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Abstract

This work introduces Recursive Differentiation Arithmetic (RDA), a novel onto-
logical framework for the emergence of number, computation, space, and cognition
from the fundamental act of distinction. Unlike classical arithmetic, which begins
with predefined units and additive rules, RDA models arithmetic as a generative
process of stabilization and composition of differences. Based on the operations of
unfolding (R) and composition (-) applied to differentiation nodes, RDA provides
structural interpretations of natural numbers, addition, recursion, and complex
numbers. It offers an ontologically grounded alternative to set-theoretical foun-
dations, and supports reinterpretations of time, space, energy, information, and

artificial intelligence within a unified logic of differentiation.

1. Introduction

Philosophical systems that begin with the One — as in Parmenides, Plotinus, or the
Neoplatonic tradition — posit a principle of absolute unity: indivisible, self-identical, and
prior to being itself. The One is said to precede all difference, all multiplicity, and even
all articulation.

Yet this starting point is already problematic. To name the One, to speak of it as
"existing” or "foundational,” inevitably introduces a rupture: a distinction between the
One and the act of speaking, between the One and that which is not-One. Even the
gesture of silence — intended to preserve its ineffability — separates the One from the
domain of sayable things.

This implies a deeper asymmetry. What appears as ”One” is not the source of differ-
entiation, but already an outcome of it — a fixation formed retroactively within a field
of prior distinction. The original condition is not unity, but differentiability: the capacity
for something to stand apart from something else.

In this context, the number Two is not a playful inversion of the One, but a structural
necessity: the minimal act of distinction between a term and its other, between presence
and absence, being and non-being. It is not a quantity, but a condition for quantity to

make sense.
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Thus, the foundational act is not the postulation of the One, but the emergence of
a boundary — a line across which potential becomes form. Recursive Differentiation
Arithmetic (RDA) begins here: with the articulation of such boundaries, and with the
ontological logic by which distinctions unfold, combine, stabilize, and form the structures

we call number, space, time, and mind.

2. Two as the Beginning of Differentiation

If Potentiality is not One, the first ontological structure cannot be unity. The minimal
condition of any manifestation is not a unit, but a boundary — a distinction. The first
structure is not the presence of a thing, but the emergence of something as different from
something else.

Hence, we argue that Two — not One — is the beginning of differentiation. But Two
here does not mean a pair of items. Rather, it means the structure of difference itself:
an X and a not-X, a boundary between something and what it is not. This dyad can be
illustrated in logical terms: the distinction between a proposition and its negation (P and
not-P) is not a collection of two entities but a single act of differentiation that establishes
relationality.

This original dyad is not yet quantitative. It is not made by counting. It is made
by the act of distinguishing. From it, the idea of One can be retroactively constructed
as the fixation of one side of this difference. For instance, in perception, the recognition
of an object (e.g., a tree) presupposes its differentiation from its background (not-tree),
suggesting that the unity of the object is secondary to the act of distinction.

Thus, Two is ontologically prior to One. The One is a derived concept, the result of
holding a distinction fixed. What appears as a unit is always already positioned within a
scene of difference — and hence is already at least Two. This challenges foundationalist

ontologies, proposing instead that structure begins with relationality, not singularity.

3. Axioms of Differentiation

We now present a formal system — an ontological arithmetic — in which differentiation
is the primitive operation, and counting arises as a special case. This system, called
RDA (Recursive Differentiation Arithmetic), replaces standard notions of quantity with

structurally grounded operations on nodes of differentiation.

3.1 Signature

Let:

e D: the set of stabilized differentiation nodes,



e R:D — D: unfolding operation (produces a new node from an existing one),
e -: composition (binding) of two nodes,

e (' : D — N: a measure of complexity,

e =: ontological equivalence (not identity, but structural indistinguishability).

To formalize further, consider D as a category where objects are nodes and morphisms
are defined by R and -. The operation R can be thought of as a functor mapping a node
to its differentiated successor, while - acts as a tensor product, combining nodes into
composite structures. The complexity measure C' assigns a natural number to each node,

reflecting its structural depth, akin to a homological invariant in algebraic topology.
3.2 Axioms (RDA v1.2)
A1 (Initial boundary): There exists a primitive differentiation:
30y : 0 is the first ontological boundary.
A2 (Fixation of difference): There exists a stable node as fixation of that boundary:
AN, € D: N, := fixation of 0.
A3 (Unfolding): Every node can be unfolded:
Ve €D, dJR(z)€D.
A4 (Composition): Any two nodes can be composed:
Ve,ye D, x-ye€D.
A5 (Complexity): Unfolding and composition increase or retain complexity:
C(R(z)) = C(x), C(z-y)=max(C(x),C(y)).

A6 (Reversibility): Some nodes admit an inverse unfolding:

This formalism does not assume the existence of elements in the sense of classical set
theory. Rather, it models the generation and stabilization of difference itself. Arithmetic,

in this context, is a logic of unfolding and binding distinctions. To illustrate, consider a



simple example: let 0y represent the distinction between ”figure” and ”ground” in visual
perception. The node N; fixes this distinction as a stable percept (e.g., an object), and
R(N7) unfolds it into a new distinction (e.g., object vs. its shadow), building a hierarchy

of articulated structures.

4. Natural Numbers as a Special Case

Natural numbers traditionally begin with zero or one and proceed by addition. In RDA,

they arise instead from the recursive stabilization of differentiation processes.

e N;: fixation of the first boundary 0y,

e N, := 0(N;): differentiation of the first fixation,

e N5 := 0(Ny): recursive differentiation of structure,
o ...

Each N, is not a “number of things” but a node that stabilizes a higher-order struc-
ture of difference. The sequence Ny, No, N3, ... does not count, but tracks the depth of
ontological articulation. For example, Ny might represent the differentiation of a bound-
ary into a relation (e.g., inside vs. outside), while N3 articulates a meta-relation (e.g., the
boundary’s curvature).

This reframes arithmetic:

e “One” is not the beginning, but the first stabilization.
e “Two” is the minimal difference needed for any structure.

o “Three” is the first reflective articulation of the difference between One and Two.

Natural numbers, then, are a special case of the structure of differentiation — one
in which certain conditions (stability, symmetry, repetition) produce a linear hierarchy.
Standard arithmetic arises only when these recursive structures are abstracted into a
uniform sequence. This perspective aligns with category theory, where natural numbers
emerge as the free monoid generated by a single object, but RDA grounds this in onto-

logical rather than purely formal terms.

5. Ontological Operations: Addition and Recursion

In classical arithmetic, addition is a primitive operation defined over already given units.
In RDA, there are no predefined units. Instead, operations are grounded in the structural
behavior of differentiation itself. What we interpret as “addition” is not the aggregation
of elements, but the formation of higher-order differentiations through composition and

unfolding.



