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Abstract

The main goal of this thesis is to develop an easy to fabricate and sensitive
biosensor based on organic materials capable of monitoring saliva glucose

concentration in people with diabetes.

In Chapter 3 we focus on designing, fabricating and characterising flexible
organic thin film transistor- (OTFT-) based sensors suitable for salivary glucose
sensing. We employed different device architectures utilising poly-3-
hexylthiophene (P3HT) as the semiconductor layer, dielectric layers of either
poly(vinyl-pyridine) (PVPy) or poly(vinyl-phenol) (PVP) and poly(3,4-
ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as a gate
material, to produce trial OTFTs. Our results demonstrated that compared with
the initial architecture of ITO/P3HT/PVPy/PEDOT:PSS, when PVPy was
replaced with PVP the off current was increased. Nafion was chosen as an
appropriate replacement for PEDOT: PSS in the final (ITO/P3HT/Nafion: GOX)
sensor device due to the acidity of PEDOT:PSS, with the dielectric layer being
removed to improve device response time. The mechanism of signal
transduction in these devices is via protonic doping of the P3HT channel and
thus acidic PEDOT:PSS leads to a large off current in the device. Upon the
replacement of PEDOT:PSS by the Nafion:GOX mixture, a working prototype
sensor was produced of architecture ITO/P3HT/PVP/Nafion:GOX.

Chapter 4 focuses on the establishing the mechanisms behind the formation and
the effect of mixed interlayers between the Nafion proton transport layer and
P3HT semiconductor material. Surprisingly high conductivity was obtained for

P3HT/Nafion bilayers, in excess of the native conductivity of either pristine
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material, due to intermixing of the materials and doping of the P3HT. Our
results suggested that the annealing condition giving the best device
performance is a postproduction treatment at 50 °C. A full study of the effect of
thermal annealing and the addition of water to pristine P3HT and Nafion and

bilayers was undertaken.

Chapter 5 explores the use of a porous capping layer to encapsulate GOX in the
device and control the volume and location of added analyte. The phase
inversion technique was used to produce the porous polyacrylonitrile (PAN)
films for this purpose. Scanning electron microscopy (SEM) and atomic force
microscopy (AFM) techniques were employed to investigate the resultant
membrane morphology of the PAN films. Our results show that the PAN films
are highly porous and suitable for the capping application and
ITO/P3HT/Nafion:GOX/PAN devices showed improved sensitivity to glucose

in to the range of salivary glucose levels (SGL) in humans.

Finally, in Chapter 6, the device architecture was redesigned to incorporate a
non-GOX containing reference sensor in an attempt to mitigate device-based
variation. Sources of sensor output variation is discussed and we observe that
the addition of a reference sensor seems to merely add an additional source of

variance.

Chapter 7 summarises results and discusses potential further studies.
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