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1 Introduction: Recursive Prodsum Sets and
Complex Numbers

This paper explores the intersection of complex analysis and number theory by
examining the geometric loci generated by a specific complex rational function
and its connection to recursive prodsum sets. We begin by defining these sets,
as introduced in ”Expanding Prodsum sets with Recursion” by Lozier-Davis
(Academia.edu), and then investigate how properties of these sets can parame-
terize a complex function, leading to interesting geometric interpretations.

The paper ”Expanding Prodsum sets with Recursion” investigates non-
empty sets of rational numbers, denoted by S = {a1, a2, ..., an}, where the sum
of the elements is equal to the product of the elements, i.e.,

∑n
i=1 ai =

∏n
i=1 ai.

These sets are called recursive because new numbers can be generated recur-
sively, allowing the complete set to fulfill this base rule.

It’s crucial to observe that the initial element, a1, can be chosen arbitrarily
(with some restrictions, as we’ll discuss). This choice then dictates the subse-
quent elements in the set, according to the recursive formula.

Definition 1 (Recursive Prodsum Sets). Given an initial element a1, the re-
cursive prodsum set R is generated by the following rule: For n > 1, the nth
element, an, is defined as:

an =

∑n−1
i=1 ai∏n−1

i=1 ai − 1

The set R is then the set of all ai generated by this process.

For example, if we choose a1 = 2, then a2 = 2
2−1 = 2, and a3 = 2+2

2∗2−1 = 4
3 .

The set would start as {2, 2, 4/3, ...}.

Definition 2 (Standard Prodsum Numbers (x1 Recursive Prodsums)). The x1

recursive prodsum set, denoted as R1, is the set of positive integers n that are
equal to the product of their proper divisors.
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The sequence of standard prodsum numbers begins withR1 = {6, 120, 672, 8064, 32640, ...}.
Note that the standard prodsum numbers do not, in general, follow the recursive
prodsum set generation rule from Definition 2. They are a separate concept,
but as shown in the paper, can be used as the base set for generating higher
order recursive prodsum sets.

Definition 3 (x2 Recursive Prodsum Sets). The x2 recursive prodsum set,
denoted as R2, is a set of integers m such that m is equal to the product of its
proper divisors, and all of these proper divisors are elements of R1.

For example, if a number m has proper divisors {d1, d2, ..., dk} and m =
d1 ∗ d2 ∗ ... ∗ dk, and all di belong to R1, then m belongs to R2.

2 Complex Rational Function and its Geometric
Locus

Let us consider the complex rational function:

f(a) =
a+ bi

a− 1 + bi

where a ∈ R is a variable and b ∈ R, b ̸= 0 is a constant. We aim to determine
the geometric locus of the output of this function in the complex plane as a
varies.

Let z = x+yi = f(a). We proceed by multiplying the numerator and denom-
inator by the conjugate of the denominator to separate the real and imaginary
parts:

z =
(a+ bi)(a− 1− bi)

(a− 1 + bi)(a− 1− bi)

Expanding the numerator and denominator:

z =
a(a− 1)− abi+ bai− b2i2

(a− 1)2 − (bi)2

Since i2 = −1, we have:

z =
a2 − a− abi+ abi+ b2

(a− 1)2 + b2

z =
(a2 − a+ b2)− bi

a2 − 2a+ 1 + b2

Separating the real and imaginary parts, we obtain:

x =
a2 − a+ b2

a2 − 2a+ 1 + b2

y =
−b

a2 − 2a+ 1 + b2
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Now, we manipulate these equations to eliminate a and find a relationship
between x and y. From the equation for y, we have:

y((a− 1)2 + b2) = −b

(a− 1)2 + b2 = − b

y

(a− 1)2 = − b

y
− b2

Next, consider x− 1:

x−1 =
a2 − a+ b2

a2 − 2a+ 1 + b2
−1 =

a2 − a+ b2 − (a2 − 2a+ 1 + b2)

a2 − 2a+ 1 + b2
=

a− 1

(a− 1)2 + b2

Substituting (a− 1)2 + b2 = − b
y :

x− 1 =
a− 1

− b
y

= −y(a− 1)

b

b(x− 1) = −y(a− 1)