5.1 Ontological Addition as Composition of Fixations

Let N;, N; € D be two stable differentiation nodes. Their composition
N; - N;

represents not their numerical sum, but a binding of their structures of differentiation.
This operation produces a new node, not necessarily equivalent to any natural number in
the classical sense.

We say:

Ny := N; - N; is a composite differentiation.

Its complexity satisfies:
C(Ny) > max(C(N;), C(N;)).

In special cases — where N; and N; correspond to fixations of successive orderings —

the composition aligns with classical addition. That is, if:
Nyt1:= R(N,) and N, := R™(N;)
then

Ny - Ny = Npyyp (only under strong structural alignment).

To deepen this, consider a non-arithmetic example: if N; represents a perceptual
boundary (e.g., a shape) and N, a contextual boundary (e.g., its background), their
composition N; - N; might stabilize a scene (e.g., the shape in context), with complex-
ity reflecting the relational depth of the scene. Thus, classical addition appears as a
degenerate limit of structural composition when all nodes are recursively aligned and

differentiationally symmetric.

5.2 Recursion as Ontological Self-Differentiation

Recursion in RDA is not a symbolic process, but the unfolding of a node into increasingly

complex differentiations. Formally:
Rx) =2, R""(z):= R(R"(z)).
Each iteration produces a new node, with increasing complexity:
C(R"(z)) > C(R"!(z)).

This structure allows us to model not only iteration, but emergent articulation: each

level is not a repetition, but a qualitatively new fixation of difference. For instance, in



cognitive terms, R(N;) might represent the recognition of an object, while R*(N;) repre-
sents its categorization, each step adding a layer of abstraction. The recursive unfolding
of N1 produces a hierarchy that we may align with the natural numbers — but only as a

surface pattern.

5.3 No Commutativity, No Identity Element

Unlike classical addition, ontological composition in RDA is not necessarily commutative:

T-YEY-T.

This reflects the asymmetry inherent in real differentiation processes: the order of binding
matters. For example, composing a figure with its ground (z - y) differs from grounding
a figure (y - x), as the former emphasizes the figure’s prominence.

Moreover, there is no identity element e € D such that:

All composition alters structure. Every act of binding constitutes a new ontological event,

akin to how biological interactions (e.g., protein binding) produce novel configurations.

5.4 Summary
In this system:
e “Addition” is reinterpreted as composition of difference,
e “Iteration” is the unfolding of complexity through self-differentiation,

e Classical arithmetic emerges only in the special case of perfectly aligned recursive

fixations,

e The structure is inherently asymmetric, non-commutative, and open-ended.

Ontological arithmetic does not manipulate quantities, but traces the layered artic-
ulation of difference. Its “operations” describe the morphogenesis of structure, not its
enumeration, offering a framework for modeling processes as diverse as physical interac-

tions, cognitive development, or social dynamics.

6. Comparison with Peano Arithmetic

Peano arithmetic (PA) provides a formal foundation for the natural numbers based on

the notion of zero, a successor function, and a set of logical axioms. In contrast, Recur-



sive Differentiation Arithmetic (RDA) grounds number not in symbolic iteration, but in

ontological operations on stabilized difference.

6.1 Peano Axioms (Simplified)

Let us recall the standard Peano axioms (PA), expressed in terms of a set N, a constant

0, and a successor function S:

1.0eN

2.VneN, S(n)eN

3. VvneN, S(n)#0

4. Vm,n e N, S(m)=S5(n)=m=n

5. (Induction) If P(0) holds and P(n) = P(S(n)), then Vn, P(n)

These axioms define the natural numbers as a discrete, linearly ordered structure with
a starting point (zero) and a unique successor operation. However, they presuppose a

static ontology of numbers as pre-existing entities.

6.2 Structural Differences in RDA

In contrast, RDA replaces symbolic structure with ontological dynamics. The counterpart

elements are:

e No zero: RDA does not begin with “nothing” but with a first boundary 0y, giving
rise to the first node NV;.

e No predefined successor: Instead of S(n), RDA has an unfolding operator R, whose

output depends on structural differentiation.

e No identity preservation: In PA, S preserves the identity of a number as part of a
chain. In RDA, each unfolding creates a new ontological structure; identity is not

preserved, but transformed.

e No full induction: Induction in PA depends on universal quantification. RDA is
local and recursive, but not universally enumerable. Recursion is possible, but only

within bounded scenes of structural stability.

To illustrate, consider a linguistic analogy: in PA, numbers are like fixed words in a
dictionary, with S adding a predictable suffix. In RDA, nodes are like evolving concepts,
where R generates new meanings through contextual differentiation, and no single “zero”

anchors the process.



6.3 Formal Analogy Table

Concept Peano Arithmetic (PA) RDA
Origin 0 (symbolic zero) Jo (first boundary)
Successor S(n) R(x) (unfolding)
Elementhood neN x € D (differentiated node)

Addition Iterated S Composition -

Equality Symbolic identity = Ontological equivalence =

Induction Universal quantification | Structural recursion (local)
Commutativity Yes Not in general

6.4 Interpretive Implication

Peano arithmetic assumes that numbers are entities. RDA shows that number is a struc-
ture arising from processes of differentiation. The former builds arithmetic from counting;
the latter constructs it from ontological articulation. For example, in RDA, the “num-
ber” 3 is not a count but a node N3, representing a second-order differentiation (e.g., a
distinction about a distinction), which aligns with philosophical accounts of number as
relational (e.g., Frege’s concept of number as a property of concepts).

Hence, classical arithmetic is recovered in RDA only as a special case — one in which:

e differentiation is recursively regular,
e complexity increases uniformly,

e and equivalence classes of nodes behave symmetrically.

Whereas Peano arithmetic is closed, complete, and discrete, RDA is open, recursive,
and grounded in ontological asymmetry, offering a framework that can model not only

numbers but also the emergence of structure in diverse domains.

7. Ontological Interpretation of Physics and Information in RDA

Recursive Differentiation Arithmetic (RDA) provides a unified ontological framework to
reinterpret physical and informational structures — time, space, energy, and quantum

information — not as primitives, but as emergent aspects of differentiation.

7.1 Time as Successive Differentiation
Time is not an external dimension but the internal structure of unfolding;:
N1 := fixation of 80, N2 = R<N1>, N3 = R(NQ), ..
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This gives rise to a directed chain:
N1—>N2%N3—>...
Key properties:

e Irreversibility: If R~!(z) does not exist, the process is temporally asymmetric.
e Locality: Different chains of R may unfold independently (multiple timescales).

e Temporal depth: Defined by increasing complexity C(R"(x)).

To deepen this, consider time in biological systems: the developmental stages of an
organism (e.g., embryo to adult) can be modeled as a sequence of unfoldings, where each
stage increases structural complexity. This suggests that time is not a universal container
but a context-dependent trace of differentiation, aligning with relational theories of time

in physics (e.g., Rovelli’s relational quantum mechanics).

