Amber 2024
Reference Manual

Amber 2024

Reference Manual

(Covers Amber24 and AmberTools24)

Principal contributors to the current codes:

David A. Case (Rutgers)
Thomas E. Cheatham IIT (Utah)
Carlos Simmerling (Stony Brook)
Adrian Roitberg (Florida)
Kenneth M. Merz (Michigan State)
Ross C. Walker (Independent Consultant)
Ray Luo (UC Irvine)

Pengfei Li (Loyola University Chicago)
Tom Darden (OpenEye)
Celeste Sagui (NCSU)

Feng Pan (FSU)

Junmei Wang (Pitt)

Daniel R. Roe (NIH)

Jason Swails (Entos, Inc.)
Andreas W. Go6tz (UC San Diego)
Jamie Smith (Relativity Space)
David Cerutti (Psivant Discovery)
Taisung Lee (Rutgers)

Darrin York (Rutgers)
Timothy Giese (Rutgers)

Tyler Luchko (CSU Northridge)
Negin Forouzesh (CSU LA)
Vinicius Wilian D. Cruzeiro (Architect
Therapeutics)

Gérald Monard (U. Lorraine)
Yinglong Miao (UNC)

Jinan Wang (UNC)

Charles Lin (TandemAI)

G. Andrés Cisneros (UNT)

Ali Rahnamoun (Michigan State)
Zhen Li (Michigan State)

Akhil Shajan (Michigan State)
Madushanka Manathunga (Attmos Inc)
Joshua T. Berryman (Uni. Luxembourg)

Mahdieh Ghazimirsaeced (AMD)
Istvan Kolossvéry (Budapest, Boston U.)
Nikolai R. Skrynnikov (Purdue, SPbU)
Oleg Mikhailovskii (Purdue, SPbU)
Yi Xue (Tsinghua)

Sergei A. Izmailov (SPbU)
Koushik Kasavajhala (Stony Brook)
Kellon Belfon (Roivant Discovery)
Jana Shen (U Maryland)

Julie Harris (U Maryland)
Alexey Onufriev (Virginia Tech)
Saeed Izadi (Virginia Tech, Genentech)
Xiongwu Wu (NIH)

Holger Gohlke (Diisseldorf/FZ Jiilich)
Stephan Schott-Verdugo (FZ Jiilich)
Yongxian Wu (UC Irvine)

Qiang Zhu (UC Irvine)

Zhen Huang (UC Irvine)
Cizhang Zhao (UC Irvine)
George Giambasu (Merck)

Jian Liu (Peking Univ.)

Hai Nguyen (Schrodinger)

Scott R. Brozell (Rutgers)
Andriy Kovalenko (NINT)

Mike Gilson (UC San Diego)

Ido Ben-Shalom (UC San Diego)
Tom Kurtzman (CUNY)

Sergio Pantano (Inst. Pasteur, Uruguay)
Matias Machado (Inst. Pasteur, Uruguay)
H. Metin Aktulga (Michigan State)
Mehmet Cagri Kaymak (Michigan State)
Kurt A. O’Hearn (Michigan State)
Peter A. Kollman (UC San Francisco)

For more information, please visit https://ambermd.org/contributors.html

* When citing Amber 2024 (comprised of AmberTools24 and Amber24) in the literature, the following citation
should be used:

D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti, T.E.
Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, N. Forouzesh, M. Ghazimirsaeed, G. Gi-
ambasu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, Z. Huang, S. Izadi, S.A. Izmailov, K.
Kasavajhala, M.C. Kaymak, I. Kolossvary, A. Kovalenko, T. Kurtzman, T.S. Lee, P. Li, Z. Li, C. Lin, J. Liu,
T. Luchko, R. Luo, M. Machado, M. Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H.
Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pantano, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui,
S. Schott-Verdugo, A. Shajan, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker,
J. Wang, J. Wang, X. Wu, Y. Wu, Y. Xiong, Y. Xue, D.M. York, C. Zhao, Q. Zhu, and P.A. Kollman (2024),
Amber 2024, University of California, San Francisco.

* Peter Kollman died unexpectedly in May, 2001. We dedicate Amber to his memory.

» Cover illustration: Representation of the human ribonucleotide reductase (WNRNR) hexamer with the individ-
ual subunits distinguished by color and featuring TTP bound at the dimeric interface and GDP bound to the
catalytic sites. Less prominently visible is ATP bound to the hexamer interfaces. The image is derived from
the crystal structure of the hRNR dimer bound to TTP and GDP (PDB ID: 3HND). The hexamer structure
with ATP bound to the third site was built using this PDB by Dr. Pilar Buteler. Figure by Abigail Held.

e This manual was created on Wed Dec 18 03:06:15 PM MST 2024 .

Contents

Contents

Introduction and Installation

Introduction

1.1.

Information flow in Amber

Installation

2.1.
2.2.
2.3.
2.4.

Basicinstallation guide
The cmake build system in Amber
Applying Updates
Contacting the developers

Amber force fields

Molecular mechanics force fields

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

Proteins L L
Nucleicacids
Modified amino acids and nucleotides
Carbohydrates
Lipids
Solvents
Ions L
Force fields related to semi-empirical QM
The GAL17 force field for water over platinum . . .

3.10. Fluorescent dyes: AMBER-DYES in AMBER force fieldfiles
3.11. Coarse-grained and multiscale simulations using the SIRAH force field

3.12. Obsolete force field files

The Generalized Born/Surface Area Model

4.1.
4.2.
4.3.

GB/SA input parameters
Implicit Solvent with Explicit Ions model (GBION) .
ALPB (Analytical Linearized Poisson-Boltzmann) .

GBNSR6

5.1.
5.2.
5.3.

GB equations available in gbnst6
Numerical implementation of the R6 integral
Usage o i

PBSA

6.1.
6.2.
6.3.
6.4.

Introduction
Usage and keywords
LibTorch Installation

13

15
15

19
19
21
27
29

31

33
34
39
41
42
49
52
55
57
57
59
60
63

67
69
72
76

78
78
78
79

82
82
85
94
95

CONTENTS

10.

11.

12.

6.5. Visualization functions inpbsao e e e e e e
6.6. pbsainsander and NAB e
6.7. GPU accelerated pbsa 0 e e e e e e e

Reference Interaction Site Model

7.1, Introduction e e e e e
7.2. Practical Considerations e e e e e e e e
7.3. Work Flow e e e e e
T4, rismld e e e e e e
7.5. 3D-RISMinsander e e e e e e e e
7.6. rism3d.snglpnt e e e e e e e e e
7.7. RISMFile Formats e e e e e e e e

sgqm: Semi-empirical quantum chemistry

8.1. Available Hamiltonians
8.2. Dispersion and hydrogen bond correctiono
83, Usage

QUICK: ab initio quantum chemistry

9.1. Features and limitations e
9.2. Installation e e e
93, USagE o i e e e e

QM/MM calculations

10.1. Built-in semiempirical NDDO methods and SCC-DFTB
10.2. Interface for ab initio and DFT methods
10.3. QM/MM simulations with QUICK
10.4. QM/MM simulations with TeraChem,
10.5. QM/MM simulations with xXTB
10.6. QM/MM simulations with DFTB+
10.7. QM/MM simulations with DPRc machine learning corrections
10.8. Adaptive solvent QM/MM simulations
10.9. Adaptive buffered force-mixing QM/MM L
10.10SEBOMD: SemiEmpirical Born-Oppenheimer Molecular Dynamics
10.11ReaxFF/AMBER

Using energies and forces from an external library
11.1. Installation INStrUCHIONS v v v v e o e e e e e e e e e e e e e e e e e
11.2. Simulation setup and input parameterso u e e e e e e e

System preparation

Preparing PDB Files

12.1. Cleaning up Protein PDB Files for AMBER
12.2. Residue naming CONVENtIONS v v v v v v v et e e e e e e e e e e e e e e e
12.3. Chains, Residue Numbering, Missing Residues
12.4. pdbdamber e e e e e e e
[2.5.reduce oo e e
12.6. pdb2par . . . o o e e e e e e
12.7. gwh (guess water hydrogens) e
12.9. packmol-memgen e e
12.10Building bilayer systems with AMBAT

111
111
117
120
123
126
136
140

147
147
149
150

156
157
157
158

159
159
168
184
187
191
193
196
198
203
210
214

221
221
221

13.

14.

15.

16.

17.

18.

19.

20.

CONTENTS

LEaP

13.1. Introduction oL e e e e e e e
13.2. CONCEPLS © v v o v e
133 Running LEaP e
13.4. Basic instructions for using LEaP to build molecules
13.5. Error Handling and Reporting
13.6. Commands e e e e e
13.7. Building oligosaccharides, lipids and glycoproteins,

Reading and modifying Amber parameter files
14.1. Understanding Amber parameter files oL oL
142. ParmEd L

Antechamber and GAFF

15.1. Principal programs e e e
15.2. A simple example for antechamber L
15.3. Programs called by antechamber L
15.4. Miscellaneous programs vt it e e e e e e e e e e e e e e e

paramfit

16.1. USage o ot
16.2. TheJob Control File
16.3. Multiple molecule fits
16.4. Fitting Forces L e
16.5. Examples oL e

Molecular Mechanics Parameter Fitting in mdgx

17.1. Inputand Output e e
17.2. Installation Lo
17.3. Partial Charge Development e
17.4. Implicitly Polarized Charge Development
17.5. Customizable Virtual Site Support
17.6. Bonded Term Fitting inmdgx e
17.7. Configuration Sampling e
17.8. Parallel Generalized Born Problemsonthe GPU

Python Metal Site Modeling Toolbox (pyMSMT)
18.1. Introduction oL e e e
18.2.Usage e e

Electrostatic Parameterization with py_resp.py

19.1. PYTESP_ZENPY « « v v o o e
192 py_resp.py Usage e
19.3. Examples for py_1esp.py . . . v ¢ v vt i e e e e e e e e e e e e e e e e e

Setting up crystal simulations

20.1. UnitCell e e e e e e e
20.2. PropPDB e e e
20.3. AdATOBOX o e e e e e e e e e
20.4. ChBOX e e

237

275
275
283

311
311
316
319
323

327
328
329
335
335
336

CONTENTS

IV. Running simulations 381
21. sander 383
21.1. Introduction e e e e e e 383
212 Fileusage e e e 384
21.3. Example inputfiles e 385
21.4. Namelist Input Syntax e 386
21.5. Overview of the informationin the inputfile 387
21.6. General minimization and dynamics parameters 387
21.7. Potential function parameterso e e 409
21.8. Polariable Gaussian Multipole Model oL oo 418
21.9. Varying conditions Lo e 419
21.10File redirection commands Lol e e e e e e e 423
21.11Getting debugging informationo 424
21.12multisander (and multipmemd) L. 426
21.13APBS as an alternate PB solverin Sander 427
21.14Programmer’s Corner: The sander API o 429
22. pmemd 451
22.1. Introduction e e e e e e e 451
22.2. Functionality e e e e e e e e 451
22.3. PMEMD-specific namelist variables L 453
22.4. Slightly changed functionality e 455
22.5. Parallel performance tuning and hints oL oL o 455
22.6. GPU Accelerated PMEMD e 456
23. Atom and Residue Selections 463
23.1. Amber Masks L. e 463
23.2. "Atom Expressions" in NAB Applications 466
23.3. GROUP Specification vttt 466
24. Sampling configuration space 471
24.1. Self-Guided Langevin dynamics o 0 it e e e e e 471
24.2. Accelerated Molecular Dynamics. e e 474
24.3. Gaussian Accelerated Molecular Dynamics oL o 478
24.4. Targeted MD L L e e e e 486
24.5. Multiply-Targeted MD (MTMD) o e e e e 487
24.6. Nudged elastic band calculations e 489
24.7. Adaptive String Method L e 492
24.8. Low-MODe (LMOD) methods e e e 495
24.9. DL-Find Optimization e e e e e 501
25. Free energies 505
25.1. Thermodynamic integration i i e 505
25.2. Linear Interaction Energies e 520
25.3. Replica Exchange Molecular Dynamics (REMD) 521
25.4. Adaptively Biased MD, Steered MD, Umbrella Sampling with REMD and String Method 548
25.5. Steered Molecular Dynamics (SMD) and the Jarzynski Relationship 564
25.6. Absolute Free Energiesusing EMIL o 566
25.7. Nonequilibrium sampling and Jarzynski’s equation, 570
26. Constant pH calculations 580
26.1. Background e 580
26.2. Preparing a system for constant pH simulation 00000 580

27.

28.

29.

30.

31.

32.

33.

34.

CONTENTS

26.3. Running atconstant pH L. 583
26.4. Analyzing constant pH simulations 586
26.5. Extending constant pH to additional titratable groups Lo 586
26.6. pH Replica Exchange MD e 591
26.7.cphstats e e e e 591
Constant Redox Potential calculations 600
27.1. Preparing a system for constant Redox Potential simulation 600
27.2. Running at constant Redox Potential o 602
27.3. Analyzing constant Redox Potential simulations, 603
27.4. Extending constant Redox Potential to additional titratable groups 603
27.5. Redox Potential Replica Exchange MD o 604
27.6.COSTALS . . . v o o e e e e e e e e e e 604
Continuous constant pH molecular dynamics 607
28.1. Implementation NOES o v it e e e e e e e e e e e e e e e e e e e 607
28.2. Usage desCription e e e e 608
28.3. Continuous constant pH MD with pH replicaexchange 613
28.4. Obtaining parameters for a novel titratable group oL oL 614
NMR refinement 616
29.1. Distance, angle and torsional restraintso 617
29.2. NOESY volume restraints o vt v v i e i e e e e e e e e e e 622
29.3. Chemical shift restraints 624
29.4. Pseudocontact shift restraints Lo 625
29.5. Direct dipolar coupling restraints 626
29.6. Residual CSA or pseudo-CSA restraintsot v it 628
29.7. Preparing restraint files for Sander L. L L 629
29.8. Getting summaries of NMR violations 636
29.9. Time-averaged restraints L. L. e e 636
29.10Multiple copies refinement using LES Lo 637
29.11Some sample input files L 637
Xray and cryoEM refinement 642
30.1. EMAP restraints for rigid and flexible fittinginto EMmaps 642
30.2. FRETrest: Forster Resonance Energy Transfer restraints 644
30.3. X-ray functionality and diffraction-based restraints forpmemd 646
Locally-enchanced sampling 649
31.1. Preparing touse LES with Amber L 649
31.2. Using the ADDLES programt v ittt e e e 650
31.3. More information on the ADDLES commands and options 652
31.4. Using the new topology/coordinate files with SANDER 653
31.5. Using LES with the Generalized Born solvationmodel 654
31.6. Case studies: Examples of applicationof LES 654
gem.pmemd 658
32.1. Introduction e e e e e e e 658
32.2. Input variables e e e e e e e e e e e 658
Artificial Intelligence / Machine Learning 662
33.1. KMMD: Molecular Dynamics Using a Kernel Machine 662
NAB, nabc and libsff 666

CONTENTS

V. Analysis of simulations 667
35. mdout_analyzer.py and ambpdb 669
35.1.ambpdb 669
36. cpptraj 671
36.1. Introduction Lo 671
36.2. Running Cpptraj oL e e e 672
36.3. General CoNCePtS v v v v v i e e e e e e e e e e e e e e e e e e 676
36.4. Variables and Control Structures 679
36.5. DataSetsand DataFiles e 682
36.6. Data File Options e e e 686
36.7. Coordinates (COORDS) Data Set Commands 691
36.8. General Commands e e e 704
36.9. Topology File Commands e 718
36.10Trajectory File Commands e 729
36.11Action Commands e e e e 740
36.12Analysis Commands Lo e 829
36.13Analysis Examples L e e e e 876
37. pytraj 878
37.1. Introduction L. e e e e e e e 878
37.2. Development e e e 878
37.3. Documentation and exampleso oL 878
38. MMPBSA.py 882
38. 1. Introductiono e e e e e e e e 882
38.2. Preparing for an MM/PB(GB)SA calculation 882
38.3. Running MMPBSA.py e 885
38.4. Python APL L L e 898
39. FEW 904
39.1. Installation L. e e e e 904
39.2. Overview of workflow steps and minimal input, 906
39.3. Common setup of molecular dynamics simulations, 907
39.4. Workflow for automated MM-PBSA & MM-GBSA calculations (WAMM) 914
39.5. Linear interaction energy workflow (LIEW) 922
39.6. Thermodynamic integration workflow (TIW) 926
40. BAR/PBSA 936
40.1. Introduction e e e 936
40.2. USAZe . . v o e e e 936
40.3. Example for bar_pbsSa.py . . . o o v o oo e e e e e e 939
41. edgembar 940
41.1.edgembaro e 940
41.2. edgembar-amber2dats.py oL e e e e e e e e 942
41.3. edgembar-WriteGraphHtmlpy 943
42, SAXS 944
42.1. Introduction and theory 944
422, 08888 . . . o e 945

43. MoFT: analysis of volumetric data
43.1. Usage
43.2. Examples

44. ndfes

44.1. ndfes
44.2. ndfes-PrepareAmberData.py
44 3. ndfes-CheckEquil.py
44 4. ndfes-CombineMetafiles.py
44.5. ndfes-PrintFES.py
44.6. ndfes-AvgFESs.py
44.7. ndfes-path
44 8. ndfes-path-prepguess.py

44.9. ndfes-path-analyzesims.py

Bibliography

Index

CONTENTS

11

Part I.

Introduction and Installation

1. Introduction

Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simu-
lations, particularly on biomolecules. None of the individual programs carries this name, but the various parts
work reasonably well together, and provide a powerful framework for many common calculations.[1-4] The term
Amber is also used to refer to the empirical force fields that are implemented here.[5, 6] It should be recognized,
however, that the code and force field are separate: several other computer packages have implemented the Amber
force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in
the public domain, whereas the codes are distributed under a license agreement.

The Amber software suite is divided into two parts: AmberTools24, a collection of freely available programs
mostly under the GPL license, and Amber24, which is centered around the pmemd simulation program, and which
has a more restrictive license. Please see https://ambermd.org for an overview, tutorials and downloading
information. You can perform many simulation tasks with AmberTools, and can do more extensive simulations
with the combination of AmberTools and Amber itself.

Everyone should read (or at least skim) this chapter. Even if you are an experienced Amber user, there may be
things you have missed, or new features, that will help. Although Amber may appear dauntingly complex at first, it
has become easier to use over the past few years, and overall is reasonably straightforward once you understand the
basic architecture and option choices. In particular, we have worked hard on the tutorials to make them accessible
to new users. Thousands of people have learned to use Amber; don’t be easily discouraged.

If you want to learn more about basic biochemical simulation techniques, there are a variety of good books to
consult, ranging from introductory descriptions,[7-9] to standard works on liquid state simulation methods,[10—
12] to multi-author compilations that cover many important aspects of biomolecular modelling.[13—17] Looking
for "paradigm"” papers that report simulations similar to ones you may want to undertake is also generally a good
idea. If you are new to this field, Chapter 14 provides a basic introduction to force fields, along with details of how
the parameters are encoded in Amber files.