(a− 1) = −b(x− 1)

y

Squaring both sides:

(a− 1)2 =
b2(x− 1)2

y2

Equating the two expressions for (a− 1)2:

b2(x− 1)2

y2
= − b

y
− b2

Multiplying both sides by y2:

b2(x− 1)2 = −by − b2y2

Dividing by b2 (since b ̸= 0):

(x− 1)2 = −y

b
− y2

Rearranging:

(x− 1)2 + y2 +
y

b
= 0

Completing the square for the y terms:

(x− 1)2 +

(
y2 +

y

b
+

1

4b2

)
=

1

4b2

(x− 1)2 +

(
y +

1

2b

)2

=

(
1

2|b|

)2

This is the equation of a circle in the complex plane.
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Theorem 1. The geometric locus of the complex function f(a) = a+bi
a−1+bi , where

a ∈ R varies and b ∈ R, b ̸= 0 is a constant, is a circle with center C = 1− 1
2b i

and radius r = 1
2|b| .

Proof. The derivation of the circle equation follows from the algebraic manip-
ulations shown above. The equation (x − 1)2 + (y + 1

2b )
2 = ( 1

2|b| )
2 is in the

standard form of a circle’s equation, (x − h)2 + (y − k)2 = r2, where (h, k) is
the center and r is the radius. By comparing the derived equation with the
standard form, we can directly identify the center as 1− 1

2b i and the radius as
1

2|b| .

3 Parameterization with Recursive Prodsum Sets

We now investigate how the properties of recursive prodsum sets, particularly
the relationship between R1 and R2, can be used to parameterize the constant
b in the circle equation. We focus on using the properties of the x2 set to define
the parameter b in our circle equation.

3.1 Parameterization using Properties of x2 Sets Based on
x1 Divisors

Given an x2 recursive prodsumm ∈ R2, its proper divisorsD(m) are all elements
of R1. We can parameterize b in the circle equation based on properties of these
x1 divisors.

• Number of x1 proper divisors: Set b = |D(m)|. The resulting circle has
center 1− 1

2|D(m)| i and radius 1
2|D(m)| .

• Sum of x1 proper divisors: Set b =
∑

d∈D(m) d. The circle has center

1− 1
2(

∑
d∈D(m) d)

i and radius 1
2|

∑
d∈D(m) d|

.

• The x2 prodsum itself: Set b = m. The circle has center 1 − 1
2m i and

radius 1
2m .

Proposition 1. If b is parameterized using a property of an x2 prodsum m, the
resulting circle’s center will always lie on the line x = 1 in the complex plane.

Proof. This follows directly from Theorem 1. The center of the circle is given
by 1− 1

2b i. Regardless of how b is defined (as long as it’s a real number, which
is implied by its connection to the divisors of an integer), the real part of the
center will always be 1.

4 Rules and Observations

Here are some observations and rules derived from the previous sections:
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1. The complex function f(a) = a+bi
a−1+bi maps the real line (parameterized

by a) to a circle in the complex plane for b ̸= 0.

2. When b = 0, the function f(a) = a
a−1 maps the real line (excluding a = 1)

to the real line (excluding f(a) = 1).

3. The center of the circle generated by f(a) is always on the line x = 1 in
the complex plane.

4. The radius of the circle is inversely proportional to |b|. As |b| increases,
the radius decreases, and the circle becomes smaller.

5. Parameterizing b using properties of x2 recursive prodsums establishes
a relationship between the circle’s geometry and the structure of these
higher-order number sets.

5 Conclusion

This paper has explored the geometric locus of a complex rational function and
its connection to recursive prodsum sets. We have shown that the function gen-
erates a circle in the complex plane, and we have discussed how properties of x2

recursive prodsums, which are based on the x1 (standard) prodsum numbers,
can be used to parameterize the circle’s center and radius. This parameteri-
zation provides a potential link between complex geometry and the recursive
structure of prodsum sets, offering a novel way to visualize and analyze these
number-theoretic objects. Future research could focus on explicitly identifying
x2 prodsum sets and exploring deeper geometric implications of this parame-
terization.
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