7.2 Space as Network of Compositions

Space is the structure of relational composition among differentiated nodes:
x -y = spatial binding
The “distance” between x and y is interpreted via:
C(x-y) —max(C(x), Cy))

If composition introduces little new complexity, nodes are structurally “close.” If it
introduces substantial complexity, they are “distant.” For example, in a neural network,
two neurons with simple synaptic connections have low compositional complexity, while
those with intricate pathways are “distant” in the network’s topology.

This builds a geometry based on:
e Topology: The graph of D via -,
e Directionality: Non-commutativity z -y # vy - x,

e Dimensionality: Higher-order compositions.

7.3 Energy as Gradient of Structural Change

Energy is reconceived as the complexity gradient across differentiations:



E(r —y) = C(y) — C(z)

This applies to:

e Kinetics: unfolding increases structural complexity.
e Potential: composition alters internal structure.

e Mass: high-complexity nodes anchor the differentiation field.

This perspective aligns with thermodynamic interpretations: energy as a measure of
structural transformation mirrors entropy as a measure of disorder, but RDA grounds it
in ontological rather than statistical terms. For instance, a chemical reaction’s energy

change reflects the complexity shift from reactants to products.

7.4 Quantum States and Observation

Quantum states ¢ are modeled as pre-stabilized differentiations x ¢ D. Measurement is

the act of stabilization:

R'(x) > NeD

Entanglement corresponds to:
r-y¢D, but R(x-y)eD

Observation is not passive detection but ontological fixation of unstable configura-
tions. This resonates with the Copenhagen interpretation, where measurement collapses
a superposition, but RDA frames it as a structural rather than probabilistic process,

potentially bridging quantum mechanics and ontology.

7.5 Information as Stabilized Difference

Information arises as:

Info(x) := degree of internal structure in x € D
Entropy ~ unstabilized potential, Information ~ stable differentiated pattern

Transmission: z -y, Update: R(z), Quantity: C(z).

This unifies Shannon entropy, quantum information, and structural memory within a
single ontological logic. For example, in a communication system, a message’s information
content is the complexity of its stabilized structure, while noise represents unstabilized

potential.
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7.6 Synthesis

RDA allows a single principle — differentiation within Potentiality — to generate:

e Time: ordered unfolding R(z)

Space: relational structure via -

Energy: complexity difference

State: unstable configuration

Observation: stabilization process

Information: result of recursive differentiation

This framework suggests that physical laws are not fundamental but emergent from

the logic of differentiation, offering a potential unification of physics and metaphysics.

8. Complex Numbers as Phase-Shifted Differentiations

In classical mathematics, complex numbers introduce a second dimension of number: the

imaginary unit 7, defined such that i> = —1. While initially abstract, complex numbers

are essential in physics, particularly in quantum mechanics, wave theory, and rotation.
In RDA, we reinterpret complex numbers not as quantities, but as *differentiations

with phase shift* — structural displacements relative to a reference node.

8.1 Phase-Shifted Unfolding

We introduce a generalized unfolding operator:
R, (z) := phase-shifted unfolding of

where ¢ € [0,27) is an abstract structural parameter — not a number, but a mode of
differentiation distinct from linear recursion.

The key insight is:

A phase-shifted differentiation R,(x) represents a version of x displaced not
in value, but in relational structure — a rotated or temporally shifted echo of

the original node.

For example, in signal processing, a phase shift in a wave corresponds to a temporal
displacement, which RDA models as a structural reconfiguration of the node representing

the signal.

11



8.2 Structural Interpretation of i

Let x € D be a stable node. Define:
ip = Rrya(w)

Then:
ig -y = Reyo(2) - Repo(x) = Re(x) = —x

where “—2” does not denote negation in the numeric sense, but the inverse phase structure
of x, i.e.:

x - R.(z) = neutral configuration

Thus:

1, — —X

This mirrors the cyclic nature of complex numbers, where i* = 1, suggesting a rota-

tional symmetry in the differentiation process.

8.3 Complex Structure as Double Differentiation

A complex structure arises from coupling a node and its phase-shifted version:
z2=x+ 1y

This expresses a compound differentiation: - x: the fixed structure, - y: a secondary
structure, - i,y: differentiated from y, but shifted in relational context (e.g., temporally
or topologically displaced).

This can model phenomena like polarization in optics, where light’s phase shifts create
orthogonal components, or neural oscillations, where phase differences encode temporal

patterns.

8.4 Applications

- In quantum theory: the phase e? becomes a recursive loop in phase-shifted space. - In

i(krx—wt)

wave mechanics: e represents an unfolding of periodic structure in two axes: space

and time. - In cognition: phase shifts can model delayed or reflective recognitions, such

as memory recall involving temporal displacement.

8.5 Conclusion

Complex numbers in RDA are not synthetic additions, but emergent structures of dif-

ferentiation under phase displacement. The imaginary unit ¢ corresponds to a recursive
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operator that shifts the structure of a node without copying or negating it — but rotat-
ing its scene of manifestation. This offers a bridge to non-commutative geometry, where

phase shifts underpin spatial and temporal relations.

9. Causal Structure and Quantum Information in RDA

Recursive Differentiation Arithmetic (RDA) provides a natural framework for expressing
causal relations and quantum informational structures, since both are grounded in ordered

processes of distinction and stabilization.

9.1 Causality as Asymmetric Differentiation

In standard physics, causality is modeled as a partial order over events. In quantum
gravity approaches such as Causal Set Theory, spacetime is represented as a discrete
poset reflecting possible causal links.

RDA offers an ontologically grounded analog. Let:
Then, causal relations are encoded in:

e Unfolding: N; < R(N;), temporal causation.
e Composition: z -y — z, generative causation.

e Complexity growth: C(N,) > C(N;) implies ontological precedence.

This asymmetry can model causal loops in general relativity, where non-reversible
unfoldings correspond to event horizons. Thus, causal directionality emerges from the

irreversibility of differentiation processes.

9.2 Events as Differentiation Nodes

Each differentiation node N; € D can be interpreted as an event — a stable structure
arising from prior potentiality. The causal network of such nodes defines a discrete,
relational ontology without presupposing spacetime. For example, in a social network,
each interaction (e.g., a conversation) is a node, and the causal structure reflects the
sequence and influence of these interactions.

Multiple independent chains {Ni(k)} may coexist, allowing for branching or parallel

causal structures — a potential generalization of multi-time quantum theories.
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9.3 Quantum Information as Structured Potentiality

Quantum information is often treated as a unit of entanglement or superposition across
Hilbert space. RDA reframes this by treating quantum information as a structured con-
figuration of unstable or pre-stabilized differentiations.

