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ABSTRACT 

This study was concerned with improving this process of selective agglomeration using 

an immiscible binding liquid by maximising the functionality of the binder. In the past, 

research into the area of selective agglomeration has focussed on the use of only pure oils 

as binders. Pure oils are highly suitable, in a technical sense, as they are hydrophobic, 

immiscible with water and will preferentially wet hydrophobic particles in a mixture of 

hydrophobic and hydrophilic particles. However, pure oils are equally highly unsuitable 

due to their cost when combined with the dosages required in the agglomeration process. 

Therefore, to address this issue and thus reduce the costs associated with the organic 

binder, a high internal phase water-in-oil emulsion was introduced as the binder. This 

type of emulsion was selected as it possessed the hydrophobic surface functionality of oil 

while the space filling functionality of the binder was primarily satisfied by the dispersed 

water droplets within the emulsion. In other words, it was considered that by replacing 

the majority of the oil with water within the binder and subsequently the agglomerate 

structure, the overall organic liquid requirement would be substantially reduced. 

The solid feed material used throughout all of the work was a naturally occurring mixture 

of coal and mineral particles, coal being naturally hydrophobic and minerals such as clays, 

being generally hydrophilic. Initial experiments indicated that the emulsion could 

selectively agglomerate coal in the same manner as pure diesel. Moreover, by comparing 

the organic liquid dosage required to achieve agglomeration when using the emulsion 

with the dosage required when using pure diesel it was established that a 2-fold reduction 

in the organic liquid requirement was achieved. A series of investigations was then carried 

out which examined the influence of the composition of the emulsion and process 

parameters on the performance of the emulsion. It was found that the initial result could 

be improved by reducing the level of degradation the emulsion experienced during the 

agglomeration process. The highlight of this work was the result for a 3 wt% aqueous 

NaCl-in-kerosene emulsion which achieved a 10-fold reduction as compared to the 

benchmark diesel case. This emulsion achieved agglomeration in only 7 s and thus 

experienced the lowest level of degradation which resulted from mixing in the turbulent, 

aqueous environment of the agglomeration process. Moreover, it was shown that if the 

emulsion was pre-dispersed in water prior to the combination of the emulsion with the 

coal slurry the mixing time required to achieve agglomeration was only 3 s.  
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Following on from the development of the emulsion binder, a fundamental investigation 

into binder functionality was carried out. It was found that the organic liquid requirement 

to achieve agglomeration was a function of the specific surface area of the material to be 

agglomerated and the voidage within the agglomerate material. Moreover, it appeared 

that the dispersed, water droplets within the emulsion played a space filling role within 

the void spaces, as hypothesised, however the thin film which formed around the particles 

comprised only of organic liquid and thus the water droplets did not play a space-filling 

role. That being said, the results indicated that the film formed when using the emulsion 

was 178 nm which was approximately 4-times thinner than the film formed when using 

pure kerosene. Therefore, the results from this investigation indicated that the reduction 

which may be achieved is a function not only of the dispersed phase of the emulsion but 

also of the surface area of the feed.  

Due to the successful development of the agglomeration process using the emulsion a 

final investigation was carried out to study the potential application of this work in an 

industrial coal processing setting. It was found that the ash% and moisture content of the 

agglomerated product was sufficiently low to meet market requirements. In particular it 

was found that the emulsion binder consistently produced a product with an ash of 10 – 

11% leaving behind reject with an ash of 80% from a feed with an ash of 61%, providing 

that the emulsion dosage was sufficient.  

Overall, the work in this study has resulted in the development of a rapid agglomeration 

process with reduced organic reagent requirements. This work has provided a foundation 

for further and exciting work in this new area. 
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