1.1. Information flow in Amber

Understanding where to begin in AmberTools is primarily a problem of managing the flow of information in
this package — see Fig. 1.1. You first need to understand what information is needed by the simulation programs
(sander or pmemd). You need to know where it comes from, and how it gets into the form that these programs
require. This section is meant to orient the new user and is not a substitute for the individual program documenta-
tion.

Information that all the simulation programs need (see the circles in Fig. 1.1):

1. Cartesian coordinates for each atom in the system. These usually come from X-ray crystallography, NMR
spectroscopy, or model-building. They should generally be in Protein Data Bank (PDB) format. The program
LEaP provides a platform for carrying out many of these modeling tasks, but users may wish to consider
other programs as well. Generally, editing of these files is needed, and the pdb4amber script can do some of
this.

2. Residue libraries: Connectivity, atom names, atom types, residue names, and charges. This information
comes from the database, which is found in the $AMBERHOME /dat /leap/1ib directory, and is described
in Chapter 3. It contains topology for the standard amino acids as well as N- and C-terminal charged
amino acids, DNA, RNA, and common sugars and lipids. Topology information for other molecules (not
found in the standard database) is kept in user-generated “residue files”, which are generally created using
antechamber.

15

https://ambermd.org

1. Introduction

pdb4amber,
prepareforleap,
packmol
\
antechamber, force field;
pyMSMT, LEaP residue
mdgx libraries
prnjtop
profcrd
\
parmed
\
NMR or sander input
XRAY memd o] tFi)ons
restraints P P
MMPBSA.py, mdout_analyzer,
FEW cpptraj

Figure 1.1.: Basic information flow in Amber. Rectangles represent programs and circles represent input files.
Programs in red are the most inportant.

3. Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the system. The standard
parameters for several force fields are found in the SAMBERHOME /dat /leap/parm directory; see Chap-
ter 3 for more information. These files may be used “as is” for proteins and nucleic acids, or users may
prepare their own files that contain modifications to the standard force fields.

4. Once the topology and coordinate files (often called prmtop and prmcrd, but any legal file names can be
used) are created (usually by tleap), the parmed script can be used to examine and verify these, and to make
modifications. In particular, the checkValidity action will flag many potential problems.

5. Input options: The user specifies the procedural options and state parameters desired. These are specified in
input files, named mdin by default.

6. Other restraints, often based on experimental data, such as from NMR or Xray; other sources of restraints
may also be used.

1.1.1. Preparatory programs

LEaP is the primary program to create a new system in Amber, or to modify existing systems. It is available as
the command-line program tleap or the GUI xleap.

1.1. Information flow in Amber

pdb4amber generally helps in preparing pdb-format files coming from other places (such as resb.org) to be com-
patible with LEaP.

prepareforleap is not a program, but an action inside cpptraj, that also helps make pdb-format files compatible
with LEaP. It is particularly useful for carbohydrates.

parmed provides a simple way to extract information about the parameters defined in a parameter-topology file. It
can also be used to check that the parameter-topology file is valid for complex systems (see the checkValidity
command), and it can also make simple modifications to this file.

antechamber is the main program to develop force fields for small organic molecules (e.g., drugs, modified amino
acids) using a version of the general Amber force field (GAFF). These can be used directly in LEaP, or can
serve as a starting point for further parameter development.

pYMSMT provides a means to build, prototype, and validate MM models of metalloproteins and organometallic
compounds. It uses the bonded plus electrostatics model to expand existing pairwise additive force fields.
It is a reimplementation of MCPB in Python, with a more efficient workflow and many modeling processes
from previous versions incorporated automatically.

mdgx allows the generation of bonded force field parameters for any molecule by fitting to quantum data.

packmol-memgen provides a simple way to generate membrane systems, with or without protein, by orient-
ing input proteins with Memembed and using Packmol as the packing engine. It can handle complex
lipid mixtures, as well as multi-bilayer systems. The output is compatible with Amber through charmm-
lipid2amber.py.

1.1.2. Simulation programs

sander (part of AmberTools) is the basic energy minimizer and molecular dynamics program. This program
relaxes the structure by iteratively moving the atoms down the energy gradient until a sufficiently low average
gradient is obtained. The molecular dynamics portion generates configurations of the system by integrating
Newtonian equations of motion. MD will sample more configurational space than minimization, and will
allow the structure to cross over small potential energy barriers. Configurations may be saved at regular
intervals during the simulation for later analysis, and basic free energy calculations using thermodynamic
integration may be performed. More elaborate conformational searching and modeling MD studies can also
be carried out using the sander module. This allows a variety of constraints to be added to the basic force
field, and has been designed especially for the types of calculations involved in NMR, Xray or cryo-EM
structure refinement.

pmemd (part of Amber) is a version of sander that is optimized for speed and for parallel scaling; the pmemd.cuda
variant runs on GPUs. The name stands for “Particle Mesh Ewald Molecular Dynamics,” but this code can
now also carry out generalized Born simulations. The input and output have only a few changes from sander.

gem.pmemd (part of AmberTools) is a (CPU-only) variant of the pmemd program that is designed for calculations
using “advanced” force fields, such as AMOEBA[18] and GEM.[19]

1.1.3. Analysis programs

mdout_analyzer.py is a simple-to-run Python script that will provide summaries of information that is in the
output files from sander or pmemd.

cpptraj is the main trajectory analysis utility (written in C++) for carrying out superpositions, extractions of
coordinates, calculation of bond/angle/dihedral values, atomic positional fluctuations, correlation functions,
analysis of hydrogen bonds, etc. See Chap. 36 for more information.

pytraj is a Python wrapper for cpptraj. It introduces additional flexibility into data analysis by combining with
Python’s rich ecosystems (such as numpy, scipy, and ipython-notebook).

17

1. Introduction

MMPBSA.py is a Python script that automates energy analysis of snapshots from a molecular dynamics simulation
using ideas generated from continuum solvent models. (There is also an older perl script, called mm_pbsa.pl,

that has similar functionality.)

FEW (Free energy workflow) automates free energy calculations of protein-ligand binding using TI, MM/PBSA-
type, or LIE calculations.

edgembar Alchemical free energy simulation analysis. See Chap. 41 for more information.

ndfes Umbrella sampling free energy analysis See Chap. 44 for more information.

2. Installation

2.1, Basic installation guide

This chapter gives an overview of how to install and test your distribution. Note that the procedure is different
from earlier versions of Amber, relying on CMake rather than make. Once you have downloaded the distribution
files, do the following:

1. First, extract the files in some location (we use /home/xxxx as an example here, but you can install anywhere
that you have write permissions):

cd /home/xxxx
tar xvfj AmberTools24.tar.bz2 # (Extracts into an “amber24 src” directory.)
tar xvfj Amber24.tar.bz2 # (Only if you have licensed Amber 24!)

2. Next, you may need to install some compilers and other libraries. Details depend on what OS you have,
and what is already installed. Package managers can greatly simplify this task. For lists of requirements for
Windows, macOS and for many variants of Linux, please visit ambermd.org/Installation.php. In particular,
you will need to have cmake in your PATH. A restriction is that you cannot use the cmake you obtain
from a conda distribution you may have; you will need to use a package manager, or download it from
https://cmake.org/. If you have an existing miniconda distribution, please remove it from your PATH while
building Amber.

3. Apply patches to what is in the distribution tarfile. Do the following:

cd amber24 src
./update_amber --help # to see an overview of options
./update_amber —--update # to apply any available updates

(A note: the following, cmake, step will also apply any available patches. However, update. 5 to Amber-
Tools24 modifies a part of the cmake procedure that is carried out before cmake applies the updates. You can
doa ./clean_build and re-run cmake a second time, but things are simpler if you do the update now.)

4. Building with cmake: The Amber development team has moved our build system to cmake, with the con-
version being spearheaded by Jamie Smith.
The basic rationale for the move, and instructions on using cmake to build Amber, are at
* ambermd.org/pmwiki/index.php/Main/CMake-Quick-Start
* ambermd.org/pmwiki/pmwiki.php/Main/CMake-Common-Options
¢ Section 2.2, below.

For most users, the options chosen in the sample script (below) should be OK. Note that with cmake, the
“source” directory (where you extracted the files,) must be different from the installation directory. Thus,
make sure that -DCMAKE_INSTALL_PREFIX is not set to amber24_src in the run_cmake script.

cd amber24_src/build

optional: edit the run cmake script to make any needed changes;
most users should not need to do this.

./run_cmake

Next, build and install the code:

make install

19

https://ambermd.org/Installation.php
https://cmake.org/
https://ambermd.org/pmwiki/index.php/Main/CMake-Quick-Start
https://ambermd.org/pmwiki/pmwiki.php/Main/CMake-Common-Options

2. Installation

5. The installation step will create a resource file amber.sh in your installation directory. This file will set up
your shell environment correctly for Amber when it is sourced:

source /home/xxxx/amber24/amber.sh # for bash, zsh, ksh, etc.

Note that the resource file must be sourced, not executed. Adding these commands to your login resource
file (e.g., ~/.bashrc, ~/.zshrc) will set up your environment every time you start a new shell. In particular, it
sets the AMBERHOME environment variable, which is needed for a number of workflows involving Amber.
[There is a similar script, amber.csh, for those who use a C type shell interactively.]

6. This should be followed by a testing phase. If you have -DINSTALL_TESTS=TRUE in your cmake invo-
cation, then you can do the following:

cd $AMBERHOME # (this was set in step 4, above)
make test.serial

which will run tests and will report successes or failures.

If"possible FAILURE" messages are found, go to the subdirectories of SAMBERHOME /AmberTools/test
or SAMBERHOME /test, and look at the "*.dif" files. Differences should involve round-off in the final digit
printed, or occasional messages that differ from machine to machine (see below for details). As with com-
pilation, if you have trouble with individual tests, you may wish to comment out certain lines in the Makefiles

(i.e., SAMBERHOME /AmberTools/test/Makefile or SAMBERHOME /test /Makefile), and/or go
directly to the test subdirectories to examine the inputs and outputs in detail. For convenience, all of the fail-

ure messages and differences are collected in the SAMBERHOME / 1ogs directory; you can quickly see from

these if there is anything more than round-off errors.

The nature of molecular dynamics is such that the course of the calculation is very dependent on the order
of arithmetical operations and the machine arithmetic implementation, i.e., the method used for round-off.
Because each step of the calculation depends on the results of the previous step, the slightest difference
will eventually lead to a divergence in trajectories. As an initially identical dynamics run progresses on
two different machines, the trajectories will eventually become completely uncorrelated. Neither of them
are "wrong;" they are just exploring different regions of phase space. Hence, states at the end of long
simulations are not very useful for verifying correctness. Averages are meaningful, provided that normal
statistical fluctuations are taken into account. "Different machines" in this context means any difference in
floating point hardware, word size, or rounding modes, as well as any differences in compilers or libraries.
Differences in the order of arithmetic operations will affect round-off behavior; (a + b) + ¢ is not necessarily
the same as a + (b + c¢). Different optimization levels will affect operation order, and may therefore affect
the course of the calculations.

All initial values reported as integers should be identical. The energies and temperatures on the first cycle
should be identical. The RMS and MAX gradients reported in sander are often more precision sensitive
than the energies, and may vary by 1 in the last figure on some machines. In minimization and dynamics
calculations, it is not unusual to see small divergences in behavior after as little as 100-200 cycles.

7. If you are new to Amber, you should look at the tutorials (available at https://ambermd.org/
tutorials) and this manual in order to become familiar with the Amber features and functionalities.

8. In order to compile the parallel (MPI) version of Amber, follow these steps (after successfully installing the
serial version).

a) You must first ensure that you have installed MPI and that mpicc and mpif90 are in your PATH. Some
MPI installations are tuned to particular hardware (such as InfiniBand), and you should use those
versions if you have such hardware. Most people can use standard versions of either mpich or openmpi
obtained from a package manager. See https://ambermd.org/Installation.php for information about your
particular operating system. See also the information about MPI in 2.2 below.

b) Then do the following:

20

https://ambermd.org/tutorials
https://ambermd.org/tutorials
https://ambermd.org/Installation.php

2.2. The cmake build system in Amber

cd /home/xxxx/amber24 src/build

edit the run_cmake script to set -DMPI=TRUE

./run_cmake

make install

To run tests: Note the value below may depend on your MPI implementation
export DO_PARALLEL="mpirun -np 2"

cd /home/xxxx/amber24 # or wherever your run_cmake script specified for the IN
source amber.sh

make test.parallel

Note, some tests, like the replica exchange tests, require more

than 2 threads, so we suggest that you test with either 4 or 8

threads as well

export DO_PARALLEL="mpirun -np 4"

make test.parallel

2.2. The cmake build system in Amber

This section will walk you through performing certain common tasks with the CMake build system. Note: this
is fairly advanced information; for a more gentle introduction, please visit these pages:

e CMake Quick Start Guide

* CMake Common Options

2.2.1. Using MPI and OpenMP

MPI and OpenMP provide different methods of parallelizing Amber -- MPI at the process level, and OpenMP at
the thread level. MPI takes the form of one or more libraries that Amber needs to link with, while OpenMP requires
compiler support and is activated by a specific compiler flag. If you are working in a high-performance computing
environment, then there will usually be a specific system MPI installation compatible with your hardware that you
are supposed to use. Make sure to find out what that is and where it’s installed before going any further.

You can enable MPI in the CMake build system by passing the -DMPI=TRUE flag. This will enable use of
MPI in all programs that support it. For each of these programs, the standard (serial) version will still be built,
and an additional version with MPI support, usually identified by the ".MPI" suffix appended to the name, will be
compiled.

Traditionally, MPI is integrated into programs’ build systems by telling them to use special "compiler wrappers"
that automatically apply the needed flags and libraries for MPI before calling the real compiler. However, Amber
does not use these, since it would make it impossible to compile executables without MPI support. Instead,
Amber makes use of CMake’s FindMPI module, which extracts the compiler flags from the MPI wrappers and
lets CMake use them only where needed. By default, FindMPI will search for MPI compiler wrappers (e.g.
mpicc, mpicxx, or mpif95) in your PATH and use the settings from the first one it finds. If you want to select a
different MPI implementation, you can define (-D) the variables MPI_C_COMPILER, MPI_CXX_COMPILER,
and MPI_Fortran_ COMPILER to point to the MPI wrappers for their respective languages. Or, with CMake >=
3.9 installed, you can define MPIEXEC_EXECUTABLE to point to the location of a mpiexec executable, and
CMake will attempt to find the MPI that is installed in the same directory as it. For even more information, Refer
to Cmake’s FindMPI docs.

OpenMP can be enabled using the -DOPENMP=TRUE, and thankfully the process for configuring it is not as
convoluted. CMake is aware of the needed OpenMP flags for all supported compilers and will automatically find
one that works. If none is available, an error will be printed. Similarly to MPI, once OpenMP is enabled an
alternate version of all supported programs will be made that has a ".OMP" suffix.

21

https://ambermd.org/pmwiki/pmwiki.php/Main/CMake-Quick-Start
https://ambermd.org/pmwiki/pmwiki.php/Main/CMake-Common-Options
https://cmake.org/cmake/help/latest/module/FindMPI.html

2. Installation

2.2.2. Using CUDA

CUDA is Nvidia’s software development kit for creating custom applications that run on Nvidia GPUs. Am-
ber primarily uses CUDA in pmemd.cuda, but it’s also used to accelerate several other applications in Amber-
Tools, such as cpptraj, mdgx, pbsa, and QUICK. You can enable CUDA in the CMake build system using -
DCUDA=TRUE. This will build CUDA versions of all applications that support it. MPI CUDA versions will also
be built if MPI is enabled. More details, especially for pmemd, are available in Section 22.6.4.

Currently Amber supports CUDA versions from 7.5 to 12.4 inclusive. However, older versions are less well
tested and more likely to cause issues, and you may also run into trouble with the CUDA SDK being incompatible
with newer compilers on your machine. So, it’s better to use one of the newer CUDA versions if possible. Note
that the compilation of complex CUDA code such as Amber’s is extremely CPU and memory intensive, so CUDA
builds are much slower than those of other languages. It is not abnormal for the compilation of a single source file
to take several minutes, and for the compilation of all of pmemd.cuda to take close to an hour. Similarly, compiling
the CUDA version of QUICK will take a long time.

By default, CMake will search for the CUDA compiler executable (nvcc) on your PATH and use the CUDA
installation associated with it. To specify a certain install location, define the CUDA_TOOLKIT_ROOT_DIR
variable, e.g. -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-11.0. The Amber build system uses CMake’s
legacy FindCUDA module and will continue to for the foreseeable future. So, information related to CUDA that
is for newer versions of CMake may not be accurate. Instead, refer to the FindCUDA docs for information.

Amber supports use of the Nvidia NCCL library for communications between multiple GPUs, which provides
a performance improvement over plain MPL. If the library is enabled (using -DNCCL=TRUE), then it will be
activated when pmemd.MPI.cuda is run on 3 or more GPUs. This is not of relevance for QUICK as in this case
communication time is negligible.

2.2.3. Using HIP and AMD GPUs

Amber24 has support for execution on AMD GPUs using ROCm and HIP (Heterogeneous-Compute Interface
for Portability). ROCm is an Advanced Micro Devices software stack for GPU programming. HIP is a C++
Runtime API that allows developers to create portable applications for AMD and NVIDIA GPUs. Here are some
installation notes:

* ROCm support in Amber is available for pmemd, cpptraj, mdgx and pbsa. It can be enabled in the CMake
build system using ~-DHIP=ON. For parallel runs with MPI, GPU-Aware MPI librarys (e.g., OpenMPI with
UCX and ROCM support) must be installed on your system. Amber24 supports ROCm version 6.0 and later.

¢ CMake will use the HIP compiler executable (hipcc) on your PATH and use the ROCm installation asso-
ciated with it. To specify a certain install location, define the HIP_TOOLKIT_ROOT_DIR variable, e.g.
-DHIP_TOOLKIT_ROOT_DIR = /opt/rocm/.

* Amber24 supports execution on different AMD GPU architectures including MI100, MI210, MI250, and
MI300. It also supports execution on RDNA?2 based GPUs (e.g., RX 6900 XT). For Amber execution on
RDNA?2 based GPUs, you need to add —-DHIP_WARP64=0FF to the cmake command.

 There is an compile_with_hip.sh file in the amber24_src folder that provides the cmake commands and
more detailed instructions for building Amber for AMD GPUs.

¢ To run the test suite for AMD GPUs, go the the amber24 /test folder, and type ‘'make test.hip.serial’

or ‘'make test.hip.parallel’. There are DPFP (default) and SPFP versions of these tests. As with
CUDA installations, one should definitely make sure the serial code is working before trying parallel runs.
As noted above, special version of MPI libraries are required for GPU-parallel execution.