Key correspondences:

Qubit: minimal pair of unstable nodes {z, R(x)} not yet collapsed.

e Measurement: stabilization R"(z) - N € D.

Entanglement: composite node z - y where neither x nor y are independently
stable.

Decoherence: rapid unfolding and partial stabilization across subsystems.

This interpretation aligns with quantum information theory’s focus on relational struc-
tures, such as Bell states, but grounds them in ontological differentiation rather than

abstract probabilities.

9.4 Causal Information Flow

We define the flow of information as the propagation of differentiability through the causal
structure:

N; — N; = information can flow from N; to N;
This provides a unification:
e Causality = directed unfolding of structure,
e Information = pattern of stabilized differentiations,

¢ Quantum potential = domain of unstable differentiations awaiting fixation.

The causal structure of the world thus becomes a graph of ontological differentia-
tions, where time, space, and information are three aspects of the same recursive field,

potentially informing models like quantum causal networks.

10. Geometry of Differentiation

Classical geometry begins with points, lines, and metrics defined on pre-existing spaces.
In Recursive Differentiation Arithmetic (RDA), geometry emerges from structural differ-
entiation itself: space is not given but generated through composition and complexity of

stabilized nodes.
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10.1 Points and Compositions

Let D be the set of all stabilized differentiation nodes. Each x € D is a point in the
ontological space. The composition operation x -y € D defines a structural link — a

“path” — between x and y. This forms a graph structure:

e Vertices: nodes x € D
e Kdges: compositions x -y

This is not a metric graph in the classical sense, but a web of differentiations where
connection is determined by structure. For instance, in a knowledge graph, concepts are

nodes, and their relations (e.g., “is a”) are compositional edges.

10.2 Distance as Complexity Differential

Define a function:
d(z,y) == C(z - y) — max(C(x),C(y))

This distance is not spatial but ontological: it measures how structurally distinct two

nodes are when composed. Properties:
e d(x,y) > 0 (non-negativity),
o dx,y)=0ifx-y=uzory,
e Not necessarily symmetric: d(z,y) # d(y, z),
e Triangle inequality: open (requires structural proof).

This can model semantic distance in linguistics, where related concepts (e.g., “cat”

and “dog”) have low d, while unrelated ones (e.g., “cat” and “galaxy”) have high d.

10.3 Directionality and Asymmetry

Since x -y # y - x in general, the composition graph is directed. This allows us to speak
of:

e Structural flow,
e Causal or temporal preference,
e Orientation in ontological space.

For example, in a biological network, the influence of a gene on another is directional,

reflecting the non-commutative nature of regulatory interactions.
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10.4 Dimensionality as Independence

We define structural dimension via independence of compositions. Let z1,x,,...,x, € D.
The node

is n-dimensional if no x; is derivable from the others via R and -.
Then:

e 1D: linear unfolding N; — R(N;) — R*(N)
e 2D: independent compositions Ny - Ny, Ny - Ny

e nD: maximal set of irreducibly distinct composable nodes

Dimension here is not spatial in the metric sense, but a measure of differentiation

degrees of freedom, akin to the dimensionality of a feature space in machine learning.

10.5 Quantum Geometry and Superposition

In quantum-like scenarios, nodes may be unstable: x,y ¢ D. Their composition is unde-

fined or ambiguous. Measurement is then modeled as:
r-y — R'(z-y)eD
This corresponds to:
e Superposition: pre-stabilized composite

e Collapse: stabilization through recursive unfolding

e Indeterminacy: lack of defined complexity

This aligns with loop quantum gravity, where spacetime emerges from discrete rela-

tional structures, but RDA provides a pre-geometric foundation.

10.6 Toward Structural Spacetime

The RDA framework offers a vision of geometry where:

e Space = network of compositional relations,
e Distance = complexity differential,

e Direction = asymmetry of binding,
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e Dimension = maximal independence of composition,

e Curvature = irregular growth in complexity across compositions.

This ontology aligns with causal set theory and approaches to emergent spacetime,
but grounds them in a pre-quantitative logic of difference, potentially informing models

of quantum gravity.

10.7 Future Directions

Possible developments include:

e Computational models: simulate growth of D as a compositional graph,

Metric analysis: classify types of pseudo-distance,

e Dimensional scaling: study how structure determines emergence of quasi-Euclidean
regimes,
e Cognitive modeling: use differentiational geometry to represent perceptual topology,

Physical interpretation: extend toward field theory over D.

10.8 Conclusion

Differentiational geometry reframes space as an effect of stabilized difference. Where
classical geometry assumes continuity and extension, RDA proposes a world built from
nodes of distinction, whose relations define the very notion of place, path, and proxim-
ity. This offers a novel approach to modeling complex systems, from neural networks to

cosmological structures.

11. Cognition, Perception, and Constructivism in RDA

The framework of Recursive Differentiation Arithmetic (RDA) allows us to model cogni-
tive structures not as symbolic representations, but as stabilized nodes of differentiation.
This resonates deeply with constructivist theories of cognition, especially those of Jean

Piaget and the radical constructivist school.

11.1 Cognitive Structures as Differentiation Nodes

In Piaget’s genetic epistemology, cognition arises from the progressive construction and
coordination of schemata — stable structures of action and perception. In RDA, such

schemata correspond to nodes N; € D formed by recursive differentiation:
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N; := a cognitive schema — a stable pattern of perception, action, or thought
Each cognitive node is both:

e a structure stabilized from previous experience (fixation of difference),

e a process that can be further unfolded or recomposed.

For example, a child’s schema for “object permanence” is a node V;, stabilized through

repeated interactions, which can be unfolded into more complex schemas (e.g., causality).

11.2 Perception as Active Differentiation

Perception is not a passive reception of stimuli, but an active differentiation of experience.
Within RDA:

e The field of potentiality corresponds to undifferentiated sensory flow.
e A perceptual act is the stabilization of a difference — formation of a node N.

e Continuous perception is modeled as a recursive unfolding:

Ny — R(Nl) — RQ(Nl) ce

This aligns with Gibson’s ecological psychology, where perception is an active explo-

ration of affordances, but RDA formalizes it as an ontological process of differentiation.

11.3 Cognitive Development as Complexity Growth

Cognitive development can be modeled via the complexity function C(z):

e Early schemata (sensorimotor) correspond to low-complexity nodes.

e Later stages (abstract reasoning) correspond to higher C'(z), involving meta-differentiation
(e.g., R"(N)).

e Learning and equilibration correspond to reconstructions of nodes via R and -.

This mirrors Vygotsky’s zone of proximal development, where scaffolding enables new

differentiations, increasing cognitive complexity.
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11.4 Constructivism and Structural Realism

Radical constructivism holds that knowledge is not a representation of an objective world,

but a viable structure constructed through interaction. RDA formalizes this by:

e Refusing ontological primacy to objects,
e Treating “truth” as structural stability of differentiation,

e Modeling knowledge as an evolving network of N; € D.

