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1 Introduction: Recursive Prodsum Sets and
Complex Numbers

This paper explores the intersection of complex analysis and number theory by
examining the geometric loci generated by a specific complex rational function
and its connection to recursive prodsum sets. We begin by defining these sets,
as introduced in ”Expanding Prodsum sets with Recursion” by Lozier-Davis
(Academia.edu)), and then investigate how properties of these sets can parame-
terize a complex function, leading to interesting geometric interpretations.

The paper ”Expanding Prodsum sets with Recursion” investigates non-
empty sets of rational numbers, denoted by S = {a1, as, ..., a,, }, where the sum
of the elements is equal to the product of the elements, i.e., Z,?:l a; = H?zl a;.
These sets are called recursive because new numbers can be generated recur-
sively, allowing the complete set to fulfill this base rule.

It’s crucial to observe that the initial element, a;, can be chosen arbitrarily
(with some restrictions, as we’ll discuss). This choice then dictates the subse-
quent elements in the set, according to the recursive formula.

Definition 1 (Recursive Prodsum Sets). Given an initial element a1, the re-
cursive prodsum set R is generated by the following rule: For n > 1, the nth
element, a.,,, is defined as:
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The set R is then the set of all a; generated by this process.
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For example, if we choose a; = 2, then as = 2= = 2, and a3 = 252 =

-1 2%2—1
The set would start as {2,2,4/3,...}.
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Definition 2 (Standard Prodsum Numbers (z; Recursive Prodsums)). The z;
recursive prodsum set, denoted as Ry, is the set of positive integers n that are
equal to the product of their proper divisors.


https://www.academia.edu/128886600/Expanding_Prodsum_sets_with_Recursion

The sequence of standard prodsum numbers begins with Ry = {6, 120, 672, 8064, 32640, ...}

Note that the standard prodsum numbers do not, in general, follow the recursive
prodsum set generation rule from Definition 2. They are a separate concept,
but as shown in the paper, can be used as the base set for generating higher
order recursive prodsum sets.

Definition 3 (z2 Recursive Prodsum Sets). The x2 recursive prodsum set,
denoted as Ro, is a set of integers m such that m is equal to the product of its
proper divisors, and all of these proper divisors are elements of Ry.

For example, if a number m has proper divisors {d;,ds,...,d;} and m =
dy * dg * ... x di, and all d; belong to R, then m belongs to Rs.

2 Complex Rational Function and its Geometric
Locus

Let us consider the complex rational function:

a+ bi

f(a):aflebi

where a € R is a variable and b € R, b # 0 is a constant. We aim to determine
the geometric locus of the output of this function in the complex plane as a
varies.

Let z = x4yi = f(a). We proceed by multiplying the numerator and denom-
inator by the conjugate of the denominator to separate the real and imaginary
parts:

(a+bi)(a—1—bi)
- (a—1+bi)(a—1-—bi)

Expanding the numerator and denominator:

a(a — 1) — abi + bai — b?i>
(@ —1)% — (bi)?

Z =

Since i2 = —1, we have:

a? —a — abi + abi + b?
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(@ —a+b?) —bi
a2 —2a+1+02
Separating the real and imaginary parts, we obtain:

a2 —a+ b2
r=—- -
a2 —-2a+1+0b2
—b
y:

a2 —2a+1+ b2



Now, we manipulate these equations to eliminate a and find a relationship
between x and y. From the equation for y, we have:

y(la—1)* +b) = =b

b
a—1)2+b2=—-
(a—1) )

b
(a—1)2=—=—b2
Yy
Next, consider x — 1:
) a?—a+b? ) a2 —a+0b%—(a® —2a+1+0b?) a—1
xTr— = - = =
a?—2a+ 1402 a?—2a+140b2 (a—1)2+02

Substituting (@ — 1)? + b* = —%:
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Squaring both sides:
b2 (x — 1)2
(a o 1)2 — (:L' X )
Y
Equating the two expressions for (a — 1)2:
b2($ — 1)2 _ _9 _ b2
y? y

Multiplying both sides by y?:
b (x —1)% = —by — b*y?
Dividing by b2 (since b # 0):

Rearranging:

(3771)2+y2+%:0

Completing the square for the y terms:

1 1
—1)2 2, Y, -
(@ )+(y+b+4b2> 42

vt (o) = ()

This is the equation of a circle in the complex plane.
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a € R varies and b € R, b # 0 is a constant, is a circle with center C =1 — %i
and radius 7 = ﬁ.

Theorem 1. The geometric locus of the complex function f(a) = where

Proof. The derivation of the circle equation follows from the algebraic manip-
ulations shown above. The equation (z — 1)? + (y + 5)? = (ﬁ)2 is in the
standard form of a circle’s equation, (z — h)? + (y — k)? = r2, where (h, k) is
the center and r is the radius. By comparing the derived equation with the

standard form, we can directly identify the center as 1 — 2%}2 and the radius as

1
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3 Parameterization with Recursive Prodsum Sets

We now investigate how the properties of recursive prodsum sets, particularly
the relationship between R; and R, can be used to parameterize the constant
b in the circle equation. We focus on using the properties of the x5 set to define
the parameter b in our circle equation.

3.1 Parameterization using Properties of x, Sets Based on
z; Divisors

Given an x4 recursive prodsum m € Ra, its proper divisors D(m) are all elements
of Ry. We can parameterize b in the circle equation based on properties of these
1 divisors.

e Number of z; proper divisors: Set b = |D(m)|. The resulting circle has
center 1 — mi and radius m.

e Sum of z; proper divisors: Set b = ZdeD(m) d. The circle has center
1-— mi and radius m.

e The x5 prodsum itself: Set b = m. The circle has center 1 — ﬁz and
radius 5=

2m”

Proposition 1. If b is parameterized using a property of an xo prodsum m, the
resulting circle’s center will always lie on the line x = 1 in the complex plane.

Proof. This follows directly from Theorem 1. The center of the circle is given
by 1— %i. Regardless of how b is defined (as long as it’s a real number, which
is implied by its connection to the divisors of an integer), the real part of the
center will always be 1. O

4 Rules and Observations

Here are some observations and rules derived from the previous sections:
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. The complex function f(a) = maps the real line (parameterized

a—1+bi
by a) to a circle in the complex plane for b # 0.

. When b = 0, the function f(a) = ~%5 maps the real line (excluding a = 1)

to the real line (excluding f(a) = 1).

. The center of the circle generated by f(a) is always on the line x = 1 in

the complex plane.

. The radius of the circle is inversely proportional to [b]. As |b| increases,

the radius decreases, and the circle becomes smaller.

. Parameterizing b using properties of xo recursive prodsums establishes

a relationship between the circle’s geometry and the structure of these
higher-order number sets.

Conclusion

This paper has explored the geometric locus of a complex rational function and
its connection to recursive prodsum sets. We have shown that the function gen-
erates a circle in the complex plane, and we have discussed how properties of x5
recursive prodsums, which are based on the z; (standard) prodsum numbers,
can be used to parameterize the circle’s center and radius. This parameteri-
zation provides a potential link between complex geometry and the recursive
structure of prodsum sets, offering a novel way to visualize and analyze these
number-theoretic objects. Future research could focus on explicitly identifying
o prodsum sets and exploring deeper geometric implications of this parame-
terization.
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