Although we have done extensive tests on some AMD platforms, users should remember that this code is about a
decade newer than the corresponding CUDA codes, and have not undergone as much “real-world” testing. Be sure
to check short runs against CPU or CUDA codes, and be on the lookout for problems that other users might not
yet have experienced.

22

https://cmake.org/cmake/help/latest/module/FindCUDA.html

2.2. The cmake build system in Amber

2.2.4. Controlling External Libraries

Amber can use, for one purpose or another, a great variety of third-party libraries. Some, such as NetCDF,
FFTW, and Boost, are core components of many programs and as such must be enabled for the build to succeed.
Others are only optional and Amber can work just fine without them. The complete description of what these
libraries do and how to use them is too complex for here and is left to the relevant sections of the manual. Instead,

this section will focus on the build system’s tools for managing them.

After the configuration finishes, the build system will print a build report showing all libraries used. Here’s an

example from my system:

- 3rd Party Libraries
————— building bundled:
—— ucpp - used as a preprocessor for the NAB compiler

—— netcdf-fortran - for creating trajectory data files from Fortran
—— pnetcdf - used by cpptraj for parallel trajectory output

—— readline - used for the console functionality of cpptraj

—— xblas - used for high-precision linear algebra calculations

—— mpidpy - MPI support library for MMPBSA.py

————— using installed:
—- arpack - for fundamental linear algebra calculations

—— netcdf - for creating trajectory data files

—— fftw - used to do Fourier transforms very quickly

—— apbs - used by Sander as an alternate Poisson-Boltzmann equation solver

—— zlib - for various compression and decompression tasks

—— libbz2 - for bzip2 compression in cpptraj

—— plumed - used as an alternate MD backend for Sander

—— libm - for fundamental math routines if they are not contained in the C library
—-— mkl - alternate implementation of lapack and blas that is tuned for speed

—— perlmol - chemistry library used by FEW

—-— boost - C++ support library

—— nccl - NVIDIA parallel GPU communication library

—-— mbx - computes energies and forces for pmemd with the MB-pol model

————— disabled:
—— blas - for fundamental linear algebra calculations
—— lapack - for fundamental linear algebra calculations

—-— c9x—-complex - used as a support library on systems that do not have C99 complex.h

—— lio - used by Sander to run certain QM routines on the GPU
—— pupil - used by Sander as an alternate user interface

support

There are a lot of important details in this report. The "canonical" name of each library is listed, along with
its description. You’ll also notice that each library is listed as either "bundled", "installed", or "disabled". This

indicates where the build system found each library.

With some exceptions, Amber will automatically find and use libraries it finds on the system, marking them as

installed. You’ll see output from these detections earlier in the build, with a message explaining why it couldn’t
find each library that is missing and what info it needs to locate it. If you don’t need the library active you can
ignore these messages, but otherwise you can use that information to determine what variables to define. For
example, if you saw this output:

—— Could NOT find PnetCDF_C (missing: PnetCDF_C_LIBRARY PnetCDF_C_INCLUDE_DIR)

you could help CMake find the library with the following command:

cmake <path to source> -DPnetCDF_C_LIBRARY=<path to libpnetcdf.so> \
—DPnetCDF_C_INCLUDE_DIR=<path to folder containing pnetcdf.h>

To find libraries when the paths aren’t specified directly, CMake uses a specific search path which generally con-
tains all the system directories. But what if you have certain libraries installed to a nonstandard directory? The

23

2. Installation

easiest way to help CMake find those libraries is by defining the variable CMAKE_PREFIX_PATH. This can be
set to one path or a semicolon-separated list, and each of these paths will be searched like a standard Unix prefix:
<path>/bin for programs, <path>/lib for libraries, and <path>/include for headers. If you’ve used Autoconf build
systems before this is similar to the --prefix option, though it does not control the install directory.

Unlike many other CMake build systems, Amber is smart enough to automatically find and use new libraries
that have been installed on the system after the initial configuration has been run. So, you should be able to pick
up new libraries just by running cmake on a previously configured build directory. However, there are still some
situations that will require you to delete and recreate the build directly completely, such as if the build or source
directory is moved or if an external library is deleted or moved to a new location.

For many libraries which are required and are not commonly found on people’s systems, Amber provides bun-
dled versions to make users’ lives easier. These bundled versions are automatically compiled and installed along
with Amber, and should work seamlessly. They also are guaranteed to get built with the same environment and
settings as Amber, removing a common source of problems. However, they do increase the binary size and can
cause conflicts with libraries already installed on the system, so especially if you are packaging Amber, you may
wish to use the external versions.

In the past, the Amber developers have had trouble with user issues related to broken installations of cer-
tain libraries on certain common OSs. To combat this, the decision was made to prevent Amber from linking
to certain libraries by default unless specifically told to. As of Amber 20, these libraries are netcdf, netcdf-
fortran, boost, mkl, and arpack. To disable this behavior and use all found libraries, you can use the option
-DTRUST_SYSTEM_LIBS=TRUE.

Sometimes, even more fine-grained control over 3rd party libraries is needed, such as if a specific 3rd party
library is found but fails to link and you want to disable it. For this purpose, three override options are pro-
vided: FORCE_DISABLE_LIBS, FORCE_INTERNAL_LIBS, and FORCE_EXTERNAL_LIBS. These accept
semicolon-separated lists of library names. FORCE_DISABLE_LIBS will force Amber to build without a given
library, and will print an error if that library is required. FORCE_INTERNAL_LIBS will tell Amber to prefer the
internal version of a bundled library. Finally, FORCE_EXTERNAL_LIBS will tell Amber to prefer the version of
a library that is installed on the system.

One last thing: keep in mind that these variables are lists and the entire list is set at once. Suppose you
had previously disabled MKL because of a link error, using -DFORCE_DISABLE_LIBS=mkl. Then, a build
error occurs with mpidpy and you want to disable that too. It’s fine to run CMake again without passing the
FORCE_DISABLE_LIBS option, but when you change it you need to pass the full new value so the mkl entry
isn’t erased. So, the argument to use would be -DFORCE_DISABLE_LIBS=mkl;mpi4py.

2.2.5. Selecting BLAS and MKL

Almost all Amber programs require access to the BLAS (Basic Linear Algebra Subprograms) and LAPACK
(Linear Algebra PACKage) libraries for computing various matrix operations. By default, Amber uses the vener-
able Netlib implementations of these libraries, which are widely compatible, but are not the best optimized. Over
time, several optimized versions of BLAS and LAPACK have been produced, which can offer performance in-
creases of 50%-1000% on large matrix operations. If you are building Amber for a high performance computing
environment, it is highly recommended to make use of an optimized BLAS implementation. Popular options in-
clude OpenBLAS, which is free and supports a wide variety of platforms, and MKL, which is more extensive and
may provide better performance on Intel chips.

Non-MKL BLAS implementations are handled using CMake’s FindBLAS and FindLAPACK modules. These
know about and search for a variety of BLAS and LAPACK implementations, including Netlib, OpenBLAS, and
Macs’ Accelerate framework. To force them to search for these specific versions of BLAS and LAPACK, you can
set the BLA_VENDOR variable to "Generic", "OpenBLAS", or "Apple" respectively. The full list is documented
here. If your BLAS is installed to a nonstandard location, you may need to add it to the CMake search path using
the methods in the previous section.

MKL, however, is a special case. It is a very complicated library that is difficult to link properly on all systems, so
itis not found by default to reduce the chance of errors. To enable it, either pass -DTRUST_SYSTEM_LIBS=TRUE
or -DFORCE_EXTERNAL_LIBS=mKI (see above). Amber will then search for MKL in its default install location,
such as /opt/intel/mkl on Linux. The environment variables MKL_HOME and MKLROOT will also be checked

24

2.2. The cmake build system in Amber

if they are defined. If MKL is installed to a different location, or if you need to select a specific version, define
the MKL_HOME CMake variable to point to MKL’s install directory. MKL can be used in two modes: threaded
or serial. Threaded mode provides the option for MKL to split calculations across multiple threads internally (ex-
actly how it does this is configured using environment variables). By default Amber will attempt to link MKL
in threaded mode, but if this causes problems (it requires that your compiler have an OpenMP implementation
supported by MKL) then you can use -DMKL_MULTI_THREADED=FALSE to turn this off. Also, if you want
Amber to use the MKL static libraries, you can pass the -DMKL_STATIC=TRUE option. Unfortunately, due to
how CMake find modules work, this option only takes effect the first time CMake is run.

2.2.6. Configuring Python

A substantial amount of Amber programs either are written in or provide interfaces to Python. Unfortunately,
Python installations tend to vary wildly across different systems, and Python programs are very prone to issues
with dependencies on native libraries as well as other Python libraries. So, Amber supports three different Python
configurations for different systems and setups.

1. The first option, and the one that is used by default, is to let Amber control the Python distribution entirely.
This is best if your system python environment is broken, unpredictable, or uncontrolled. Amber will down-
load a self-contained Continuum Miniconda python interpreter when CMake is run for the first time and will
manage it entirely itself. In Amber 22 and later, only Python 3 is supported. Once Amber is installed, you
can access Amber’s miniconda via the amber.python symlink in the install directory. Using miniconda will
eliminate the chance of a conflict between Amber’s binaries and dependencies and your system Python in-
terpreter. However, there are some downsides: it takes up a fair amount of space, on the order of a gigabyte,
and since it’s a separate interpreter, packages that you have installed to other interpreters won’t be able to
easily interoperate with Amber. Finally, when using miniconda, you can’t move the Amber install folder
from its original location. However, it’s still a reliable option for new users and those with problematic
Python environments.

2. The Intel python distribution seems to work well for many users. Visit www.intel.com/content/www/us/en/developer/tools/one:
and download and install the Al Analytics Toolkit. In your run_cmake script, turn off the miniconda download
and add -DPYTHON_EXECUTABLE=/opt/intel/oneapi/intelpython/latest/bin/python;
(modify the path if you installed the toolkit in some non-default location.)

3. Your final option is to just use your existing system Python interpreter. Set DOWNLOAD_MINICONDA
to FALSE, and let CMake find your Python interpreter on the PATH. By default it will prefer the latest
available python version, so python3.6 would be found before python2.7. To select a different interpreter, set
the PYTHON_EXECUTABLE variable to point to it. Amber requires certain Python packages be installed:
currently numpy, scipy, matplotlib, cython, setuptools, and tkinter. You can install these through your distro’s
package manager or through pip. If you don’t have root access, the pip install --user command is your friend
since it will install to your home directory instead of the system dirs. Amber’s CMake build system has
good support for working with your system Python, and it should work fine on most systems. However,
there can still be issues, so we recommend switching to Anaconda or Miniconda if the system installation is
not working for you.

2.2.7. Configuring Amber Settings

Here are a few other commonly used Amber build options. Ever had an Amber tool that you didn’t care about
fail to build, and you just wish you could make it disappear? Well now you can, with DISABLE_TOOLS! Just pass
it a semicolon-separated list of tools (folder names under AmberTools/src/ or src/) to this option, and it will prevent
them from building. A note will be added at the bottom of the build report saying which tools you’ve disabled. It
also tracks dependencies between tools, so disabling something that other things depend on will properly disable
the dependers instead of causing build errors.

Another useful option is the STATIC flag. This will cause all Amber executables and libraries to be linked
statically. This means that they don’t depend on any other libraries from Amber and can be moved anywhere or

25

https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html

2. Installation

to any other machine (as long as the same system libraries are present). It also may provide a performance boost
to some programs by removing the overhead of resolving symbols in shared libraries, though this has not been
measured.

Finally, Amber has two different ways of running tests, controlled by the INSTALL_TESTS option. With
INSTALL_TESTS enabled, all Amber and AmberTools tests are installed to the install prefix, and can be run with
the standard commands using the Makefile there. This makes the installation totally independent of the source dir,
which is convenient for packaging or distributing Amber. However, there are some downsides: the tests are quite
large, taking up a gigabyte or more of space. Copying them from the source folder will eat up even more of your
disk and make the install process take quite a bit longer. If you’re planning on keeping the source directory around
then it might make more sense to leave INSTALL_TESTS disabled. In this configuration, the tests will not be
installed and you must run them out of the source directory after sourcing amber.sh.

Several other common tasks are covered with more in-depth guides:

* Cross-compiling Amber

* Creating packages (includes Linux deb/rpm packages, OS X DMG packages, and Windows installers)

2.2.8. Selecting Special Features

As of Amber 24, significantly improved performance of pmemd.cuda.MPI is available through the MVAPICH
MPI library’s MVAPICH2-GDR GPU to GPU direct communication facility[20]. The improvement is 84%
for the explicit solvent subset of the Amber benchmark suite. Users must manually activate this feature: Edit
run_cmake and add -DMVAPICH2GDR_GPU_DIRECT_COMM-=TRUE to the Linux section. And you must use
MVAPICH2-GDR version 2.3.7 or later as your MPI. If you employ this feature then, in addition to citing Amber,
please also cite reference [20] and note whether this capability enabled larger simulations.

2.2.9. Selecting Compilers

Most users will not need to explicitly select their compilers because the run_cmake script automatically selects
either CLANG for macOS or GNU for Linux. Advanced users can select alternate compilers. The complete list of
compilers is CLANG, CRAY, GNU, INTEL, INTELLLVM, ONEAPI, and PGI. New in Amber 24 is support for
the Intel oneAPI compilers specified via INTELLLVM or the alias ONEAPI.

The option INTEL refers to the Intel classic compilers (icc, icpc and ifort) which have been deprecated by
Intel; these are no longer available through the normal Intel release mechanism, although old versions can prob-
ably be obtained. The new Intel oneAPI compilers (icx, icpx and ifx) are definitely for experienced users. It
is quite rare for Amber codes to exhibit any significant performance advantage compared to GNU compilers.
For a list of known issues and general instructions on building Amber with oneAPI compilers please visit am-
bermd.org/InstIntelOne API.php.

2.2.10. Debugging the Build

Last but not least, there are several options that are very useful when things go haywire in the build.

You’ll notice pretty quickly when building that CMake chooses to omit the full compiler command in favor of
a pretty-looking filename and progress percentage only. This is nice most of the time, but can be a problem if a
compile command is failing and you aren’t sure why. Luckily, CMake has a handy option for these situations:
CMAKE_VERBOSE_MAKEFILE. Setting it to TRUE will cause it to print out the full compiler command for
each file. As a shortcut, if you are using Makefiles, then you can run make VERBOSE=1 to trigger the same
behavior without rerunning CMake.

But what if you’re sure that Amber is being compiled correctly, but it’s having trouble linking to an external
library? This is where -DPRINT_PACKAGING_REPORT=TRUE can help. This will cause Amber to print a
detailed list of all the libraries that it is linking to on your system and where they are located. It’s mainly meant
to help analyze dependencies for packaging, but it’s also convenient as a general purpose debugging tool in case
Amber is linking to something it shouldn’t be.

26

https://ambermd.org/pmwiki/pmwiki.php/Main/CMake-Cross-Compiling
https://ambermd.org/pmwiki/pmwiki.php/Main/CMake-Creating-Packages
https://ambermd.org/InstIntelOneAPI.php
https://ambermd.org/InstIntelOneAPI.php

2.3. Applying Updates

2.3. Applying Updates

For most users, simply running cmake and responding ‘yes’ to the update request will automatically download
and apply all patches. This section describes the main updating script responsible for managing updates. We
suggest that you at least skim the first section on the basic usage—particularly the note about the ——version
flag for if/when you ask for help on the mailing list.

2.3.1. Basic Usage

Updates to AmberTools and Amber are downloaded, applied, and managed automatically using the Python
script update_amber. This script works on every version of Python from Python 2.4 through the latest Python 3
release. To use this command manually, you must refer to the “source” directory, i.e. the folder headed by
“amber24_src” where you downloaded the codes. Here, we are going to assume that you have set your
AMBERSOURCE environment variable to this directory, say by typing the command:

export AMBERSOURCE=/path/to/amber24_src

Please substitute /path/to amber24_src with the appropriate path for your machine: this will be the folder where
you un-tarred the distribution. Now there are three basic update-related commands:

* SAMBERSOURCE/update_amber —--check-updates : This option will query the Amber website
for any updates that have been posted that have not been applied to your installation. If you think you have
found a bug, this is helpful to try first before emailing with problems since your bug may have already been
fixed.

* SAMBERSOURCE/update_amber —--version : This option will return which patches have been ap-
plied to the current tree so far. When emailing the Amber list with problems, it is important to have the
output of this command, since that lets us know exactly which updates have been applied.

* SAMBERSOURCE/update_amber —-update : This option will go to the Amber website, download
all updates that have not been applied to your installation, and apply them to the source code. Note that

you will have to recompile any affected code for the changes to take effect!

To do this, go to your build directory and re-rerun the crmake command you used in Step 3 of Section 2.1.

2.3.2. Advanced options

update_amber has additional functionality as well that allows more intimate control over the patching process.
For a full list of options, use the ——full-help command-line option. These are considered advanced options.

* SAMBERSOURCE/update_amber —--download-patches : Only download patches, do not apply
them

* SAMBERSOURCE/update_amber —-—apply-patch=<PATCH>: This will apply a third-party patch

* SAMBERSOURCE/update_amber —--reverse-patch=<PATCH> :Reverses a third-party patch file
that was applied via the ——apply—-patch option (see above).

* SAMBERSOURCE/update_amber --show-applied-patches : Shows details about each patch
that has been applied (including third-party patches)

* SAMBERSOURCE/update_amber --show-unapplied-patches: Shows details about each patch
that has been downloaded but not yet applied.

* SAMBERSOURCE/update_amber —--remove-unapplied: Deletes all patches that have been down-
loaded but not applied. This will force update_amber to download a fresh copy of that patch.

27

2. Installation

e SAMBERSOURCE/update_amber —-update-to AmberTools/#,Amber/#: This command will
apply all patches necessary to bring AmberTools up to a specific version and Amber up to a specific version.
Note, no updates will ever be reversed using this command. You may specify only an AmberTools version
or an Amber version (or both, comma-delimited). No patches are applied to an omitted branch.

¢ SAMBERSOURCE/update amber —--revert—-to AmberTools/#,Amber/#: Thiscommand does
the same as ——update—to described above, except it will only reverse patches, never apply them.

update_amber will also provide varying amounts of information about each patch based on the verbosity setting.
The verbose level can be set with the ——verbose flag and can be any integer between 0 and 4, inclusive. The
default verbosity level changes based on how many updates must be described. If only a small number of updates
need be described, all details are printed out. The more updates that must be described, the less information is
printed. If you manually set a value on the command-line, it will override the default. These values are described
below (each level prints all information from the levels before plus additional information):

* 0: Print out only the name of the update file (no other information)

* 1: Also prints out the name of the program(s) that are affected

e 2: Also prints out the description of the update written by the author of that update.

* 3: Also prints the name of the person that authored the patch and the date it was created.