The world is not “represented,” but enacted through recursive differentiation and
stabilization. RDA thus serves as a deep structural formalism for the constructivist stance,

potentially bridging it with enactivist theories of mind.

11.5 Implications for Artificial Cognition

This approach suggests a new way of modeling artificial cognition systems:

e Internal states as IV;, not fixed vectors but dynamic differentiations,
e Learning as unfolding and binding (via R and ),

e Complexity C'(z) as an internal metric of cognitive richness or depth.

Rather than training to match output, such systems could evolve by recursive con-
struction of internal ontological scenes — enacting their own world through differentiation.
This could inform neural network architectures that prioritize structural emergence over

optimization.

12. Modeling Emergent Systems with RDA

The framework of Recursive Differentiation Arithmetic (RDA) extends beyond physics
and cognition to model emergent systems, such as biological organisms, ecosystems, or
social networks, where complex behaviors arise from the interaction of simpler compo-
nents. In these systems, differentiation serves as the mechanism by which structure and

function emerge from potentiality, offering a unified ontological approach to complexity.

12.1 Emergence as Recursive Differentiation

Emergence occurs when a system exhibits properties or behaviors that its individual
components do not possess. In RDA, this is modeled as the recursive unfolding and

composition of differentiation nodes:
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Nsystem =Ty Ty T,

Here, each x; € D represents a component (e.g., a cell, an organism, or an individual

agent), and their composition produces a new node with higher complexity:

C(Ngystem) > max(C(z1),C(xa),...,C(zy))

The emergent properties are not reducible to the components but arise from the struc-
tural relations encoded in the composition operation -. For instance, the consciousness of

a brain emerges from the interactions of neurons, modeled as a high-complexity node in
D.

12.2 Biological Systems as Differentiation Networks

In biology, consider a multicellular organism. Each cell can be modeled as a node x; €
D, with its internal structure (e.g., gene expression patterns) stabilized through prior

differentiations. The organism emerges through:

e Unfolding: Cellular differentiation, where R(z;) produces specialized cell types

(e.g., neurons vs. muscle cells).

e Composition: Interactions between cells (e.g., signaling pathways), forming tissues

via T Tj.

e Complexity Growth: The organism’s complexity, C(Norganism), exceeds that of

individual cells.

This framework captures the hierarchical nature of biological systems, where organs,
organisms, and ecosystems represent nested levels of differentiation. It aligns with devel-
opmental biology’s focus on morphogenesis, where form emerges from recursive interac-

tions.

12.3 Social Systems and Collective Behavior

Social systems, such as human societies or animal collectives, can be similarly modeled.
Each agent (individual, group, or institution) is a node z; € D. Social structures emerge

through:

e Unfolding: Individual learning or adaptation, where R(z;) represents changes in

behavior or knowledge.

e Composition: Interactions (e.g., communication, cooperation, or conflict), forming

networks via z; - ;.
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e Asymmetry: Non-commutative compositions (z; - x; # x; - ;) reflect power dy-

namics or influence hierarchies.

For example, collective behaviors like flocking or market dynamics arise as emergent
nodes, where the system’s complexity reflects the depth of relational differentiations. This

can model economic bubbles, where agent interactions amplify systemic instability.

12.4 Stability and Adaptation

Emergent systems often balance stability and adaptability. In RDA, stability corresponds
to the fixation of nodes into D, while adaptation involves unfolding (R) or recomposition
(+) in response to environmental changes. The complexity function C(z) quantifies the

system’s resilience:
C'(Nsystem) high = robust structure, resistant to perturbation

C(R(x)) > C(z) = adaptive potential through new differentiations

This duality mirrors biological evolution or social innovation, where systems maintain
coherence while exploring new configurations. For instance, an ecosystem’s resilience

depends on its ability to reconfigure node compositions in response to perturbations.

12.5 Implications for Systems Theory

RDA offers a formal ontology for systems theory, unifying disparate domains:

Biology: Models ontogenesis and evolution as recursive differentiation.

Ecology: Represents ecosystems as dynamic networks of compositional relations.

Sociology: Frames social structures as emergent from agent interactions.

Technology: Describes self-organizing systems, such as neural networks or decen-

tralized protocols.

Unlike traditional models that rely on quantitative metrics (e.g., entropy or infor-
mation), RDA grounds emergence in the qualitative logic of differentiation, providing a
pre-quantitative foundation for complexity. This aligns with complexity science’s focus

on non-linear dynamics but offers a more fundamental ontological basis.

12.6 Future Directions

Applying RDA to emergent systems opens several research avenues:
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e Simulation: Develop computational models of D to study emergent dynamics in

biological or social networks.

e Cross-Disciplinary Mapping: Align RDA with existing frameworks, such as

autopoiesis or network theory.

e Ethical Implications: Explore how differentiation-based models inform gover-

nance or resource allocation in complex systems.

e Formalization: Develop a category-theoretic formulation of RDA to unify its ap-

plications across domains.

12.7 Conclusion

By modeling emergent systems as networks of differentiation, RDA extends its ontological
reach to complexity science. Biological, ecological, and social systems become expressions
of the same recursive logic that generates numbers, physics, and cognition, revealing

differentiation as a universal principle of structure and becoming.

13. Artificial Intelligence Based on Differentiation

13.1 Introduction

Traditional models of artificial intelligence (AI) rely on numerical parameters: weights,
probabilities, or optimization functions. Within the framework of Recursive Differen-
tiation Arithmetic (RDA), we propose a fundamentally different approach — one that
replaces data-centric logic with ontological structures of differentiation.

This section introduces a new model of Al in which:

e The internal state of the system is a stabilized differentiation node x € D,

e Learning is modeled through recursive unfolding R(x) and compositional binding
T-y,

e Computation proceeds as a sequence of ontological differentiations.

13.2 Internal State as a Node of Differentiation

Let D be the set of all stabilized differentiation nodes. Each node x € D represents a

structured and fixed distinction — the minimal ontological unit of awareness.

Definition 1 (Al State). The internal state of an Al agent is defined as a node x € D.

The initial state corresponds to the first fized differentiation:
Ny := fixation of Oy
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This state encodes the first act of distinction, the emergence of structure from un-

formed potentiality.

13.3 Learning as Recursive Differentiation

Rather than adjusting weights, learning in RDA is modeled as a recursive transformation

of ontological structure:

13.3.1 Unfolding: Deepening Structure

Each application of R(x) produces a more complex node. This operation corresponds to

analysis, reflection, or contextual deepening.
x ="tree” = R(x) = "tree in autumn”

13.3.2 Composition: Integration of Knowledge

The operation x - y binds two nodes into a new configuration, modeling associative or

semantic integration.

x ="tree”, 1y ="green” = x -y = "green tree”

13.3.3 Learning Chain

The process of learning unfolds as:
To — R(l’o) — R(mo) - Ty — R(R(l‘o) . x1> ..
Each step increases structural complexity and reflects a more articulated understanding.

