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Abstract 
 

The main goal of this thesis is to develop an easy to fabricate and sensitive 

biosensor based on organic materials capable of monitoring saliva glucose 

concentration in people with diabetes.  

In Chapter 3 we focus on designing, fabricating and characterising flexible 

organic thin film transistor- (OTFT-) based sensors suitable for salivary glucose 

sensing. We employed different device architectures utilising poly-3-

hexylthiophene (P3HT) as the semiconductor layer, dielectric layers of either 

poly(vinyl-pyridine) (PVPy) or poly(vinyl-phenol) (PVP) and poly(3,4-

ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as a gate 

material, to produce trial OTFTs. Our results demonstrated that compared with 

the initial architecture of ITO/P3HT/PVPy/PEDOT:PSS, when PVPy was 

replaced with PVP the off current was increased. Nafion was chosen as an 

appropriate replacement for PEDOT: PSS in the final (ITO/P3HT/Nafion:GOX) 

sensor device due to the acidity of PEDOT:PSS, with the dielectric layer being 

removed to improve device response time. The mechanism of signal 

transduction in these devices is via protonic doping of the P3HT channel and 

thus acidic PEDOT:PSS leads to a large off current in the device. Upon the 

replacement of PEDOT:PSS by the Nafion:GOX mixture, a working prototype 

sensor was produced of architecture ITO/P3HT/PVP/Nafion:GOX. 

Chapter 4 focuses on the establishing the mechanisms behind the formation and 

the effect of mixed interlayers between the Nafion proton transport layer and 

P3HT semiconductor material. Surprisingly high conductivity was obtained for 

P3HT/Nafion bilayers, in excess of the native conductivity of either pristine 
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material, due to intermixing of the materials and doping of the P3HT. Our 

results suggested that the annealing condition giving the best device 

performance is a postproduction treatment at 50 °C. A full study of the effect of 

thermal annealing and the addition of water to pristine P3HT and Nafion and 

bilayers was undertaken. 

Chapter 5 explores the use of a porous capping layer to encapsulate GOX in the 

device and control the volume and location of added analyte. The phase 

inversion technique was used to produce the porous polyacrylonitrile (PAN) 

films for this purpose. Scanning electron microscopy (SEM) and atomic force 

microscopy (AFM) techniques were employed to investigate the resultant 

membrane morphology of the PAN films. Our results show that the PAN films 

are highly porous and suitable for the capping application and 

ITO/P3HT/Nafion:GOX/PAN devices showed improved sensitivity to glucose 

in to the range of salivary glucose levels (SGL) in humans. 

Finally, in Chapter 6, the device architecture was redesigned to incorporate a 

non-GOX containing reference sensor in an attempt to mitigate device-based 

variation. Sources of sensor output variation is discussed and we observe that 

the addition of a reference sensor seems to merely add an additional source of 

variance. 

Chapter 7 summarises results and discusses potential further studies. 
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