* 4: Also prints out the name of every file that is modified by the patch.

2.3.3. Internet Connection Settings

If update_amber ever needs to connect to the internet, it will check to see if https://ambermd.org can be contacted
within 10 seconds. If not, it will report an error and quit. If your connection speed is particularly slow, you can
lengthen this timeout via the ——t imeout command-line flag (where the time is given in seconds).

Proxies By default, update_amber will attempt to contact the internet through the same mechanism as
programs like wget and curl. For users that connect to the internet through a proxy server, you can either set the
http_proxy environment variable yourself (in which case you can ignore the rest of the advice about proxies
here), or you can configure update_amber to connect to the internet through a proxy. To set up update_amber to
connect to the internet through a proxy, use the following command:

SAMBERSOURCE/update_amber —--proxy=<PROXY ADDRESS>

You can often find your proxy address from your IT department or the preferences in your favorite (configured)
web browser that you use to surf the web. If your proxy is authenticated, you will also need to set up a user:

SAMBERSOURCE/update_amber —--proxy-user=<USERNAME>

If you have set up a user name to connect to your proxy, then you will be asked for your proxy password the first
time update_amber attempts to utilize an online resource. (For security, your password is never stored, and will
need to be retyped every time update_amber runs).

You can clear all proxy information using the —~—delete-proxy command-line flag—this is really only nec-
essary if you no longer need to connect through any proxy, since each time you configure a particular proxy user
or server it overwrites whatever was set before.

Mirrors If you would like to download Amber patches from another website or even a folder on a local filesys-
tem, you can use the ——amber-updates and ——-ambertools-updates command-line flags to specify
a particular web address (must start with http://) or a local folder (use an absolute path). You can use the
-—-reset-remotes command-line flag to erase these settings and return to the default Amber locations on
https://ambermd.org.

If you set up online mirrors and never plan on connecting directly to http://ambermd.org, you can change
the web address that update_amber attempts to connect to when it verifies an internet connection using the
—-—internet-check command-line option.

28

2.4. Contacting the developers

2.4. Contacting the developers

Please send suggestions and questions to amber@ambermd.org. You need to be subscribed to post there; to
subscribe, go to http.://lists.ambermd.org/mailman/listinfo/amber. You can unsubscribe from this mailing list on
the same site.

29

Part Il.

Amber force fields

31

3. Molecular mechanics force fields

Amber is designed to work with several simple types of force fields, although it is most commonly used with
parametrizations developed by Peter Kollman and his co-workers and academic“descendants”. The traditional
parametrization uses fixed partial charges, centered on atoms. Less commonly used modifications add polariz-
able dipoles to atoms, so that the charge description depends upon the environment; such potentials are called
“polarizable” or “non-additive”. An alternative is to use force fields originally developed for the CHARMM or
Tinker (AMOEBA) codes; these require a different setup procedure, which is described in Sections 14.2.2.8 (for
CHARMM) and Chapter 32 (for AMOEBA). Chapter 14 provides a basic introduction to force fields, along with
details of how the parameters are encoded in Amber files.

There are many force fields that could be used, and users can specify the force fields they wish to use. Depending
on what components are in your system, you may need to specify:

/ * a protein force field (recommended choice is ff19SB) \
¢ a DNA force field (recommended choice is OL21)

¢ an RNA force field (recommended choice is OL3)
¢ a carbohydrate force field (recommended choice is GLYCAM_06j)
¢ alipid force field (recommended choice is lipid21)

* a water model with associated atomic ions (more variable); popular choices are spc/e, tip4pew, and OPC.
Not needed if you are using an implicit solvent model.

* a general force field, for organic molecules like ligands (recommended choice is gaff2)

\- other components (such as modified amino acids or nucleotides, other ions), as needed J

Notes:

1. You have to be careful if you try to adopt a “mix and match” strategy for different components. The recom-
mended choices are designed to work well together, and have been fairly extensively tested. Use of other
combinations requires a deeper knowledge of the nature and origin of force fields; see below and consult the
original papers for more information. If you wish to combine proteins with nucleic acids, only the recom-
mended combination above (or one where leaprc. DNA.OL21 is replaced with leaprc. DNA.bscl) is allowed.

2. In general, your input file to LEaP will begin with several commands to source the relevant standard leaprc
files. The standard leaprc files are in the SAMBERHOME/dat/leap/cmd directory and are accessible to LEaP
by default. For example the following preamble would allow you to include proteins, DNA, lipids, general
components, water, and atomic ions like Na+ or Cl-, using the current recommended force fields:

source leaprc.protein.ff19SB
source leaprc.DNA.OL21
source leaprc.lipid2l

source leaprc.water.opc
source leaprc.gaff2

Note that explicit solvent simulations now require you to load a leaprc.water.xxxx file; this is a
change from earlier versions, where the TIP3P water model was loaded by default. The change reflects

33

3. Molecular mechanics force fields

the growing awareness[21] within the modeling community that TIP3P should no longer be assumed as
appropriate for every type of biomolecular simulation, and that the use of more modern water models instead
can offer clear accuracy improvements in a rapidly increasing number of situations, see below. Note the
importance of the order in which the different components are loaded; in particular, the water model should
be loaded after the protein force-field.

3. There are some leaprec files for older force fields in the SAMBERHOME/dat/leap/cmd/oldff directory. We no
longer recommend these combinations, but we recognize that there may be reasons to use them, especially
for comparisons to older simulations. See Section 3.12 for more information.

4. In particular, the leaprc.ff14SB file, in the oldff/ directory, is identical to the file of the same name in the
directory above it. In spite of its name, it is a “combined” file, with protein, DNA, RNA and water elements.
This file might be of particular interest if you want to make sure that systems created the “new” way (with
the leaprec files outlined above) are consistent with those using the older, “combined” method.

3.1. Proteins

In addition to the recommended file, leaprc.protein.ff14SB, there are a variety of alternatives for proteins; these
are described in the following sections.

3.1.1. The SB family of protein forcefields (ff19SB, ff14SB, and ff99SB)

leaprc.protein. ££f19SB
leaprc.protein. ££14SB

leaprc.protein. £f14SBonly This is the same as leaprc.protein.ff14SB, but will additlionally load:
frcmod. ££99SB14 £f£99SB backbone parameters with £f14SB atom types

ff19SB

JFI9SB [22] is the latest model of the SB protein forcefields, developed in the Simmerling Lab at Stony Brook
University. The new ff19SB forcefield has shown to improve amino acid-dependent properties such as helical
propensities and reproduces the differences in amino-acid-specific PDB Ramachandran map. Users are encouraged
to read the ff19SB article [22] to learn more about the motivation behind ff19SB, as well as details of the fitting and
testing protocols and improved performance relative to ff14SB. Our older SB protein forcefield models utilized
uncoupled phi/psi dihedral parameters for the protein backbone, and every amino acid except for glycine used
the backbone dihedral parameters fit using alanine. In ff19SB, we improved the backbone dihedrals parameters
for every standard amino acids. We fit coupled ¢/{ parameters using 2D ¢/{) conformational scans for multiple
amino acids, using 2D QM energy surfaces in solution as reference data. These new dihedral parameters include
amino-acid specific CMAPs that are based on residue name. We also zeroed the amplitudes of the old backbone
phi/psi dihedral parameters (in atom name, C-N-CA-C, N-CA-C-N, C-N-CA-CB, CB-CA-C-N, HA-CA-C-0O)
from ff14SB that are based on the atom types. It is important that ff19SB be combined only with a parameter set
that has no cosine terms for these dihedrals.

Our results [22]showed that ff19SB pairs best with the more accurate water model OPC [23] , and that the older
TIP3P model has serious limitations when used with the QM-based ff19SB. As a result, we strongly recommend
using ff19SB with OPC, and we recommend against use with TIP3P.

In order to separate the new ff19SB parameters from the original ff14SB parameters, a new atom type XC was
created for C-alpha for all non-terminal residues. All the bonds, angles, non-bonded parameters (except S, see
below), and dihedral parameters not involving C-alpha were retained from ff14SB. The old backbone dihedral
parameters for C-alpha were modified to use atom type XC for C-alpha (instead of the old CX), and the amplitudes
were set to zero since it will use CMAP instead.

How to use ff19SB:

34

3.1. Proteins

To use ff19SB users can execute the following command in tleap:
source leaprc.protein.ff19SB
This will load the following files:

1. parml19.dat is similar to parm10.dat. It has the new atom type XC parameters, which are identical to CX
parameters, except for the dihedral H1-CX-C-O parameters.

2. fremod.ff19SB contains the parameters from fremod.ff14SB, where the CX atom type was replaced with
the XC atom types. The dihedral H1-CX-C-O was copied over from parm10.dat. CX is also replaced
with XC for this dihedral. The magnitude of the backbone dihedrals with XC is zeroed. This is done
since the residue-based CMAP is used instead to calculate the backbone dihedral energies. The Lennard-
Jones parameters for S, SH were both obtained from atom type “s” (sulfur with one connected atom) from
gaff2.dat, while Lennard-Jones parameters for HS were obtained from atom type “hs” (hydrogen-bonded to
sulphur) in gaff2.dat. The CMAP parameters were updated for all non-terminal versions of the 20 standard
amino acids, as well as alternate protonation states for these residues.

3. amino19.lib All parameters from aminol2.lib were copied over. Then, CX (alpha carbon atom type in
ff14SB) was replaced with XC for the entire file. None of the amino acids here should use atom type CX for
the alpha carbon.

4. aminont12.lib and aminoct12.lib is the same file as used for ff14SB, and is not changed in ff19SB. ff19SB
CMAP parameters are not applied to terminal amino acids since they do not have both phi and psi. Instead,
ff14SB is applied using parameters contained in aminont12.lib for N-terminal amino acids and aminoct12.1ib
for the C-terminal amino acids.

Instructions for implementing ff19SB for a new amino acid (residue)

The situation often arises when a user may want to modify parameters for a standard amino acid or may want
to create a new parameters set for a modified amino acid. If the user wants to implement ff19SB on their new
amino acid, they should be cautious about the C-alpha atom type. In ff14SB, CX is used for the C-alpha atom
type, and hence all the ff14SB backbone parameters specify the CX atom type. In ff19SB, CX is replaced by
XC, and hence all the ff19SB backbone parameters specify the XC atom type. Additionally, the ff19SB backbone
dihedral parameters are zeroed, since CMAPS are used to define the energy of phi and psi. Importantly, if the
CX atom type is used, then ff14SB backbone dihedral parameters will be applied to all residues that use the CX
atom type, and if the XC atom type is used, then all backbone dihedral parameters will be zeroed. Care must be
taken not to mix these two protocols. When implementing ff19SB for a new amino acid, the user has the option to
build their topology file via tleap using pure ff19SB including a generic CMAP for the new residue, or a mixture
of ff14SB/ff19SB using ff19SB for everything except the new residue. Therefore we urge the user to follow the
procedure described in one of the scenarios below.

Scenario 1: In order to apply ff14SB parameters to a non-standard amino acid or a specific standard amino acid
and apply ff19SB to every other amino acid in the protein, please follow these steps:

source leaprc.protein.ff19SB
loadoff user—-defined-file.lib
loadamberparams user-defined-file.frcmod

The user-defined library and frcmod files for the new residue must use the CX atom type for C-alpha. Since the
ff19SB CMAP is applied based on residue name, it is important that new residue using CX for C-alpha does not
match the existing residue names for the standard amino acids, or else the CMAP will be applied in addition to the
ff14SB backbone parameters, giving incorrect results.

Scenario 2: In order to apply ff19SB parameters to a non-standard amino acid or a specific standard amino acid
and also apply ff19SB to every other amino acid in the protein, please follow these steps:

35

3. Molecular mechanics force fields

source leaprc.protein.ff19SB

loadoff user-defined-file.lib
loadamberparams user-defined-file.frcmod
loadamberparams frcmod.f£f19SB_XXX

The user-defined library file and fremod files for the new residue must use the XC atom type for C-alpha. Ensure
the amplitudes of the phi/psi dihedrals are zeroed since you will be applying a CMAP for phi/psi. To apply a
CMAP for the phi/psi dihedral of the modified amino acid, the user must modify the provided file
fremod.ff19SB_XXX by replacing XXX in the CMAP_TITLE and CMAP_RESLIST shown below, with the new
residue name matching that defined in the user-defined library file. frcmod.ff19SB_XXX can be found in
$AMBERHOME/dat/leap/parm/ directory.

$FLAG CMAP_TITLE

XXX CMAP

$FLAG CMAP_RESLIST 1
XXX

fremod.ff19SB_XXX will apply the LEU CMAP backbone parameters which we recommend as a generic model
for modified amino acids. Next, the user can load the new frcmod.ff19SB_XXX.

ff14SB

Jff14SB [24] was a continuing evolution of the earlier ff99SB force field.[25] Several groups had noticed that the
older ff94 and ff99 parameter sets did not provide a good energy balance between helical and extended regions of
peptide and protein backbones. Another problem is that many of the ff94 variants had incorrect treatment of glycine
backbone parameters. ff99SB improved this behavior, presenting a careful reparametrization of the backbone
torsion terms in ff99 and achieves much better balance of four basic secondary structure elements (PP II, 8, o,
and og). Briefly, dihedral term parameters were obtained through fitting the energies of multiple conformations
of glycine and alanine tetrapeptides to high-level ab initio QM calculations. We have shown that this force field
provides much improved proportions of helical versus extended structures. In addition, it corrected the glycine
sampling and should also perform well for B-turn structures, two things which were especially problematic with
most previous Amber force field variants. The changes mainly involve torsional parameters for the backbone and
side chains. For backbones, experimental scalar coupling data for small solvated peptides became available [26]
against which ff99SB was compared.[27] As ff99SB backbone dihedrals were fit based on gas-phase quantum data,
we felt that slight empirical adjustments were worth pursuing. This was done to improve agreement with scalar
coupling data, and we observed that this also improved stabilities of helical peptides.

ff14SBonlysc

[f14SBonlysc, where sc stands for side chains, includes ff99SB backbone parameters with updated side chain
parameters that were derived from ab initio quantum mechanics calculations (as were the ff99SB backbone cor-
rections). This model is slightly different from ff/4SB, which includes the ffi4SBonlysc parameters as well as a
small empirical correction to backbone parameters that was designed to improve agreement between NMR data
and simulations in TIP3P water for short peptides. We are currently exploring whether this empirical correction
also improves simulations in other water models, such as the GBneck2 (igb=8) model. [28] Currently, it appears
that igh=8 may work best with the fully quantum mechanics-based dihedral parameters included in ff14SBonlysc.
Simulations performed in explicit water most likely benefit from the empirical corrections included in ffI4SB or
Jf19SB..

3.1.2. The ff15ipq protein force field

leaprc.protein.f£f15ipqg This will load the files listed below
parml5ipg 10.3.dat force field parameters
aminol5ipg 10.0.1lib topologies and charges for amino acids

36

3.1. Proteins

aminontl5_ipgql0.0.1lib same, for N-terminal amino acids
aminoctl5ipg 10.0.1ib same, for C-terminal amino acids

[f15ipq [29] continues the development begun with the ff14ipqg force field [30, 31], but offers new, we hope
better, parameter choices, data fitting, and validation. The physical assumptions behind the model are the same,
but problems with ffI4ipg, most generally the "stickiness" of polar groups in simulations, led to sweeping pa-
rameter changes. The pair-specific Lennard-Jones terms in ff/4ipq were the problem, introducing an imbalance
of protein:water and protein:protein interactions. They have been replaced by modified polar hydrogen radii and
a consistent Lorentz-Berthlot combining rule as found in other Amber force fields. As a consequence, the entire
charge set has changed, albeit slightly, and the the torsion parameters have been expanded and rederived. To further
improve the internal potential energy surface, refitted angle parameters are included for the protein backbone. The
new version comprises nearly 1,200 unique parameters, and ff14ipq is archived (use o1dff/leaprc.ff14ipq)
for backwards compatibility and comparisons.

The extended IPolQ charge derivation anticipates a workflow in which the final model must have charges roughly
consistent with the polarization molecules experience in water, but also new torsion parameters which are often
derived with quantum calculations of the system in vacuum. In the extended methodology, two sets of charges
are fitted: one for the systems in vacuum and the other for systems in the condensed phase. The original IPolQ
method [30] derives the appropriate condensed phase charges by fitting to the average electrostatic potential of
polarized and unpolarized molecules: a process that harkens to linear response theory and implicitly accounts for
the energetic cost of polarizing the system away from its gas phase equilibrium. The extended scheme draws on
the vacuum phase electrostatic data a second time to make an alternative set of charges appropriate to describe the
vacuum potential energy surface—the IPolQ charges themselves are, in fact, re-expressed as a perturbation of this
gas phase charge set. Both sets of charges are derived in the same linear least squares fitting problem, with restraint
equations weakly coupling the corresponding charges together. This creates charge sets for each phase related by
a minimal perturbation, which can be assumed to be the effective, average polarization of the molecules when
they enter solution. The charge set appropriate to the vacuum phase is then used when fitting torsion potentials
to vacuum phase quantum mechanical energies, and the torsion potentials are transferred directly for use with the
condensed-phase charge set in actual simulations, following the earlier assumption that the effective polarization
of the molecules, and thereby any energetic consequences of entering the condensed phase, are captured in the
charge perturbation.

All parameter optimization in ff15ipq, like its predecessor ffI4ipq, is iterative: a generational learning scheme
whereby the results of previous simulations and force field manipulations are submitted to quantum single point
energy calculations and then added to the training data. As with ffl4ipq, charges and gas-phase conformational
energies are all taken at the MP2/cc-pVTZ level; ff15ipq takes the ff14ipq conformational energies as its starting
point and expands the space nearly four-fold. We find that this crude form of machine learning is a good substitute
for human intervention. As with ffl4ipq, the iterative process led to an evolution in simulation performance over
a variety of systems. We utilized these benchmarks to determine when the parameter set was ready for general
release.

The new ff15ipq model [29] was derived with the SPC/E-b water model of Takemura and Kitao [32]. Returning
to three-point water models improves performance of most Amber protein simulations on GPUs by about 30% due
to the reduction in the overall number of particles; a smaller improvement can be seen on CPUs. While SPC/E-b
is the recommended water model, the solvent reaction field potential observed in our IPolQ studies is consistent
across three- and even some four-point waters: combinations of ffI5ipg with TIP3P, the original SPC/E, and other
water models are reasonable to try. One issue that may arise in some circumstances is the compatibility of the water
model with ion parameters: we have set ff15ipq to reference ion parameters appropriate for the nearest water model
available, SPC/E. However, for highly charged or dense ionic solutions this combination may be sub-optimal. With
respect to compatibility with other macromolecular force fields such as sugars, lipids, or nucleic acids, we note
that while the charge set is novel, the MP2/cc-pVTZ solution-phase [PolQ charges [30] are in fact quite similar to
the Cornell charges derived at the HF/6-31G* level [33]. This result may support the long lifespan of that charge
set, and makes it likely that ff15ipg will be compatible with other force fields designed at the common HF/6-31G*
level.