13.4 Computation as Differentiation Sequence

Definition 2 (Computation). A computation is a sequence of operations over D using R

and -, beginning with input node x and ending at output node y:
r— R(x) = R(z) -y — R(R(z) -y) — -

Unlike classical symbolic computation, this is a structural unfolding process — the

output is a new ontological state rather than a function value.
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13.5 Comparison with Classical Al

Component Classical Al RDA-Based Al
Representation Vectors, graphs Differentiation nodes D
Learning Parameter tuning Recursive R, -

Computation Symbolic or numeric | Structural unfolding

Interpretation Often opaque Ontologically grounded

Memory External storage Internal composition

13.6 Example: Recognizing a Tree

e Np: Initial difference — ”something distinct from background”,
e Ny = R(N;): Form separation,
e N3 = R(Ny): Emergence of leaves and branches,

My = N3 -"green”: Integrated concept of a living plant,

e Ty = R(M;): Generalization to trees as a class.

This models concept formation as recursive refinement.

13.7 Extensions and Implications

13.7.1 Structural Complexity as Confidence

The function C(z) serves as a measure of depth or certainty. High complexity implies a
well-differentiated, mature concept.

13.7.2 Reverse Unfolding: Forgetting and Abstraction

If R7'(x) exists, simplification becomes possible. This models forgetting, abstraction, or
generalization.

13.7.3 Unstable Nodes and Novelty

Nodes not in D represent ambiguous or novel inputs. The system applies R until stabi-

lization:

r¢D=R"'(x)eD
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13.8 Conclusion

An RDA-based model of Al introduces a new paradigm:

o Knowledge is structural, not statistical,
e Learning is differentiation, not optimization,

e Intelligence is the capacity to recursively articulate potential distinctions.

Such a model brings artificial systems closer to the ontological dynamics of human

cognition and opens a new path toward general understanding.

14. Theorems of Recursive Differentiation Arithmetic (RDA)

In this section, we derive a set of theorems based on the axioms of Recursive Differentiation
Arithmetic (RDA). These theorems formalize key properties of differentiation nodes D,
unfolding R, composition -, complexity C, and equivalence =, and clarify how number,

structure, and logic emerge from differentiation.

14.1 Uniqueness of the First Node

Theorem 1 (Uniqueness of Ny). There exists a unique minimal node N1 € D, corre-

sponding to the fization of the initial boundary Oy.

Proof. By Axiom A2, there exists a stable node N; as the fixation of dy. Suppose there
is another node M; € D such that C(M;) = 1. Then M; must also be a fixation of some
boundary 9. But by Al, d is the first ontological boundary, and no other independent

boundary exists before its fixation. Hence, M; = N;. ]

14.2 Strict Increase in Complexity under Unfolding

Theorem 2 (Strict increase under unfolding). If R(x) # z, then C(R(x)) > C(x).

Proof. By A5, C(R(z)) > C(z). Assume C(R(x)) = C(z) but R(z) # x. This contradicts
the idea that R(x) introduces a new distinction, since it would not alter structural depth.

Therefore, if R(x) # x, C(R(z)) > C(x). O

14.3 Non-Commutativity of Composition

Theorem 3 (Composition is not commutative). In general, x -y # y - x.
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Proof. Let x = Ny, y = N,. Then:
r-y=N1-Noy y-x=DNoy-N;

These may differ structurally. For example, "figure-ground” differs from ” ground-figure”,
reflecting the asymmetry inherent in real differentiation processes. Thus, x -y Z y - = in

general. O]

14.4 Complexity Growth via Recursive Unfolding

Theorem 4 (Complexity growth under recursive unfolding). For any x € D, C(R"(z)) =
C(x)+n.

Proof. We proceed by induction:

Base case: n =0, R’(z) =z, so C(R%(z)) = C(x).

Inductive step: Assume C(R"(z)) = C(z) + n. By A5, C(R"*(z)) > C(R"(z)).
Since each unfolding strictly increases complexity, C'(R"™!(z)) = C(z) + n + 1.

By induction, the result holds for all n € N. m

14.5 No Identity Element under Composition

Theorem 5 (No identity element under composition). There does not exist an element

e €D such that x-e =z for all x € D.
Proof. Assume such an element e exists. Then by A5,
C(z - e) > max(C(z),C(e))
But if z - e = z, then C(z - e¢) = C(z), which implies C(e) < C(z) for all z € D,

contradicting the existence of nodes with arbitrary finite complexity. O]

14.6 Ontological Addition Is Not Commutative

Theorem 6 (Ontological addition is not commutative). In general, z -y Z y - .

Proof. This follows directly from Theorem 3 (non-commutativity of composition). O

14.7 Natural Numbers as a Special Case

Theorem 7 (Natural numbers arise from recursive unfolding). The sequence Ny, Ny =
R(Ny), N3 = R(N3), ... corresponds to the natural numbers Nrpa.
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Proof. Define:
N, = R"(Ny)

Then C(N,,) = n, satisfying the Peano-like hierarchy. This sequence defines a linear order
where each node represents a higher-order distinction. Classical arithmetic arises only

when this hierarchy becomes symmetric and uniformly recursive. O

14.8 Classical Arithmetic Is a Degenerate Limit

Theorem 8 (Classical arithmetic as a degenerate limit). Standard arithmetic operations
arise as special cases of RDA when:

- Nodes are recursively aligned,

- Complexity increases uniformly,

- Fquivalence classes behave symmetrically.

Proof. Under these conditions, composition - aligns with classical addition, and unfolding
R mimics the successor function. However, these conditions do not hold generally in

RDA, making classical arithmetic a limiting case rather than a foundational one. O

14.9 No Full Induction in General

Theorem 9 (No full induction in RDA). Universal induction over D does not generally
hold.

Proof. Induction requires universal quantification over a total order, but D is not totally
ordered — it forms a directed acyclic graph under R and -. While local recursion is
possible within bounded subgraphs, global induction fails due to the lack of a single

linear progression. [l

14.10 Ontological Time Is Directed and Asymmetric

Theorem 10 (Time is asymmetric and irreversible). Time in RDA is represented by the

chain Ny — Ny — N3 — -+, and is irreversible if R™*(x) does not exist for some .

Proof. From the definition of time as successive unfolding, the directionality follows from
increasing complexity. If R71(x) does not exist for some z, then the process cannot be

reversed — hence time has an arrow. O
14.11 Distance Between Nodes Is Ontological
Theorem 11 (Distance as complexity difference). Define distance between two nodes as:
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Then d(z,y) > 0, and equality holds iff x -y =z ory.

