarly, the expected proportion of
non-discoveries that are false is (1- $)(1- o) / ((1-a) o +(1- B) (1- 7o) ) which is

also a decreasing function of f3.

For high dimensional data such as "omics" data, we can often obtain an estimate of
mo from the observed p-values (e.g. Storey (2002), Pounds and Cheng (2004). This
can be used to determine a significance threshold that produces a reasonable
estimated FDR and is the basis behind methods such as Storey's g-value (Storey
2003).

For studies with much smaller numbers of test statistics, there are two reasonable
ways to proceed using this paradigm. We could target a particular FDR (assuming
known power) and determine whether the mo needed to achieve this FDR for the
significance threshold is reasonable given what is known about the system under
study or we could determine a benchmark value for o and determine an
appropriate threshold. For example, if we select FDR=0.05, then at a=0.05 and
=0.80, mo needs to be 46% or less, which implies that fewer than half of the
hypotheses we expect to test are actually null. If we expect o to be 90%, then to
obtain FDR=0.05, we need to use the threshold a.<0.0046 - however, recall that as a

decreases so does (3, which has not been accounted for here.

My suggestion for studies with too few hypotheses for estimation of mo is to
establish some benchmark levels of o which can be used to estimate the false
discovery rate when rejecting with the observed p-value. This could be viewed as
analogous to a proposal of Rosenthal assess the "file drawer problem" in meta-
analysis by computing the number of null results needed to overturn the proposed

conclusion.



For example, for primary hypotheses from a study with adequate preliminary data,
we might expect mo to be 50% - i.e. equipoise . For exploratory results, found by
multiple tests or fitting multiple models after the data were collected, we might
expect o to be much higher, say 95%. In principle, appropriate benchmarks could
be determined for each discipline by a literature search, but lack of details in the
literature about non-significant results might make this difficult. Instead, [ would
propose benchmarks of 50% for well-supported primary hypotheses, 75% for
secondary hypotheses proposed when the study is first designed, and 95% for
fortuitous findings and findings that require selection of covariates to attain
statistical significance. The observed p-values can be converted into false discovery
rates using the benchmark values and power appropriate to the hypothesis being
tested. As explained in Storey (2003) the false discovery rate associated with a
hypothesis behaves much like the posterior probability that the null is true. Use of
benchmark values of 7o yields many of the good properties of posterior probabilities
for interpreting test results without requiring formulation of a full Bayesian model

for each hypothesis.
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