[ff15ipq has been validated on a larger number of test systems than its predecessor, and for much longer timescales.
Multiple alpha-helical and beta-sheet peptides have been tested at a variety of temperatures, and numerous small

37

3. Molecular mechanics force fields

proteins (the largest including lysozyme and the p5S3/MDM2 complex) have been simulated for timescales ranging
from 4 to 10 microseconds, displaying excellent stability and also instability in cases where loops of the proteins
or isolated peptides are known to be disordered. Various teething problems in the ff14ipq force field were solved
by improvements to the data set or the fitting protocol itself, so we are increasingly confident that ff15ipqg and
future products of the IPolQ workflow will be reliable straight out of the automated parameter development phase.
The entire data set and mdgx input file for deriving the torsion and angle parameters of ff15ipq will be released as
supporting information in the upcoming publication on the force field. In the future we hope to build on the lineage
of ff-ipq protein models to include other important areas of biological chemistry.

Modified amino acids. An expanded version of the ff15ipq protein force field, denoted as ff15ipq-m[34], can
be obtained with the following command in LEaP:

source leaprc.mimetic.ff1l5ipg

This expanded force field enables the modeling of four classes of artificial backbone units that are commonly used

alongside natural o residues in blended or “heterogeneous” backbones of protein mimetics: chirality-reversed D-o-

residues, the C,-methylated a-residue Aib, homologated 3-residues (33) bearing proteinogenic side chains, and two

cyclic 3 residues (3¢; aminopyrrolidine carboxylic acid (APC) and trans-2-aminocyclopentane-1-carboxylic acid

(ACPCQ)). A tutorial is available for getting started with this force field (http://ambermd.org/tutorials/advanced/tutorial36/index.php).
Parameters for fluorinated, aromatic amino acids [35] to be used with the ff15ipq protein forcefield can be

obtained with the following command in LEaP:

source leaprc.fluorine.ffl5ipgq

This includes parameters for 4-, 5-, 6-, and 7-fluoro-tryptophan (W4F, W5F, W6F, W7F), 3-fluoro- and 3,5-
difluoro-tyrosine (Y3F, YDF), as well as 4-fluoro- and 4-trifluoromethyl-phenylalanine (F4F, FTF).

3.1.3. The fb15 (“force balance”) protein force field

leaprc.protein. fbl5 This will load the files listed below
frcmod. £b15 force field parameters

frcmod. tip3pfb parameters for the force balance 3-point model
all _aminofbl5.1lib topologies and charges for amino acids

all aminontfbl5.1lib same, for N-terminal amino acids

all aminoctfbl5.1lib same, for C-terminal amino acids

The files can be used for protein-water simulations using the “force-balance” approach described in Ref. [36, 37].
There is also a 4-point water model available, as described in section 3.6. For alkali and halide ions, the Joung-
Cheatham parameters for TIP3P (or TIPAPEW) are recommended; see Section 3.7.

3.1.4. The Duan et al. (2003) force field

leaprc.protein.£f£03.rl loads the following files:

frcmod. ££03 For proteins: changes to parm99.dat, primarily in the
phi and psi torsions.

all _amino03.in Charges and atom types for proteins

all aminont03.in For N-terminal amino acids

all_aminoct03.in For C-terminal amino acids

The ff03 force field [38, 39] is a modified version of ff99 (described below). The main changes are that charges
are now derived from quantum calculations that use a continuum dielectric to mimic solvent polarization, and that
the ¢ and y backbone torsions for proteins are modified, with the effect of decreasing the preference for helical
configurations. The changes are just for proteins; nucleic acid parameters are the same as in ff99.

The original model used the old (ff94) charge scheme for N- and C-terminal amino acids. This was what was
distributed with Amber 9, and can still be activated by using oldff/leaprc.ff03. More recently, new libraries for the

38

3.2. Nucleic acids

terminal amino acids have been constructed, using the same charge scheme as for the rest of the force field. This
newer version (which is recommended for all new simulations) is accessed by using leaprc.protein.ffO3.r1.

3.1.5. The Yang et al. (2003) united-atom force field

frcmod. ££03ua For proteins: changes to parm99.dat, primarily in the
introduction of new united-atom carbon types and new
side chain torsions.

uni_amino03.in Amino acid input for building database
uni_aminont03.in NH3+ amino acid input for building database.
uni_aminoct03.in COO- amino acid input for building database.

The ff03ua force field [40] is the united-atom counterpart of ff03. This force field uses the same charging scheme
as ff03. In this force field, the aliphatic hydrogen atoms on all amino acid side-chains are united to their corre-
sponding carbon atoms. The aliphatic hydrogen atoms on all alpha carbon atoms are still represented explicitly to
minimize the impact of the united-atom approximation on protein backbone conformations. In addition, aromatic
hydrogens are also explicitly represented. Van der Waals parameters of the united carbon atoms are refitted based
on solvation free energy calculations. Due to the use of an all-atom protein backbone, the ¢ and y backbone
torsions from ff03 are left unchanged. The sidechain torsions involving united carbon atoms are all refitted. In this
parameter set, nucleic acid parameters are still in all atom and kept the same as in ff99.

3.1.6. Options for intrinsically disordered proteins.

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are proteins or parts (regions)
of protein that lack stable secondary and tertiary structures under specific physiological conditions[41]. Compared
to globular proteins in their native states, atomistic modeling of IDPs and IDRs is inherently more demanding:
these structures are represented by multiple inter-converting conformations, often within kg7 of each other. Thus,
while a simulation that focuses on the unique native state of a globular protein may be robust to errors in the force-
field that over-stabilize the native state, the same errors of just 1 or 2kgT may lead to a completely wrong relative
abundance of conformations representing the IDP. Long time-scale simulations have demonstrated[42] that several
popular water models, in combination with any of several widely accepted force-fields, lead to overly compact
IDP conformations. Efforts to improve force fields and water models for IDPs are on-going[42-46]; recently, OPC
water model in combination with the ff99SB was found to improve, significantly, accuracy of atomistic simulations
of IDPs[47].

3.2. Nucleic acids

As with proteins, many features of the current force fields, including partial atomic charges, Lennard-Jones
parameters, and most bond and angle terms, date back to force fields developed in the 1990’s, and overviews
of this work are available.[48, 49] The next breakthroughs in the Amber nucleic acid force field development
came from observations on relatively longer simulations, 50-100 ns time scale, in the early 2000’s.[50, 51] These
simulations found systematic over-population of y = trans backbone geometries in nucleic acids. High level QM
calculations were performed on models of sugars and phosphates, specifically a sugar-phosphate model[52] and
a sugar-phosphate-sugar model,[53] which ultimately led to the ff99-bscO parameterization.[52] For simulation
of canonical DNA and RNA structures, the ff99-bscO parameterization has proven rather successful. For non-
canonical structures, particularly those with loops or bulges, or y flips, some anomalies have been noted.

3.2.1. RNA

With RNA, incorrect loop geometries, backbone sub-state populations, and sugar pucker populations were ob-
served in longer simulations. In addition to occasional non-conservation of south puckers, multiple groups noticed
a tendency for the RNA backbone to shift, putting) into the high-anti region which leads to an opening of the

39

3. Molecular mechanics force fields

] Desired Behavior Source these files | Notes \
RNA
fP90L3 leaprc.RNA.OL3 parmbsc0 o/y [52] + yOL3 [54] to ff99
J990L3 + backbone phosphate leaprc.RNA.LJbb JP90L3 + backbone phosphate modifications[55, 56]
ff99y + bscO leaprc. RNA.YIL parmbsc0 o/y [52]+ Yildirim [57]y mods to ff99.

ff99bsc0 oldff/leaprc.ff99bscO Contains parmbscO o/y mods[52] to ff99.
“Rochester” torsions leaprc. RNA.ROC [58]
“DE Shaw” modifications leaprc.RNA.Shaw [59]

Modified nucleotides leaprc.modrna08 parameters for modified nucleosides [60]

Table 3.1.: How to specify RNA force fields in LEaP. Recommended variants are listed in italics.

duplex structure into a ladder-like configuration. Again, QM methods at various levels were employed to improve
the x distribution using relevant model systems. The most tested y modifications are the “OL” modifications used
in leaprc.RNA.OL3.[54, 61]

On top of the OL modifications, Bergonzo & Cheatham [56] found that with modified phosphate parame-
ters from Steinbrecher et al.[55] and an improved water model (OPC), better agreement with NMR data for
RNA tetranucleotide populations was observed. In this parameter set, a new atom type for O4’ was created
named OR (previously type OS). This allowed modification of O2 and OS atom types to LJ=1.7493, 0.2100 and
1.7718, 0.1700; previous values were LI=1.6612, 0.2100 and 1.6837, 0.1700. These changes are incorporated into
leaprc.RNA.LJbb.

An alternative available with Amber is the Yildirim ¥ modifications (and also related modifications called TOR
which alter £/§ as well)[57, 62, 63], and a systematic assessment and validation of these newer) modifications
is underway on a large series of RNA tetraloop structures. Note that small changes to a particular dihedral may
lead to alteration in properties of related dihedrals, and may have unintended consequences. For example, the
J99-bscO modifications tend to lock RNA sugar puckers mainly in the north, even with nucleotides in particular
sequence contexts that prefer southern conformations. Moreover, the ¥ modifications tend to further destabilize y
= trans. This suggests that to reliably improve the nucleic acid dihedrals, a more systematic approach across many
dihedrals with simultaneous fitting may be more appropriate. Moreover, we no longer fully support the idea that
parameters are transferable between DNA and RNA, or between purines and pyrimidines. For example, the ff99-
OL modifications (with or without ff99-bsc0) improve the modeling of RNA, but lead to issues with DNA, most
notably with quadruplex structures. Therefore recent work has focused on separate y modifications for DNA.[64]

An alternative set of torsions for RNA, fit to quantum calculations has been developed by the Rochester group,[58]
and can be loaded with the 1leaprc.RNA.ROC file. More extensive modifications are contained in the “DE
Shaw” force field,[59], which can be loaded with 1eaprc.RNA. Shaw.

3.2.2. DNA

As noted in Table 3.2, most current DNA force fields are based on parameters and charges that go back to
Amber’s ff99. A new set of parameters for the £/{ dihedral[65] and for the B dihedral[66] torsion for DNA have
been developed using QM methods that include the solvation effects implicitly. This set of parameters have been
tested with several double-stranded DNA systems including the Dickerson-Drew dodecamer, A-tracs, CG-rich
duplexes, Z-DNA and G-quadruplexes. These modifications increase the population of BII substate by stabilizing
the £/ = g-/t state and renders higher values for the helical twist in the tested systems. In combination with the x
modification for DNA (y OL4, [64]), the force field generates structures that suggest a better agreement with NMR
data. The reader should pay careful attention to the use of the ¥ modifications, since the naming convention of the
authors is the same for RNA and DNA.

The combination of the three dihedral updates (€/{OL1+)OL4+BO0L1) are now termed OL15 [67], which are
available by sourcing the file leaprc. DNA.OLI5. More details about the OL15 force field development and test
cases are available in http://fch.upol.cz/ff_ol/. The OL21 version adds some new torsion modifica-
tions, aimed at non-B double helices; this is now our recommended DNA force field, available in leaprc.DNA.OL21.
[70]

40

http://fch.upol.cz/ff_ol/

3.3. Modified amino acids and nucleotides

Name Modification Notes
o4 Original force field file Obsolete
ffo8 Modified charge set Obsolete
ff99 Updated charge set Foundation for all current ff’s
bscO Barcelona a/y backbone modification [52]
e/C OL1 €/¢ modification for DNA improvement for DNA, no effects for RNA [65]
x OL4 x modification tuned for DNA [64]
B OL1 B dihedral modification tuned for DNA | improvement for DNA, no effects for RNA[66]
OL15 (¢/{OL1+xOL4+BOL1) [67]
OL2] OL15+ o /y21 [68]
bscl Major update to bscO [69]

Table 3.2.: Force field name and modifications for simulating nucleic DNA. Recommended variants are listed in
italics.

In a parallel effort, the group at the Barcelona Supercomputing Center have updated the well-known bscO mod-
ification, now termed bscl.[69] This updated version of the bscO modification has also been developed using an
implicit solvation model and a rigorous QM methodology. As with the OL15 variant, the updated bscl force field
increases the helical twist and yields double stranded DNA structures that are in better agreement with experimen-
tal structures. Testing of the bscl force field has been performed using more than 130 systems, including single
and double stranded DNA, hairpin structures, DNA-protein complexes, G-quadruplexes and more. This can be ac-
cessed by sourcing leaprc. DNA.bsc1; additional information about the bscl force field development and test cases
are available in http://mmb.irbbarcelona.org/ParmBSC1l/.

Details of the different modifications available for DNA are presented in Table 3.2. Regarding the performance
of OL21 and bscl for DNA, preliminary testing comparing both force fields strongly suggests that both variations
perform similarly and are improvements over the previous bscO modification.[67] We refer the reader to the original
articles of each force field to better understand the details and performance between each variant.

3.2.3. Single nucleotides

Nucleic acid residues use the new (version 3) PDB nomenclature: “DC” is used for deoxy-cytosine, and “C”
for cytosine in RNA, etc. Earlier force fields (which are not recommended!) use “RC” for the RNA version. If
you want a single, nucleoside, use “CN”, etc. For a single nucleotide, use the following command in LEaP:

cnuc = sequence { OHE C3 }

and analogs for other bases. Note that this will construct a protonated 5° phosphate group, which may not be what
you want.

3.3. Modified amino acids and nucleotides

3.3.1. Phosphorylated amino acids

Parameters for phosphorylated amino acids [55, 71] to be used for ff99SB and older forcefields can be obtained
with the following command in LEaP:

source leaprc.phosaal0

Updated parameters have been developed for newer versions of the Stony Brook (SB) family of forcefields, with
new forcefield parameters for the side chains of phosphorylated amino acids [72], in addition to modified amino
acids [73] that are commonly used in experimental studies such as FRET and EPR. These side-chain parameters
are optimized for use with ff14SB and ff19SB by fitting against relative QM energies at the MP2/6-311+G**
level using our inhouse torsion fitting protocol[74]. Currently, side-chain parameters for phosphorylated serine,

41

http://mmb.irbbarcelona.org/ParmBSC1/

3. Molecular mechanics force fields

histidine (deprotonated, protonated), tyrosine, and threonine are provided. For ff14SB, parameters for
phosphorylated amino acids [72] can be obtained with the following command in LEaP:

source leaprc.phosaal4SB

For ff19SB, parameters for phosphorylated amino acids [72] can be obtained with the following command in
LEaP:

source leaprc.phosaal9SB

3.3.2. Other modified amino acids

The modified amino acids selenomethionine, cyano-phenylalanine, and azido-phenylalanine are used as FRET
quenchers. We also added parameters for acetylated lysine and for the nitroxide spin-label methanesulfonothioate
(MTSL), which is often used in EPR experiments to probe distances. For selenomethionine, we fit new LJ
parameters for selenium, as well as bond, angle, and dihedral parameters for the C-Se bond. To use these
parameters for ff14SB, the user can run the following command in LEaP:

source leaprc.protein.ff14SB_modAA
To use these parameters for ff19SB, the user can run the following command in LEaP:
source leaprc.protein.ff19SB_modAA

The ff19SB_modAA leaprc will load lib and frcmod files that have the CX to XC atom type conversion, the
backbone phi/psi dihedrals will be zeroed, and the LEU CMAP will be applied to all five residues.

The residue names for these modified amino acids are MSE (selenomethionine), AZF (azido-phenylalanine),
CYF (cyano-phenylalanine), CNX (MTSL) and ALY (acetylated-lysine). These residue names should match those
in the loaded file with the coordinates (e.g. PDB file). The residue names can also be used with the sequence
command in LEaP to create XYZ coordinates. Since the modifications for the phosphorylated and modified amino
acids are on the side chains and not the backbone, users can use these modifications with ff19SB.

3.3.3. 5’ phoshporylation in nucleic acids

The 5° end of many DNA and RNA chains have one or more phosphate groups. These can be accessed by
loading the following library, after loading the standard DNA or RNA libraries:

loadOff terminal monophosphate.lib

See Ref. [55] for details on how these were constructed. After loading this file, the 5° residues for DNA and RNA
(e.g. DAS and A5) will contain a terminal (mono-)phosphate group with a single negative charge.

A more recent set of 5’ phosphorylated RNA residues [56] is included in leaprc.RNA.LJbb. Here, the
somewhat non-standard residue names AMP, GMP, UMP and CMP are used to indicate 5° phosphorylation. You
may need to edit input PDB files to match this nomenclature.

3.4. Carbohydrates

GLYCAMOG is a consistent and transferable parameter set for modeling carbohydrates,[75] and glycoconjugates.[76,
77] The core philosophy of the force field development process is that parameters should be: (1) be transferable
to all carbohydrate ring formations and sizes, (2) be self-contained and therefore readily transferable to many
quadratic force fields, (3) not require specific atom types for o- and 3-anomers, (4) be readily extendable to carbo-
hydrate derivatives and other biomolecules, (5) be applicable to monosaccharides and complex oligosaccharides,
and (6) be rigorously assessed in terms of the relative accuracy of its component terms.

When combining GLYCAMO06 with AMBER parameters for other biomolecules, parameter orthogonality is
ensured by assigning unique atom types for GLYCAM. In order to facilitate combining GLYCAMO6 with other
AMBER parameter sets for other biomolecules, a variation on the GLYCAM atom types has been introduced in

42

3.4. Carbohydrates

which the new name consists of an uppercase letter followed by second character, either a number or lowercase
letter. For example the GLYCAM "CG" atom type has been changed to "Cg"; "HO" is now represented as "Ho",
and so forth.

As soon as new parameters are generated, or alterations are made to existing parameters, a new version of
GLYCAM is released. Updated versions that introduce new functionality are denoted using a letter suffix (i.e.
GLYCAMO6a, 06b, etc.). Each release is accompanied with an associated text file that summarizes the new
functionality or alteration. For example, a particularly important update, released in GLYCAMOG6e, altered the
endo-anomeric torsion term (Cg-Os-Cg-Os) in order to more accurately reproduce the populations arising from
ring flips (*C; to !Cy4 etc.). This particular case suggested the need to be able to independently characterize the
exo- and endo-anomeric effect, which was achieved by assigning different atom types (Oa and Oe) to represent the
endo-anomeric and exo-anomeric oxygen atoms, respectively.

In another important update (GLYCAMO06g), a small van der Waals term was applied to all hydroxyl hydrogen
atoms (Ho) to address a rare, but catastrophic, situation that can arise during MD simulations. In certain carbohy-
drate (and potentially other) configurations, a hydroxyl proton may be structurally constrained to being very close
to a carboxylate moiety. During an MD simulation of such a system, an oscillatory motion can begin between the
hydroxyl proton and the negative charge site, leading ultimately to failure of the simulation as the proton collapses
onto the negatively charged moiety. The small van der Waals term (Ho, R* = 0.2000 A, & = 0.0300 kcal/mol)
is just large enough to add sufficient repulsion to prevent this behavior, while not being large enough to perturb
properties such as hydrogen bond lengths.