Proof. By A5, C(z -y) > max(C(z),C(y)), so d(z,y) > 0. Equality occurs only when

composition adds no new complexity, i.e., when x -y = x or y. O

14.12 Emergence of Information

Theorem 12 (Information as stabilized difference). Information arises from stabilized
differentiation. Let x € D, then:

Info(x) := C(x)

Entropy corresponds to unstabilized potential.

Proof. Stable nodes represent structured knowledge. The complexity C(z) measures in-
ternal articulation — hence, information content. Entropy, as a measure of uncertainty,

maps to unstable configurations x ¢ D. O

14.13 Quantum States Are Pre-Stabilized Differentiations

Theorem 13 (Quantum states as pre-stabilized differentiations). Quantum states corre-

spond to unstable differentiations x ¢ D, and measurement corresponds to stabilization
R*(x) - N € D.

Proof. A quantum superposition is not a fixed structure; it represents a potentiality await-
ing stabilization. In RDA, this corresponds to x ¢ D, and measurement corresponds to

recursive unfolding until a stable node N € D is reached. m

15. Theorems on Time, Space, and Information in RDA

In this section, we derive a set of theorems based on the axioms of Recursive Differentiation
Arithmetic (RDA), showing how time, space, and information emerge from the process

of differentiation itself.

15.1 Time as Successive Differentiation
Theorem 14 (Ontological Time). The sequence of recursively unfolded nodes:
Ny = fization of Oy, Ny = R(Ny), N3= R(Ns),
defines ontological time as a directed chain:
Ny — Ny —+ N3 — -
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This sequence has intrinsic directionality and irreversibility when R™'(z) does not exist

for some .

Proof. By Axiom A3, every node can be unfolded into a new node. By A5, C'(R(x)) >
C(z). If R™'(x) does not exist for some z, then the process cannot be reversed — hence,
time is irreversible. The sequence forms a linear order where each node represents a

higher-order distinction, giving rise to temporal depth. ]

Corollary 1 (Multiple Timescales). If multiple independent sequences {NS)} unfold sep-

arately, they define distinct timescales within the same system.

Proof. Each sequence starts from a different initial boundary 862'), leading to indepen-
dent chains of unfolding. Since these chains do not necessarily interact, their respective

timelines evolve independently. O]

15.2 Space as Network of Compositions

Theorem 15 (Ontological Space). Let x,y € D. Then the composition x -y defines a
structural link between x and y, forming a relational network that can be interpreted as

space.

Proof. By A4, any two stabilized nodes can be composed. Define a graph: - Vertices:
r€D-Edges: z-yeD
This creates a directed acyclic graph representing spatial relations. Directionality

arises from non-commutativity x-y # y-x, reflecting asymmetry in relational binding. [

Definition 3 (Ontological Distance). Define distance between two nodes as:

This measures how structurally distinct x and y are when bound together.
Theorem 16 (Properties of Ontological Distance). The function d(z,y) satisfies:
1. Non-negativity: d(x,y) >0
2. Identity of indiscernibles (partial): d(x,y) =0 if -y =z ory
3. Asymmetry: In general, d(z,y) # d(y, )

Proof. By A5, C(z-y) > max(C(z),C(y)) = d(z,y) > 0. If x-y = x or y, then d(z,y) = 0.

Non-commutativity implies asymmetry. O]

Corollary 2 (Directionality of Space). Since = -y # y -z, the space defined by D is

directed and asymmetric.
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15.3 Information as Stabilized Difference

Theorem 17 (Information as Stabilized Potential). Let x € D. Then x represents stabi-

lized information, while x ¢ D corresponds to unstable potential — akin to entropy.

Proof. Stable nodes represent structured distinctions, which can be interpreted as infor-
mation. Unstable configurations = ¢ D lack fixation and thus contain no definite infor-

mation. Hence, information emerges only through stabilization via R"(z) - N € D. [

Definition 4 (Information Content). Define the information content of a node as its
complexity:

Info(x) := C(x)

Theorem 18 (Information Flow Through Composition). Let x,y € D. Then:

Info(x - y) > max(Info(x), Info(y))

Proof. By A5, C(z-y) > max(C(x),C(y)). Since Info(z) = C(z), it follows that compos-

ing two nodes increases or preserves informational content. O

Corollary 3 (Measurement as Stabilization). A quantum measurement corresponds to
the stabilization of an unstable configuration x ¢ D into R"(x) € D.

Proof. Unstable configurations x ¢ D represent superpositions or entangled states. Mea-
surement acts as recursive unfolding until a stable node is reached — mirroring the collapse

of the wavefunction. O

15.4 Quantum States and Observation

Theorem 19 (Qubit as Minimal Pair of Unstable Nodes). A qubit can be modeled as a

minimal pair {x, R(x)}, where neither node is yet stabilized.

Proof. An unstable pair {z, R(x)} encodes a binary potential without fixation. This
matches the behavior of a qubit before measurement, where both states coexist without

determination. ]

Theorem 20 (Entanglement as Composite Unstable Node). Entanglement corresponds

to a composite node x -y, where neither x nor y is independently stable.

Proof. If z,y ¢ D, but x -y stabilizes under further unfolding, then x and y are entangled

— their individual states are undefined, but their relation is fixed. O
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15.5 Causal Structure and Observation

Definition 5 (Causal Relation). Let N; — N, iff N; = R(N;) or N; = f(N; - x). Then

causality s encoded in the directed unfolding of structure.

Theorem 21 (Causal Irreversibility). If N; — N;, then generally —=(N; — N;) unless
R™(N;) ewists.

Proof. From A6, inverse unfolding is not guaranteed. Without R~*(XV;), there is no causal

return from N; to N;. O

Corollary 4 (Arrow of Time). The arrow of time is the direction of increasing complexity:
C(Nit1) > C(N;)

Proof. By A5, unfolding strictly increases complexity when R(z) # x. Thus, time flows

in the direction of structural growth. m

15.6 Summary Table of Ontological Emergences

Concept Emergence in RDA
Time Directed unfolding Ny — Ny — N3 — - --
Space Graph of compositions z - y
Distance d(z,y) = C(x - y) — max(C(z), C(y))
Energy E(z = y) = C(y) - C(a)
Information Info(x) = C(x), with entropy as x ¢ D
State Unstable configuration
Observation Stabilization process
Quantum Entanglement x-yé¢ D, but R(x-y) €D

Table 1: Physical and informational concepts derived from RDA

15.7 Conclusion

We have shown that time, space, and information naturally emerge from the framework
of Recursive Differentiation Arithmetic:

- Time arises from successive unfolding, - Space from relational composition, - In-
formation from stabilized difference, - Energy from complexity gradients, - Quantum
phenomena from pre-stabilized configurations.