The GLYCAM force field family, especially, GLYCAMO6, has been extensively employed in simulations of
biomolecules by the larger scientific community.[78-81] The updated GLYCAM parameters and documentation
are available for download at the GLYCAM-Web site (www.glycam.org). Also available on the website are tools
for simplifying the generation of structure and topology files for performing simulations of oligosaccharides,
glycoconjugates and glycoproteins. GLYCAM-Web has been integrated into several glycomics databases, such as
the Consortium for Functional Glycomics (www.functionalglycomics.org).

GLYCAMO6 force field
Always check glycam.org/params for more recent versions and new functionalities.

leaprc.GLYCAM 063j-1 LEaP configuration file for use of GLYCAMO6

with carbohydrates alone or in combination

with the £ff14SB force field.
GLYCAM 06j.dat Parameters for oligosaccharides
GLYCAM _06j-1.prep Structures and charges for glycosyl residues
GLYCAM lipids_06h.prep Structures and charges for some lipid residues
GLYCAM amino_06j_12SB.1lib Glycoprotein libraries compatible with ££f14SB.
GLYCAM_ aminoct_063j_12SB.1lib
GLYCAM aminont_06j_12SB.1lib

GLYCAMOGEP force field using lone pairs (extra points)

GLYCAM 06EPb.dat Parameters for oligosaccharides
GLYCAM_O6EPb.prep Structures and charges for glycosyl residues
leaprc.GLYCAM O06EPb LEaP configuration file for GLYCAM-06EP

GLYCAM Force Field Parameters Download Page
https://glycam.org/docs/forcefield/parameters/index.html

GLYCAM_06j-1.prep contains prep entries for all carbohydrate residues and GLYCAM_lipids_06h.prep contains
prep entries for some lipid residues (although for lipid membrane simulations we recommend you use the Amber
Lipid 21 force field). GLYCAM_O06EPb.prep contains prep entries for all carbohydrate residues available for
modeling with extra points.

For linking glycans to proteins, libraries containing modified amino acid residues (Ser, Thr, Hyp, and Asn) must
be loaded. To build a glycoprotein using ff14SB, GLYCAM_amino_06j_12SB.lib GLYCAM_aminont_06j_12SB.lib

43

3. Molecular mechanics force fields

Version | Release Date Contributors \ Change Summary \

Modified all parameters to be compatible with ff14SB.

j 15 Feb., 2014 BLF These files may not be compatible with older protein and
nucleic acid force fields.

i 27 Aug., 2013 AKN Added two new monosaccharides to the prep file.
*Changed atom type naming to be orthogonal to other

h 20 Oct., 2010 MBT, BLF force ﬁelds. Added HO van der Waals parameters. Set
protein-related parameter values to their parm99
counterparts. Updated N-sulfation parameters.
* 1,4-scaling terms added to parameter file. Angle and

g 20 Oct., 2010 MBT torsion updates for pyranose rings, N-sulfate, phosphate
and sialic acid.

f 3 Feb., 2009 MBT * Corrected a typo in O-Acetyl term

R 28 May, 2008 MBT Upda'ted 'gly0031d1c linkage terms to optimize ring
puckering in pyranoses

d 12 May, 2008 | SPK, MBT, ABY | Terms for thiol glycosidic linkages

c 21 Feb., 2008 MBT, ABY ~Addlt‘10nal (published) terms for some lipid
simulations[82]

b 10 Jan., 2008 MBT, ABY 1'\11'<an'es, alkgnes, amide and amino groups for some
lipid simulations[82]

a 24 Apr., 2005 ABY Sulfates & phosphates for carbohydrates

Table 3.3.: Version change summary for the GLYCAM-06 force field. *Previously released parameters were
changed. See full release notes at glycam.org/params. SPK: Sameer P. Kawatkar. MBT: Matthew
B. Tessier. ABY: Austin B. Yongye. BLF: B. Lachele Foley. AKN: Anita K. Nivedha

and GLYCAM_aminoct_06j_12SB.1lib must be loaded and the desired protein force field must also be loaded.
Amino acid libraries designed for linking carbohydrates modeled with extra points are not currently available.

3.4.1. File versioning

Beginning on 15 September, 2011, a new versioning system was implemented for Glycam parameters. Files
produced before that date will not necessarily conform to the new system. In the new system, all files containing
parameters are versioned. Users should check their contents and replace them with recent versions as appropriate.

The new versioning system employs letters and numbers. If a parameter set contains new functionality (e.g.,
the addition of new parameters) or fundamental changes (e.g., atom type name reassignments), a letter will be
appended to its name. If the new version contains corrections (e.g., for typographical errors), its name will be
appended with a number. See glycam.org/params for more documentation and examples.

Researchers are also encouraged to read the version change documentation available on the GLYCAM Parame-
ters download page under "Documents." In this document, the changes specific to each version release are detailed.
The changes are also summarized here in Table 3.3.

3.4.2. Atom type name changes

Beginning with versions g, Glycam atom type names will adopt a standard designed to keep them from over-
lapping with other force fields. In most cases, Glycam’s type names will consist of two characters, one upper-case
followed by one lower-case. Because of this, leaprc files, lib files and prep files from versions prior to g will be
incompatible with current versions.

Note that some type names will not reflect the new Glycam type standard, despite being present in the Glycam
force field files, for example in the files for linking glycans to amino acid residues. In these cases, Glycam will use
the type name appropriate to the external force field. Parameters will be introduced only to the extent necessary

44

3.4. Carbohydrates

to provide a link between the force fields. Since the associated parameters will also include Glycam types, they
should only affect the intersections between the two force fields.

Beginning with versions j, atom type names for linking to amino acids are compatible with ff14SB. Older
versions of protein and nucleic acid force fields might not be compatible.

3.4.3. General information regarding parameter development

In GLYCAM-06,[75] the torsion terms have now been entirely developed by fitting to quantum mechanical
data (B3LYP/6-31++G(2d,2p)//HF/6-31G(d)) for small-molecules. This has converted GLYCAM-06 into an addi-
tive force field that is extensible to diverse molecular classes including, for example, lipids and glycolipids. The
parameters are self-contained, such that it is not necessary to load any AMBER parameter files when modeling
carbohydrates or lipids. To maintain orthogonality with AMBER parameters for proteins, notably those involving
the CT atom type, tetrahedral carbon atoms in GLYCAM are called Cg (C-GLYCAM, CG in previous releases).
Thus, GLYCAM and AMBER may be combined for modeling carbohydrate-protein complexes and glycoproteins.
More information on atom type names is available in 3.4.2 . Because the GLYCAM-06 torsion terms were de-
rived by fitting to data for small, often highly symmetric molecules, asymmetric phase shifts were not required
in the parameters. This has the significant advantage that it allows one set of torsion terms to be used for both
a- and f-carbohydrate anomers regardless of monosaccharide ring size or conformation. A molecular develop-
ment suite of more than 75 molecules was employed, with a test suite that included carbohydrates and numerous
smaller molecular fragments. The GLYCAM-06 force field has been validated against quantum mechanical and
experimental properties, including: gas-phase conformational energies, hydrogen bond energies, and vibrational
frequencies; solution-phase rotamer populations (from NMR data); and solid-phase vibrational frequencies and
crystallographic unit cell dimensions.

3.4.4. Development of partial atomic charges

As in previous versions of GLYCAM, the atomic partial charges were determined using the RESP formalism,
with a weighting factor of 0.01,[75, 83] from a wavefunction computed at the HF/6-31G(d) level. To reduce
artifactual fluctuations in the charges on aliphatic hydrogen atoms, and on the adjacent saturated carbon atoms,
charges on aliphatic hydrogens (types HC, H1, H2, and H3) were set to zero while the partial charges were fit
to the remaining atoms.[84] It should be noted that aliphatic hydrogen atoms typically carry partial charges that
fluctuate around zero when they are included in the RESP fitting, particularly when averaged over conformational
ensembles.[75, 85] In order to account for the effects of charge variation associated with exocyclic bond rotation,
particularly associated with hydroxyl and hydroxylmethyl groups, partial atomic charges for each sugar were
determined by averaging RESP charges obtained from 100 conformations selected evenly from 10-50 ns solvated
MD simulations of the methyl glycoside of each monosaccharide, thus yielding an ensemble averaged charge
set.[75, 85]

3.4.5. Carbohydrate parameters for use with the TIPSP water model

In order to extend GLYCAM to simulations employing the TIP-5P water model, an additional set of carbohydrate
parameters, GLYCAM-06EP, has been derived in which lone pairs (or extra points, EPs) have been incorporated
on the oxygen atoms.[86] The optimal O-EP distance was located by obtaining the best fit to the HF/6-31g(d)
electrostatic potential. In general, the best fit to the quantum potential coincided with a negligible charge on the
oxygen nuclear position. The optimal O-EP distance for an sp3 oxygen atom was found to be 0.70 A; for an sp2
oxygen atom a shorter length of 0.3 Awas optimal. When applied to water, this approach to locating the lone pair
positions and assigning the partial charges yielded a model that was essentially indistinguishable from TIP-5P.
Therefore, we believe this model is well suited for use with TIP-5P.[86] The new files are named O6EP (originally
04EP), as they have been corrected for numerous typographical errors and updated to match current naming and
residue structure conventions.

45

3. Molecular mechanics force fields

Carbohydrate Pyranose | Furanose
o/B,p/L | /B, D/L
Arabinose yes yes
Lyxose yes yes
Ribose yes yes
Xylose yes yes
Allose yes
Altrose yes
Galactose yes a
Glucose yes a
Gulose yes
Idose a
Mannose yes
Talose yes
Fructose yes yes
Psicose yes yes
Sorbose yes yes
Tagatose yes yes
Fucose yes
Quinovose yes
Rhamnose yes
Galacturonic Acid yes
Glucuronic Acid yes
Iduronic Acid yes
N-Acetylgalactosamine yes
N-Acetylglucosamine yes
N-Acetylmannosamine yes
Neu5Ac yes, b yes,b
KDN a,b a,b
KDO a,b a,b

Table 3.4.: Current Status of Monosaccharide Availability in GLYCAM. (a) Currently under development. (b) Only
one enantiomer and ring form known.

46

3.4. Carbohydrates

Carbohydrate” One letter code” | Common Abbreviation
1 D-Arabinose A Ara
2 D-Lyxose D Lyx
3 D-Ribose R Rib
4 D-Xylose X Xyl
5 D-Allose N All
6 D-Altrose E Alt
7 D-Galactose L Gal
8 D-Glucose G Glc
9 D-Gulose K Gul
10 D-Idose 1 Ido
11 D-Mannose M Man
12 D-Talose T Tal
13 D-Fructose C Fru
14 D-Psicose P Psi
15 D-Sorbose B¢ Sor
16 D-Tagatose J Tag
17 D-Fucose (6-deoxy D-galactose) F Fuc
18 | D-Quinovose (6-deoxy D-glucose) Q Qui
19 | p-Rhamnose (6-deoxy D-mannose) H Rha
20 D-Galacturonic Acid o? GalA
21 D-Glucuronic Acid z4 GlcA
22 D-Iduronic Acid u¢ IdoA
23 D-N-Acetylgalactosamine v GalNac
24 D-N-Acetylglucosamine Y4 GIcNAc
25 D-N-Acetylmannosamine wd ManNAc
26 N-Acetyl-neuraminic Acid s NeuNAc, NeuSAc
KDN KN4 KDN
KDO KO KDO
N-Glycolyl-neuraminic Acid SGeH NeuNGc, Neu5Gce

Table 3.5.: The one-letter codes that form the core of the GLYCAM residue names for monosaccharides “ Users
requiring prep files for residues not currently available may contact the Woods group (www.glycam.org)
to request generation of structures and ensemble averaged charges. "Lowercase letters indicate L-
sugars, thus L-Fucose would be “f”, see Table 3.8 . “Less common residues that cannot be assigned
a single letter code are accommodated at the expense of some information content. *Nomenclature
involving these residues will likely change in future releases.[87] Please visit www.glycam.org for the
most updated information.

47

3. Molecular mechanics force fields

a—D-Glep B—D-Galp o—D-Arap B—D-Xylp
Linkage Position | Residue Name | Residue Name | Residue Name | Residue Name

Terminal” 0GA? OLB 0AA 0XB

1-¢ 1GAS ILB 1AA 1XB

2- 2GA 2LB 2AA 2XB

3- 3GA 3LB 3AA 3XB

4- 4GA 4LB 4AA 4XB
6- 6GA 6LB

2,3- ZGA? ZLB ZAA ZXB

2,4- YGA YLB YAA YXB
2,6- XGA XLB

3,4- WGA WLB WAA WXB
3,6- VGA VLB
4,6- UGA ULB

2,3,4- TGA TLB TAA TXB
2,3,6- SGA SLB
2,4,6- RGA RLB
3,4,6- QGA QLB
2,3,4,6- PGA PLB

Table 3.6.: Specification of linkage position and anomeric configuration in D-hexo- and D-pentopyranoses in three-
letter codes based on the GLYCAM one-letter code “In pyranoses A signifies o.-configuration; B = J.
bPreviously called GA, the zero prefix indicates that there are no oxygen atoms available for bond
formation, i.e., that the residue is for chain termination. €Introduced to facilitate the formation of a
1-1 " linkage as in a-D-Glc-1-1 -a-D-Gle {1GA 0GA). “ For linkages involving more than one position,
it is necessary to avoid employing prefix letters that would lead to a three-letter code that was already
employed for amino acids, such as ALA.

a-D-Glcf B-D-Manf a-D-Araf B-D-Xylf
Linkage position | Residue name | Residue name | Residue name | Residue name
Terminal 0GD OMU 0AD 0XU
1- 1GD IMU 1AD 1XU
2- 2GD 2MU 2AD 2XU
3- 3GD 3MU 3AD 3XU
etc. etc. etc. etc. etc.

Table 3.7.: Specification of linkage position and anomeric configuration in D-hexo- and Dpentofuranoses in three-
letter codes based on the GLYCAM one-letter code. In furanoses D (down) signifies o.; U (up) = B.

o-L-Glcp B-L-Manp o-L-Arap B-L-Xylp
Linkage position | Residue name | Residue name | Residue name | Residue name
Terminal OgA OmB 0aA 0xB
1- 1gA ImB laA 1xB
2- 2gA 2mB 2aA 2xB
3- 3gA 3mB 3aA 3xB
etc. etc. etc. etc. etc.

letter codes.

Table 3.8.: Specification of linkage position and anomeric configuration in L-hexo- and Lpentofuranoses in three-

3.5. Lipids

3.4.6. Carbohydrate Naming Convention in GLYCAM

Note: the prepareforleap action in cpptraj automates many of the difficult steps in taking an input PDB file
containing carbohydrates, and adapting it for Amber. You should generally try this first before delving into the
details of GLYCAM nomenclature discussed below.

In order to incorporate carbohydrates in a standardized way into modeling programs, as well as to provide a stan-
dard for X-ray and NMR protein database files (pdb), we have developed a three-letter code nomenclature. The
restriction to three letters is based on standards imposed on protein data bank (PDB) files by the RCSB PDB Ad-
visory Committee (www.rcsb.org/pdb/pdbac.html), and for the practical reason that all modeling and experimental
software has been developed to read three-letter codes, primarily for use with protein and nucleic acids.

As a basis for a three-letter PDB code for monosaccharides, we have introduced a one-letter code for monosac-
charides (Table 3.5).[87] Where possible, the letter is taken from the first letter of the monosaccharide name.
Given the endless variety in monosaccharide derivatives, the limitation of 26 letters ensures that no one-letter
(or three-letter) code can be all encompassing. We have therefore allocated single letters firstly to all 5- and 6-
carbon, non-derivatized monosaccharides. Subsequently, letters have been assigned on the order of frequency of
occurrence or biological significance.

Using three letters (Tables 3.6 to 3.8), the present GLYCAM residue names encode the following content:
carbohydrate residue name (Glc, Gal, etc.), ring form (pyranosyl or furanosyl), anomeric configuration (¢ or f3,
enantiomeric form (D or L) and occupied linkage positions (2-, 2,3-, 2,4,6-, etc.). Incorporation of linkage position
is a particularly useful addition, since, unlike amino acids, the linkage cannot otherwise be inferred from the
monosaccharide name. Further, the three-letter codes were chosen to be orthogonal to those currently employed
for amino acids.

3.5. Lipids

Biological processes in the human body are dependent on highly specific molecular interactions. The vast
majority of the interactions take place in compartments within the cell, and an understanding of the behavior of
the membranes that compartmentalize and enclose the cell is therefore critical for rationalizing these processes.
Biological membranes are complex structures formed mostly by lipids and proteins. For this reason lipid bilay-
ers have received a lot of attention both computationally and experimentally for many years.[88, 89] The vital
role of cell membranes is underlined by the estimation that over half of all proteins interact with membranes, ei-
ther transiently or permanently.[90] Further, G protein-coupled receptors embedded in the membrane account for
50-60% of present day drug targets, and membrane proteins as a whole make up around 70%.[91] Even so, only
685 resolved unique structures of membrane embedded proteins, out of a total of 65 500 searchable entries (after
removing redundant structures), exist in the Protein Data Bank (April 2017) reflecting the difficulties in studying
membrane-associated proteins experimentally, making them prime targets for simulation.

Prior to 2012, the only force field parameters for lipids distributed with AmberTools were part of the Gly-
cam force field and were limited in scope.[82] Traditionally, lipid simulations with Amber have either employed
the Charmm parameters, via support for the Charmm force fields through the Chamber package[92] or through
attempts to adapt the General Amber Force Field (GAFF) with limited success[93].