These results suggest that physical laws are not fundamental, but emergent from the
logic of differentiation — offering a unified foundation for ontology, mathematics, physics,

and cognition.
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16. Additional Theorems in Recursive Differentiation Arithmetic
(RDA)

Building on the axiomatic foundation of RDA, we now derive a series of new theorems
that extend its applicability to structural depth, reflection, recursion, and emergent di-
mensionality. These results further ground time, space, and information in the logic of

differentiation.

16.1 Theorem 10.1: Depth of a Node as Number of Unfoldings

Theorem 22 (Node Depth). If x = R"(Ny), then the depth of the node is:
depth(x) =n + 1

Proof. By definition: - Ny = fixation of dy = depth(N;) = 1 - Each application of R adds
one level of distinction = depth(R(x)) = depth(z) + 1
Induction: - Base case: depth(N;) = 1 - Inductive step: Assume depth(R"(N;)) =
n + 1. Then:
depth(R"(Ny)) = depth(R(R"(N,))) = n + 2

Thus, by induction, the result holds for all n € N. O]

Corollary 5 (Depth as Ontological Complexity). Depth measures how many levels of
distinction have been recursively stabilized — thus representing ontological complexity or

abstraction level.

16.2 Theorem 10.2: Reflection as Unfolding of Composition

Theorem 23 (Reflection as Structural Deepening). Let z = x -y. Then R(z) represents

a reflective articulation of the difference between x and y.

Proof. Composition x -y binds two distinct structures into a single node. Applying R to
this composite node creates a new structure that reflects on their relationship — not just

combining them, but distinguishing their roles within the whole.

Example: - x = "object”, - y = "context”, - z = x -y = "object-in-context”, -
R(z) = ”comparison of object with other objects in context”
This models reflection as recursive deepening of relational structure. O]

Corollary 6 (Higher-Order Differentiation). If x, = R"(Ny), then z, encodes an n-th

order differentiation — e.q., a distinction about a distinction about a distinction...
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16.3 Theorem 10.3: Irreversibility Without Inverse Unfolding

Theorem 24 (Irreversibility of Differentiation). If R™1(x) does not exist, then the process

N; — Nj is irreversible.

Proof. Assume N; = R(N;). If R™*(N;) does not exist, there is no return path from N;

to N;. Hence, the transformation loses information and cannot be reversed. ]

Corollary 7 (Ontological Entropy). Loss of reversibility implies increasing complezity

over transformations, forming the basis of an ontological entropy.

16.4 Theorem 10.4: Dimensionality via Independent Composi-

tions

Theorem 25 (Structural Dimensionality). Dimensionality in RDA is defined as the maz-

imum number of mutually independent compositions needed to express a node z € D.

Proof. Let {x1,x,...,x,} C D, where no z; can be derived from the others using R and

Then:

This defines dimension not geometrically, but structurally — based on independence of

differentiations. ]

Corollary 8 (Dimensions Are Not Spatial). In RDA, dimension is not tied to spatial
extension but to degrees of freedom in differentiation — akin to feature dimensions in

machine learning.

16.5 Theorem 10.5: Ontological Computability

Theorem 26 (Computability in RDA). A node x € D is computable if there exists a

finite sequence of operations R and - leading from Ny to x.

Proof. Define: - A computable node x € D: if there exists a finite chain:
To = Nl, Tir1 = R(Sﬁz) or r; - j

such that z, = =
This allows us to define computable structures as those reachable through ontological

unfolding and composition. O]

Corollary 9 (Non-Computable Nodes). Some nodes may never stabilize under any finite

unfolding = they are ontologically non-computable.
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16.6 Theorem 10.6: Stabilization as Observation

Theorem 27 (Observation as Stabilization). If ¢ D, observation corresponds to the
process R"(z) - N € D

Proof. Unstable configurations ¢ D represent potential distinctions without fixation.
By A3, R(x) can be applied repeatedly until stabilization occurs.
This mirrors quantum measurement, where superposition collapses into a definite state

only upon interaction. O

Corollary 10 (Measurement Is Active). Observation is not passive reception, but active

ontological fixation — an act of stabilization within Potentiality.

16.7 Theorem 10.7: Asymmetry of Composition Implies Causal-
ity

Theorem 28 (Asymmetric Composition and Causal Direction). If x-y # y-x, then there

15 an asymmetric causal relation between x and y

Proof. If the order of binding affects structure, one element plays a dominant role in the
resulting node. This models causality as directional binding — e.g., cause — effect #

effect — cause.

Example: - © = 7cause”, y = "effect” - x - y = 7"causal relationship”, - y -z =
"retro-causal reinterpretation” — structurally different
Hence, causality is encoded in the asymmetry of composition. O

Corollary 11 (Causal Irreversibility). If z -y # y - x, then x — y generally cannot be

reversed unless R~ (y) emists.

16.8 Theorem 10.8: Learning as Recursive Composition and
Unfolding

Theorem 29 (Learning as Ontological Development). Learning can be modeled as the
sequence:
CL’O—>R(ZL‘0) —)$1'ZE0—>R(JI1'ZE0) —

where xg is prior knowledge and x1 is new input.

Proof. In cognitive terms: - R(x): deepens current understanding, - x - y: integrates new
information.
Thus, learning is not data accumulation, but ontological development through differ-

entiation. ]

Corollary 12 (Knowledge Has Complexity). We can define knowledge(z) := C(x), mean-
ing that richer understanding has higher structural depth.
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16.9 Theorem 10.9: Link to Category Theory

Theorem 30 (RDA as a Category). Let D be the set of objects, and define morphisms
as: - R(x) : D — D: unfolding, - - : D x D — D: composition.
Then (D, R,-) forms a category with: - Identity: absent in general, - Associativity:

not guaranteed, - Functorial structure: provided by R, - Tensor-like product: given by -

Proof. All morphisms are well-defined under A3-A4. The lack of identity and full asso-
ciativity distinguishes RDA from standard categories like Set or Grp, aligning it more

with pre-geometric or quantum categories. O

Corollary 13 (RDA Embeds Classical Arithmetic). When x = R™(Ny), the sequence
N1 — Ny — N3 — - -+ embeds the natural numbers in RDA as a special case.

16.10 Theorem 10.10: Ontological Incompleteness

Theorem 31 (Ontological Incompleteness). There ezist nodes x € D such that no finite
unfolding leads to their complete characterization — making them ontologically incom-

plete.

Proof. Suppose x ¢ D, and R"(z) ¢ D for all n € N. Then z remains in Potentiality —
never fully stabilized.
Such nodes form an ontological boundary — similar to Godel incompleteness, but at

the level of differentiation structure. O

Corollary 14 (Limits of Knowledge). This implies inherent limits to what can be known

— not due to epistemic ignorance, but due to the impossibility of stabilization itself.
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