In 2012, Amber greatly expanded support for simulation of lipids. This included the development of a modular
framework for lipid simulations and initial parameterization within the LIPID11 force field[94] as well as a careful
refinement of the non-bonded parameters and associated torsion terms within the GAFF force field for specific
application to lipids.[95] The latter, GAFFLipid, was the first lipid parameter set based on the Amber force field
equation to support simulation of lipid bilayers in the tensionless NPT ensemble while the former, LIPID11, pro-
vided the first modular framework for constructing lipid simulations analogous to the Amber amino and nucleic
acid force fields. Together these developments have made simulation of phospholipids with AMBER substantially
easier. LIPID14 was released in 2014 [96] and represented a major advancement over the previous Amber compat-
ible lipid force fields for lipid bilayer simulations in the NPT ensemble without the need for an artificial constant
surface tension term. Validation of the LIPID14 parameters were provided through extensive self-assembly simu-
lations [97, 98]. Inclusion and validation of parameters for cholesterol [99] represented an important addition to
the lipid parameter set, allowing even more complex lipid containing systems to be simulated. LIPID17 built upon

49

3. Molecular mechanics force fields

the modularity of LIPID14 and provided an extension of modular phospholipid residues to include anionic head
groups and polyunsaturated tails. The latest LIPID force field for AMBER is LIPID21[100] which builds upon
the modularity of LIPID14 and LIPID17 and provides an extension of modular phospholipid residues to include
anionic head groups, polyunsaturated tails and sphingomyelin. As part of the refinement from LIPID14 the bonded
alkane parameters have been revised and updated by fitting to quantum energies. Furthermore, new partial charges
have been generated for all the head group residues in order to accommodate the anionic head groups whilst main-
taining consistency in the charge derivation approach. Details regarding the parameterization are given in Dickson
et al. [100]. The modular nature of the force field allows for many combinations of lipid head and tail groups
as well as rapid and standardized parameterization of additional lipids. LIPID21 was validated through bilayer
simulations of twenty different phospholipid types, for a total of 0.9 microseconds each without applying a surface
tension or constant area term. The lipid bilayer structural features compare favorably with experimental measures
such as area per lipid, bilayer thickness, NMR order parameters and scattering data.

A word of caution regarding barostat and cut off selection with lipid simulations. It is well known that lipids can
be very sensitive to simulation conditions. Previous advice has been to use the Berendsen barostat and a 10A cutoff
when simulating lipids with the AMBER Lipid force fields. This was due to bilayer deformation that was regularly
seen with simulations run using the Monte Carlo Barostat. Recent work by Gomez et al.[101] investigated this
behavior and determined that there are issues when using the MC barostat with hard Lennard-Jones cutoffs. The
issue affects all simulations but is most obvious when simulating lipid bilayers. Gomez et al recommend use of an
LJ force switch when running simulations with the MC barostat.

3.5.1. LIPID21: The Amber lipid force field

leaprc.lipid2l defines atom types and loads the files below
lipid21.1ib atoms, charges, and topologies for LIPID21 residues
lipid21.dat LIPID21 force field parameters

The LIPID21 force field represents the logical next step in the development of an Amber lipid force field build-
ing on the modular nature of LIPID11[94], LIPID 14 [96] and LIPID 17 to allow for tensionless lipid bilayer
simulations in Amber. LIPID21[100] has been designed to be fully compatible with the other pairwise-additive
protein, nucleic acid, carbohydrate, and small molecule Amber force fields.

LIPID21 is a modular force field for the simulation of phospholipids and cholesterol. To achieve this modularity
phospholipids are divided into interchangeable head group and tail group "residues."

Currently, there are eight tail group residues and six head group residues supported, as well as cholesterol, and
LEaP supports any combination of these lipid residues. The supported LIPID21 residues and their residue names
are listed in Table 3.9. LIPID21 can be used alone or in conjunction with other Amber force fields. The order
with which the various AMBER force fields are loaded along with LIPID21 should not matter. For example, to
load ff19SB and LIPID21 in LEaP use:

source leaprc.protein.ff19SB
source leaprc.lipid2l

Due to the significant improvements in fidelity offered by LIPID21 we do not recommend the continued use of
previous LIPID force fields. As such LIPID11, 14 and 17 have been deprecated to the oldff/ directory.

LIPID21 PDB format

LIPID21 atom names and types are defined in Skjevik, et al[94], Dickson, et al[96], Madej et al[99] and Dickson,
et al.[100]

A properly formatted lipid PDB can be loaded into LEaP. Each phospholipid molecule in LIPID21 is made up
of three residues. Atoms from each residue must be in contiguous blocks and ordered as described below in each
molecule. A TER card must be appended after all the atoms for each molecule. Table 3.10 specifies the residue
format for the PDB file loaded by LEaP in order to correctly define linker atoms.

The connectivity (CONECT records) section of the PDB is redundant and should be removed prior to loading
into LEaP. The head group and tail residues are linked together by the LEaP program after loading the lipid PDB
file.

50

Description

| LIPID21 Residue Name |

Acyl chain Lauroyl (12:0) LAL
Myristoyl (14:0) MY
Palmitoyl (16:0) PA
Sphingosine (16:1) SA
Oleoyl (18:1 n-9) OL
Stearoyl (18:0) ST
Arachidonoyl (20:4) AR
Docosahexaenoyl (22:6) DHA
Head group Phosphatidylcholine PC
Phosphatidylethanolamine PE
Phosphatidylserine PS
Phosphatidylglycerol (R-) PGR
Phosphatidylglycerol (S-) PGS
Phosphaditic acid PH-
Sphingomyelin SPM
Other Cholesterol CHL

Table 3.9.: LIPID21 residue names.

Lipid 1 sn-1 tail residue
head group residue
sn-2 tail residue
TER card
Lipid 2 sn-1 tail residue

head group residue
sn-2 tail residue
TER card

Table 3.10.: LIPID21 PDB format for LEaP

3.5. Lipids

51

3. Molecular mechanics force fields

PDB formatted structure files with alternative residue and atom names (such as Charmm C36) may be
converted to the LIPID21 naming convention by way of the script called charmmlipid2amber.py which is supplied
with AmberTools to convert Charmm C36 residue and atom names to LIPID21 nomenclature.

charmmlipid2amber.py -i charmm c36.pdb -o output lipid2l.pdb

Additionally, membrane systems can be prepared by means of the packmol-memgen included software (12.9).

3.6. Solvents

leaprc.water.<type> loads solvents.lib and the appropriate frcmod file

solvents.lib library for water, methanol, chloroform, NMA, urea

frcmod. tipdp Parameter changes for TIP4P.

frcmod. tipdpew Parameter changes for TIP4PEW.

frcmod.tip5p Parameter changes for TIPS5P.

frcmod. spce Parameter changes for SPC/E.

frcmod. spceb Parameter changes for SPC/Eb.

frcmod. opc Parameter changes for OPC.

frcmod. opc3 Parameter changes for OPC3.

frcmod. opc3pol Parameter changes for OPC3-pol.

frcmod.pol3 Parameter changes for POL3.

frcmod. tip3pfb Parameter changes for the force-balance TIP3P model
frcmod. tipdpfb Parameter changes for the force-balance TIP4P model
frcmod.meoh Parameters for methanol.

frcmod.chel3 Parameters for chloroform.

frcmod.nma Parameters for N-methyacetamide.

frcmod.urea Parameters for urea (or urea-water mixtures).

Amber provides direct support for several water models.

There is no default, but TIP3P[102] will be used for residues with names HOH or WAT, following a long
tradition. Despite the fact that many properties of this old water model deviate significantly from those of real
water, the model has an impressive track record and is still a popular choice in biomolecular simulations. There
is more than one good reason behind this tenacity other than simple inertia[21]. In particular, many older force
fields were parametrized in simulations that used TIP3P as the solvent: errors in the solvent part of the total energy
are compensated, to an extent, by fitted parameters of the gas phase (solute) part. As a result, many existing
force fields are inherently biased towards TIP3P to various degrees. Replacing TIP3P with another water model
without re-parametrizing the underlying gas-phase force field may not necessarily lead to better accuracy of the
biomolecular simulation that might be expected to benefit from the more accurate water model. Fortunately,
AMBER force fields are not very strongly biased towards any specific water model, which makes the task of
testing new models easier. In recent years several new models appeared that describe the state of liquid water
much more accurately than TIP3P, these models showed significant improvements in outcomes of many types of
biomolecular simulations, even with older force fields. A recent addition to AMBER family of protein force fields,
ff19SB[22], was developed without an inherent bias towards a water model; OPC is recommended for use with
this force field[22].

If you want to use water models other than TIP3P, execute the following LEaP commands after loading your
leaprec file:

WAT = OPC (residues named WAT in pdb file will be OPC)
source leaprc.water.opc

(The above is obviously for the OPC model.) The solvents.lib file contains TIP3P,[102] TIP3P/F,[103] TIP4P,[102,
104] TIP4P/Ew,[105, 106] TIP5P,[107] OPC,[23] OPC3,[108] OPC3-pol,[109] POL3,[110] SPC/E,[111] SPC/Eb,[32]
TIP3PFB,[36] and TIP4PFB[36] models for water; these are called TP3, TPF, TP4, T4E, TP5, OPC, OP3, O3P,
PL3, SPC, SPC, FB3 and FB4, respectively. (The SPC/E and SPC/Eb models are both called SPC: you just have to

52

3.6. Solvents

be sure to load the appropriate frcmod file.) By default, the residue name in the prmtop file will be WAT, regardless
of which water model is used.

The “standard” leaprc files for tip3p, spce, tipdpew and opc also load the Joung/Cheatham monovalent ion
parameters (see below). If you wish to use other parameters, or to deal with divalent or other ions, you will need
to load the appropriate frcmod files.

Amber has two flexible water models, one for classical dynamics, SPC/Fw[112] (called “SPF”) and one for
path-integral MD, qSPC/Fw[113] (called “SPG”). You would use these in the following manner:

WAT = SPG
loadAmberParams frcmod.gspcfw
set default FlexibleWater on

Then, when you load a PDB file with residues called WAT, they will get the parameters for gSPC/Fw. (Obviously,
you need to run some version of quantum dynamics if you are using gSPC/Fw water.)

The solvents.lib file, which is automatically loaded with many leaprc files, also contains pre-equilibrated boxes
for many of these water models. These are called POL3BOX, QSPCFWBOX, SPCBOX, SPCFWBOX, TIP3PBOX,
TIP3PFBOX, TIP4APBOX, TIPAPEWBOX, OPCBOX, OPC3BOX, OPC3POLBOX, and TIPSPBOX. These can be
used as arguments to the solvateBox or solvateOct commands in LEaP.

In addition, non-polarizable models for the organic solvents methanol, chloroform and N-methylacetamide are
provided,[114] along with a box for an 8M urea-water mixture. The input files for a single molecule are in
SAMBERHOME/dat/leap/prep, and the corresponding frcmod files are in SAMBERHOME/dat/leap/parm. Pre-
equilibrated boxes are in SAMBERHOME/dat/leap/lib. For example, to solvate a simple peptide in methanol, you
could do the following:

source leaprc.protein.ff14SB (get a standard force field)
loadAmberParams frcmod.meoh (get methanol parameters)

peptide = sequence { ACE VAL NME } (construct a simple peptide)
solvateBox peptide MEOHBOX 12.0 0.8 (solvate the peptide with meoh)
saveAmberParm peptide prmtop prmcrd

quit

Similar commands will work for other solvent models.

3.6.1. The OPC family of water models

OPC is a non-polarizable, 4-point, 3-charge rigid water model.[23] Geometrically, it resembles TIP4P-like mod-
els, although the values of OPC point charges and charge-charge distances are quite different. The model has a
single VDW center on the oxygen nucleus. The model is constructed based on the concept of optimal point charge
approximation; [115] the central idea of OPC is to distribute the point charges to best reproduce the 3 lowest
order multipole moments of water molecule in liquid phase. The optimal values for the dipole y and the square
quadrupole moment Qr [116] are determined as best fit values that reproduce key experimental properties of wa-
ter in liquid phase. The low dimensionality of the parameter space U-Q7 permits a virtually exhaustive search
for the gloabal optimum; the global optimization sets this water model familiy apart from the others. The linear
quadrupole and the octupole moments[117] are fixed to values obtained from high quality QM calculations.[116]

A full description of OPC and its properties can be found in Ref.[23]. For 11 key liquid state properties against
which water models are most often benchmarked, OPC is on average within 0.76% of the experiment (relative
error). This accuracy is dramatically better compared to the commonly used rigid models. For example, the
dielectric constant of TIP3P and TIP4PEw is 94 and 63.9 respectively, while OPC predicts it to be 78.4+0.6 (the
experimental value is 78.4). The reported OPC properties were computed using Amber 12 on GPUs with a time-
step of 2 fs, periodic boundary conditions, an 8 angstrom cut-off for nonbonded interactions, and PME for long
range electrostatics. SHAKE was used to constrain hydrogens. The rest of parameters are set to current Amber
defaults; note that these include accounting for the van der Waals interactions beyond the cut-off via a continuum
model (vdwmeth=1).

OPC in biomolecular simulations: Because of the improved accuracy in bulk properties, OPC delivers no-
ticeable accuracy improvement in practical biomolecular simulations, even with existing force-fields. Specifically,

53

3. Molecular mechanics force fields

OPC was found to yield quantitative agreement with NMR experiment for conformational populations of small
RNA fragments,[56, 118, 119] and therefore is a commonly used water model for RNA simulations. [120-122]
OPC has been shown to improve structural description of DNA dublex,[67] DNA G-quadruplex, [123] thermody-
namics of ligand binding,[124] small molecule hydration,[23] rotational dynamics of proteins, [125] simulations
of lipid monolayer, [126] and intrinsically disordered proteins.[47, 127]

Ion parameters for OPC: Four nonbonded parameter sets (the 12-6 normal usage set, 12-6 HFE set, 12-6 IOD
set, and 12-6-4 set) for various ions in conjunction with the OPC water model have been developed by Li, Merz and
co-workers;[128—130] see Section 3.7 for the definition and important usage suggestions. Additional OPC-specific
ion parameters have also been reported recently.[131]

Based on our limited experience, it appears that the Joung/Cheatham ion parameters for TIP4P-EW (jc_tip4pew)[132]
may also be acceptable for OPC water model, especially when accurate reproduction of I0Ds is critical. This set
has already been tested in practice with OPC model.[56, 124]

OPC3 water model: OPC3 — a 3-point rigid non-polarizable water model — is the latest addition to the fam-
ily, constructed using the same philosophy as OPC. Further details are available in Ref.[108]. Briefly, OPC3 is
significantly more accurate than the commonly used water models of same class (TIP3P, SPC/E) in reproducing a
comprehensive set of liquid bulk properties, over a wide range of temperatures. Relative to the 4-point OPC, OPC3
is somewhat less accurate comapred to experiment. Similar to the OPC water model, four nonbonded parameter
sets for various ions in conjunction with the OPC3 water model (the 12-6 normal usage set, 12-6 HFE set, 12-6
IOD set, and 12-6-4 set) have also been developed by Li, Merz and co-workers;[128—130] see Section 3.7 for the
definition and important usage suggestions. Moreover, the Joung/Cheatham ion parameters previously developed
for TIP3P may also be used with OPC3.

3.6.1.1. OPC3-pol: fast polarizable water model

OPC3-pol is a new classical 3-point water model that explicitly accounts for electronic polarizability with min-
imal impact on computational efficiency.[109] The model is based on the Drude oscillator concept, with several
significant modifications compared to existing models [133] of this kind. Parameters of OPC3-Pol have been glob-
ally optimized to match experiment, just like other water models of the globally optimal OPC family.[23, 108]
OPC3-pol reproduces five key bulk water properties at room temperature, with an average relative error of 0.6%.

At the moment, the intended use of OPC3-Pol is in long classical atomistic simulations where water polarization
effects are known or expected to be very important. Likewise, studies that aim at investigating effects of water
polarization itself can benefit from the computationally efficient OPC3-pol. Based on our limited experience,
globular proteins and dsDNA should be fine.

Efficiency: Compared to existing polarizable water models employed in atomistic biomolecular simulations,
OPC3-pol has two key advantages. First, its relative speed: OPC3-pol’s computational efficiency is near that of
fixed-charge TIP3P (in-between that of TIP3P and TIP4P-Ew); OPC3-Pol supports increased (4 fs) integration
time step with HMR. Second, OPC3-pol is intended to be used with existing non-polarizable force-fields, e.g.
ff14SB or ff19SB; no specialized polarizable force-field is required.

Use in MD simulations: So far, OPC3-pol has been tested in simulations of a globular protein (ubiquitin)
and a B-DNA dodecamer with recent AMBER force-fields, ff99SB, ff14SB, ff19SB, and OL15, respectively,
demonstrating structure stability close to X-ray reference on multi-microsecond time-scale. With ff14SB, the
ubiquitin structure was marginally more stable than with ff19SB, with an average RMSD at 1.0 A for ff14SB
compared to 1.2 A for ff19SB. On a B-DNA dodecamer with OL15, the simulated structure matched the crystal
structure within 1.5 A backbone RMSD (excluding terminal nucleotides), and the widths of its major and minor
grooves agreed well with the experimental reference.

Known limitations: The main limitations of the model stem from its main design choice of keeping it as simple
as possible. The goal was to deliver a fast and reasonably accurate polarizable water model, easily accessible
for use in biomolecular simulations; thus compromises were made. In particular, this is a 3-point model, which
inherits a number of incorrigible ills of these simplest models.[21, 134] For example, the accuracy of OPC3-pol in
reproducing liquid water properties is lower than that of 4-point OPC, one should not expect accuracy miracles from
simulations that employ OPC3-pol. The model parameters have been optimized for ambient conditions, some of
its liquid water properties deviate from experiment away from the 300 K target. In particular, the density maximum
is off; we do not recommend using the model far outside the ~300 K, ~1 bar ambient conditions. OPC3-pol has not

54

3.7. Ions

yet been tested nearly as extensively in biomolecular simulations as other OPC family models. In particular, while
its performance on an intrinsically disordered protein showed some promise, more extensive testing is needed for
a definitive conclusion on whether OPC3-pol should be used outside of the domain of globular structures.

SETUP: The basic set-up is the same as for any other water model. Model residue name: O3P. To load it in
LEaP:

WAT = O3P
source leaprc.water.opc3pol

In the absence of OPC3-pol specific ion models, we cautiously recommend Li/Merz ion parameters for +1 and -1
ions in OPC water (12-6 HFE set):

loadAmberParams frcmod.ionsllm_126_hfe_opc

which we have used in simulations described above.

USE WITH 4 fs time-step: For that, hydrogen mass repartitioning (HMR)[135] is required, see the two steps
below.

1) Load the extra frcmod file in LEaP (after the "source leaprc.water.opc3pol"” command):

loadAmberParams frcmod.opc3pol_ HMR4fs

Loading this frcmod file sets up HMR for OPC3-pol water in the system. In detail, it increases H atom mass to
2.008 Da and reduces O atom and Drude atom mass to 7.0 Da in all OPC3-pol water molecules.

2) After the LEaP step, call “HMassRepartition” command in ParmEd to set up HMR for non-water molecules in
the system. Note that the “dowater” argument for “HMassRepartition” should not be invoked, otherwise OPC3-pol
water’s HMR configuration set up in the first step will be overwritten.

3.7. lons

frcmod.ionsjc_tip3p Joung/Cheatham ion parameters for TIP3P water

frcmod. ionsjc_spce same, but for SPC/E water

frcmod. ionsjc_tipdpew same, but for TIP4P/EW water

frcmod.ionsllm 126_tip3p Li/Merz ion parameters for +1 and -1 ions in TIP3P water
frcmod.ionsllm _126_spce same, but in SPC/E water

frcmod.ionsllm_126_tipdpew same, but in TIP4P/EW water

frcmod.ionsllm iod Li/Merz ion parameters for +1 and -1 ions in TIP3P, SPC/E
frcmod.ions2341m_126_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water
frcmod.ions2341m _126_spce same, but in SPC/E water

fremod.ions2341m_126_tipdpew same, but in TIP4P/EW water

frcmod.ions2341m_hfe_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water
frcmod.ions2341m _hfe_spce same, but in SPC/E water

frcmod.ions2341m hfe tip4pew same, but in TIP4PEW water

frcmod.ions2341m_iod_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water
frcmod.ions2341m _iod_spce same, but in SPC/E water

frcemod.ions2341m iod_tip4pew same, but in TIP4P/EW water

frcmod.ionsllm_1264_tip3p Li/Merz ion parameters for -1 and +1 ions in TIP3P water
frcmod.ionsllm_1264_spce same, but in SPC/E water
frcmod.ionsllm 1264_tip4pew same, but in TIP4PEW water

frcmod.ions2341m 1264 _tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water]
frcmod.ions2341m_1264_spce same, but in SPC/E water
frcmod.ions2341m_1264_tip4pew same, but in TIP4PEW water

55

(12-6 normal

, and TIP4P/E

(12-6 normal

(12-6 HFE se

(12-6 IOD se

(12-6—-4 set)

(12-6-4 set)

3. Molecular mechanics force fields

frcmod.ionslm_126_opc3 Li/Merz ion parameters for -1 to +4 in OPC3 water (12-6
frcmod.ionslm 126_opc same, but in OPC water

fremod.ionslm 126_£fb3 same, but in TIP3P-FB water

frcmod.ionslm 126 fb4 same, but in TIP4P-FB water

frcmod.ionslm_hfe_opc3 Li/Merz ion parameters for -1 to +4 in OPC3 water (12-6
frcmod.ionslm hfe opc same, but in OPC water

frcmod.ionslm hfe fb3 same, but in TIP3P-FB water

frcmod.ionslm hfe fb4 same, but in TIP4P-FB water

frcmod.ionslm iod opc3 Li/Merz ion parameters for -1 to +4 in OPC3 water (12-6
frcmod.ionslm_iod_opc same, but in OPC water

frcmod.ionslm _iod fb3 same, but in TIP3P-FB water

fremod.ionslm iod fb4 same, but in TIP4P-FB water

frcmod.ionslm_1264_opc3 Li/Merz ion parameters for -1 to +4 in OPC3 water (12—
frcmod.ionslm 1264_opc same, but in OPC water

fremod.ionslm 1264 fb3 same, but in TIP3P-FB water

frcmod.ionslm 1264 fb4 same, but in TIP4P-FB water

atomic_ions.1lib topologies for monoatomic ions (new naming scheme)

ions94.1ib topologies for ions with the old naming scheme

In 2008, Joung and Cheatham created a consistent set of parameters for alkali halide ions, fitting solvation
free energies, radial distribution functions, ion-water interaction energies and crystal lattice energies and lattice
constants for non-polarizable spherical ions.[132, 136] These have been separately parametrized for each of three
popular water models, as indicated above.

Li, Merz and co-workers subsequently developed ion parameters for the monovalent, divalent, trivalent and
tetravalent ions for the 12-6 LJ nonbonded model and the 12-6-4 LJ-type nonbonded model in conjunction with

normal usage s

HFE set)

IOD set)

6—-4 set)

seven different water models (TIP3P, SPC/E, TIPAPEW, OPC3, OPC, TIP3P-FB, and TIP4P-FB) for PME simulations.[128—

130, 137-140] The experimental values they tried to reproduce are the experimental Hydration Free Energy (HFE)
values, Ion-Oxygen Distance (IOD) values and Coordination Number (CN) values of the first solvation shell. It
was found that it is hard to reproduce the three experimental values simultaneously by using the 12-6 LJ nonbonded
model. Since the charge-induced dipole interaction is proportional to ¥~* , a new term with format (C/r)* was
added to the 12-6 LJ potential, yielding a 12-6-4 LJ-type potential. The new potential with designed parameters
could reproduce the experimental HFE, IOD and CN values at the same time without significant compromise.
Especially for the highly charged metal ions, the 12-6-4 LJ-type nonbonded model performs much better than the
12-6 one overall. Similar to Joung and Cheatham’s work, water models were treated separately for the parameter
design, as indicated in the name of frcmod files. Users can check the notes in the frcmod files to see the reference
of each parameter.

For the 12-6 LJ nonbonded model, three different parameter sets are available for each water model to meet
different requirements:

1. 12-6 normal usage set. This contains the HFE set of the monovalent ions (which could reproduce the experi-
mental HFE),[129, 140] the Compromise (CM) set of divalent ions (which could reproduce the experimental
relative HFE and CN values),[128, 138] and the IOD set (which could reproduce the experimental IOD) for
the trivalent and tetravalent ions.[130, 139] These parameters are recommended to be used in the normal
MD simulations. This is because for the monovalent ions the error of the 12-6 LJ nonbonded model is pretty
small (a CM set may not be needed since the HFE or IOD sets are pretty close to each other) while for the
trivalent and tetravalent metal ions the 12-6 LJ nonbonded model has relatively big errors (a CM set could
have big errors for both HFE and 10D at this moment).

12-6 HFE set to reproduce experimental HFE.[128-130, 137, 139, 140] The HFE parameter set has limited
error for monovalent ions, while could have remarkable error for highly charged ions. Since we use the
HFE set for monovalent ions in the 12-6 normal usage set, we don’t have a specific HFE set parameter file
for monovalent ions. In addition, an old HFE set of parameters for OPC water models were developed by
Pengfei Li previously only for Na* , K* , and CI" ions (personal communications with Alexey Onufriev),
and this parameter set can be found in a recent publication by the Onufriev group.[141] This parameter set is

56

3.8. Force fields related to semi-empirical QM

not available in the current version of AMBER, and has a small difference from the current HFE parameter
set for OPC in AMBER. Herein the reference is provided in case anyone wants to use this old parameter set
for reproducibility sake or other purposes.

3. 12-6 IOD set to reproduce experimental IOD.[128-130, 137, 139, 140] Since the ion with certain parameter
could reproduce similar IOD values in the three water models, so the IOD set parameters of three water
models were designed identical (for the monovalent and divalent metal ions, while for the trivalent and
tetravalent ions, the IOD set are estimated for each water model separately). The IOD parameter set are
recommended to be used in the structural refinement or for structural property orientated investiga-
tion.

For the 12-6-4 LJ-type nonbonded model, only one parameter set (12-6-4 set) designed for each of the three water
models. The 12-6-4 model has also been tested in mixed systems (such as nucleic acids, proteins and ionic so-
lutions) and have shown excellent transferability.[128—130, 138—140] The 12-6-4 model has been shown to give
greatly improved structural, thermodynamic, kinetic and mass transport properties for Mg?*in water relative to the
12-6 model..[142] The 12-6-4 model with the SPC/E water model performed exceptionally well for simulating all
properties in these benchmark calculations.[142] The parameters which are specifically designed for the divalent
metal ions with 12-6-4 LJ-type nonbonded model are shown as the 12-6-4 set above. These frcmod files can be used
to generate an original prmtop file. After obtaining the original prmtop file, one should use the add12_6_4 com-
mand in parmed to generate a prmtop with the additional C4 terms with the flag LENNARD JONES_CCOEF.
Please see the add12_6_4 command 14.2.2.6 in Subsection14.2.2 in the manual for detailed information. After
obtaining the prmtop with the additional C4 term, you can use sander or pmemd to run the simulation.

Panteva ef al. have also fine-tuned the C; terms between several divalent metal ions (Mg2*, Mn%*, Zn?*, and
Cd*) and nucleic acid systems[143] while keeping the C4 terms between metal ions and water desgined by Li and
Merz.[138] The new parameter set arguably provides a better balance the interaction types in nucleic acid systems,
has been shown to be predictive in identifying metal ion binding sites in nucleic acids[144], and is recommended
to use in related modeling. Moreover, the 12-6-4 model showed its ability to well simulate the chelate effect[145]
and the thermodynamics of metal ion binding in a metalloprotein.[146] A tutorial about the 12-6-4 model is here:
ambermd.org/tutorials/advanced/tutorial20/12_6_4..php.

Moreover, Li has shown that it is possible to simultaneously reproduce the HFE, IOD, and coordination number
(CN) values of metal ions by using a 12-6 model with adjusting the atomic charges of the first solvation shell water
molecules.[147] The relationship between the C4 parameter and induced dipole moment was also derived. This
study used a strategy similar to the fluctuating charge model, hence it can be considered as a work bridging the
12-6-4 model and the fluctuating charge model.

3.8. Force fields related to semi-empirical QM

ParmAM1 and parmPM3 are classical force field parameter sets that reproduce the geometry of proteins mini-
mized at the semi-empirical AM1 or PM3 level, respectively.[148] These new force fields provide an inexpensive,
yet reliable, method to arrive at geometries that are more consistent with a semi-empirical treatment of protein
structure. These force fields are meant only to reproduce AM1 and PM3 geometries (warts and all) and were
not tested for use in other instances (e.g., in classical MD simulations, etc.) Since the minimization of a pro-
tein structure at the semi-empirical level can become cost-prohibitive, a “preminimization” with an appropriately
parametrized classical treatment will facilitate future analysis using AM1 or PM3 Hamiltonians.

3.9. The GAL17 force field for water over platinum

leaprc.music Adds atom types and loads music.lib and music.dat
music.lib Library for metal surface atoms, virtual sites, and Drude rod particles.
music.dat Parameters for metal surface, Drude rod particles and LJ terms with water.

57

https://ambermd.org/tutorials/advanced/tutorial20/12_6_4.php

3. Molecular mechanics force fields

The GAL17 force field[149] was developed as part of the MuSiC project (Multiscale Simulations in Catalysis)
to describe the interaction of water and a Pt(111) surface. The GAL17 force field is implemented in the sander
program and can be combined with any water model. It provides a significant improvement over previously
existing force fields for Pt(111)/water interactions. Its well-balanced performance suggests that it is an ideal
candidate to generate relevant geometries for the metal/water interface, paving a way to a representative sampling
of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface. At
present only parameters for water over Pt(111) are available, however, the force field is extensible to other metal
surface and solutes such as alcohols or sugar molecules that are typical substrates in catalytic upgrading of biomass
extracts. The GAL17 force field consists of

* A Lennard-Jones term between Pt atoms and water oxygen atoms that describes physisorption of water at
the surface.

* A polarized Gaussian term between Pt surface atoms and water oxygen atoms that describes chemisorption
at Pt top sites.

» Two terms that describe the angular dependence of the water/Pt surface interaction energy.

The GAL17 force field thus does not include explicit terms to describe image charge interactions, that is electro-
static interactions between charged particles and a metallic conductor, explicitly. Instead these effects are included
implicitly. In addition, it has been shown that image charge interactions account for less than 10% of the interac-
tion energy for water adsorbed at a Pt(111) surface[150]. Although not employed in GAL17, the music force field
library does contain parameters for a symmetric Drude rod model[150] that can be employed to investigate image
charge effects.

In GAL17 the platinum surface atoms have atom name Pt and residue name MET. The platinum surface must
be perpendicular to one of the Cartesian coordinate axes. Water molecules must be above the surface (coordinate
values larger than the metal atoms). Given a properly formatted pdb file that contains a platinum metal surface
and water molecules, one would use the GAL17 force field with TIP3P water in the following manner:

source leaprc.music

source leaprc.water.tip3p

ptwat = loadpdb ptwat.pdb
saveAmberParm ptwat prmtop inpcrd

This will load the correct LJ parameters between platinum and water oxygen atoms. In addition, one needs to
activate the Gaussian and angle adsorption correction terms via the &music namelist. This namelist also provides
an option to define the orientation of the surface plane. All force field parameters can be controlled via this
namelist, advanced users may want to look into the source code file music_module. F90 for all available options.
At present there are no good parameters for platinum metal and simulations must therefore constrain the position
of the platinum atoms. This can be conveniently achieved with belly dynamics. A typical input would thus
contain

&cntrl
ibelly =1, ! constrain atom positions
bellymask = ’'@O,H1,H2’ ! let water molecules move
/
&music
pt_plane = 'yz’ ! default is ’'xy’, i.e. surface in xy plane
/

When running simulations with sander in parallel, it may be advisable to orient the metal surface in the yz plane to
achieve better load balancing with the algorithm that is used by sander to distribute work across MPI tasks. Tests
that may serve as examples how to build input files and run simulations with GAL17 are contained in directory
SAMBERHOME/test/sander_music/.

58

3.10. Fluorescent dyes: AMBER-DYES in AMBER force field files

3.10. Fluorescent dyes: AMBER-DYES in AMBER force field files

leaprc.amberdyes
amberdyes.lib
amberdyes.dat

defines atom types and loads the files below
atoms, charges, and topologies for dye and linker residues
AMBER-DYES in AMBER force field parameters

The AMBER-DYES force field parameters[151] were modified and implemented into the AMBER Software
Suite[152]. The modifications were performed for all Cystein-ending linkers to fix an issue [153] existing in
the original dye parameters[151]. The chirality of the Cystein-ending linkers is in R-configuration, but can be
easily changed via the “flip” command in cpptraj. Further modifications were performed for the dye “Alexa Fluor
647 to remove the discordance between the structure used in the original parameters [151] and the commercially
available one [154]. The original dye structure can still be manually loaded by using the amberdyes_org.lib file.
Fluorescence ligands, so-called dyes, are widely used to investigate protein structures and dynamics, such as
conformational changes, folding, association and dissociation of complexes, and enzymatic cycles. Dyes are usable
with multi-protein and single-protein systems. MD simulations with explicit dyes can improve the interpretation
of experimental results. Especially in Forster Resonance Energy Transfer (FRET) experiments, it is of utmost
importance to obtain precise information about the position and orientation of the dyes.

At the moment AMBER-DYES in AMBER covers 22 commonly used dyes and 6 linkers (see table below):

Table 3.11.: AMBER-DYES in AMBER residue names.

Dye Residue name | Linker residue Dye Residue name | Linker residue
Alexa Fluor 350 A35 CIR,LIR ATTO 390 T39 C2R,L1R
Alexa Fluor 488 A48 BIR, CIR, LIR ATTO 425 T42 C2R, LIR
Alexa Fluor 532 AS53 CIR,LIR ATTO 465 T46 C2R,L1R
Alexa Fluor 568 A56 CIR,LIR ATTO 488 T48 C3R, L2R
Alexa Fluor 594 A59 CIR,LIR ATTO 495 T49 C2R,LIR
Alexa Fluor 647 A64 BIR, C2R, LIR ATTO 514 T51 C3R, L2R
Lumiprope Cy3 C3N C2R,LIR ATTO 520 T52 C2R,LIR
Lumiprope Sulfo-Cy3 C3wW LIR ATTO 610 T61 C2R,LIR
Lumiprope Cy5 C5N C2R,LIR ATTO Thiol2 Tth C3R.L2R
Lumiprope Sulfo-Cy5 C5W LIR
Lumiprope Cy5.5 C55 C2R,LIR
Lumiprope Cy7 C7N LIR
Lumiprope Cy7.5 C75 LIR

To attach a linker / dye combination to your structure, hand-edit your PDB file, similarly to 3.2.3, and choose
an attachment point (e.g. residue 3):

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

16
17
18
19
20
21
22
23
24
25

ND2 ASN E 2
N ILE E 3
CA ILE E 3
C ILE E 3
o ILE E 3
CB ILE E 3
CGl ILE E 3
CG2 ILE E 3
CD1 ILE E 3
N PHE E 4

.872
.739
.144
.305
.662
.933
.138
.449
.522
.507

oW OO U W

30.
34.
36.
36.
37.
36.
37.
36.
38.
35.

857
298
258
089
000
389
899
064
291
854

39.
36.
39.
40.
41.
35.
35.
35.
34.
38.

020
056
575
541
282
001
089
230
603
224

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

RFRErRRRRRPRRRRR

13.
.08

7.

9.
12.
13.
.53
12.
11.
11.

14

11

86

14
18
86
23

95
29
91

Change the residue name (ILE) of the CA atom to the linker residue name (e.g. C1R) and delete the rest of the

residue:

59

Zoo0o0no0on0n0zz

3. Molecular mechanics force fields

ATOM 16 ND2 ASN E 2 3.872 30.857 39.020 1.00 13.86
ATOM 18 CA C1R E 3 4.144 36.258 39.575 1.00 7.14
ATOM 25 N PHE E 4 4.507 35.854 38.224 1.00 11.91

Append your PDF file with the C99 atom of your dye (e.g. Alexa Fluor 488) after the TER card:

ATOM 1317 N ASN E 163 19.398 31.025 41.679 1.00 38.17
TER 1318 ASN E 163
ATOM 1319 C99 A48 E 164

Use LEaP to load the AMBER-DYES in AMBER force field (at best by sourcinv leaprc.amberdyes, load your
updated PDB file, set a bond between the dye (always atom C99) and linker (always atom N99), and relax the
structure:

source leaprc.amberdyes

pdb = loadpdb 1481.pdb

bond pdb.A48.C99 pdb.ClR.N99
select pdb.A48

select pdb.C1lR

relax pdb

saveAmberParm pdb prmtop inpcrd

Additional settings are subject to personal preference. LEaP will produce a structure with a bonded dye usable for
MD simulations. Do, however, check the generated structure for sanity before using it.

3.10.1. Fluorescent chromophores

Additional parameters for six common fluorescent protein chromophores—eGFP, eBFP, eYFP, eCFP, DsRed,
and mCherry—are available[155] by sourcing leaprc.xFPchromophores after sourcing the main force field leaprc
file (e.g. leaprc.protein.ff19SB). This will allow seamless loading of PDB files containing fluorescent proteins pro-
vided they follow standard residue naming of the chromophore: eGFP=CRO, eBFP=IIC, eYFP=CR2, eCFP=CRE,
DsRed=CRQ, and mCherry=CH6. The chromophore parameters are based on parm10 with the ff19SB modifica-
tions, but also borrow heavily from GAFF. Both uppercase and lowercase atom types are utilized, so users should
take caution if mixing ff19SB with GAFF. See original reference[155] for details of implementation.

3.11. Coarse-grained and multiscale simulations using the SIRAH force
field

In the following section, we briefly introduce the Coarse-Grained (CG) force field named SIRAH, which has
been completely ported to Amber and is compatible with multiscale simulations. SIRAH is a residue-based top-
down force field developed to reproduce structural properties of biomolecules, granting a speed up of above 2
orders of magnitude in comparison to all-atom simulations, with a reasonable compromise on accuracy.[156] Cur-
rently, it includes parameters for DNA,[157] phospholipids,[158] and proteins (including the most frequent post-
translational modifications.[159] Most recently, metal ions to be used as cofactors have been incorporated.[160]
Notably, SIRAH uses its own water model for explicit solvent called WatFour (WT4 for shortness), which also
includes monovalent electrolytes (Na+, K+, and CI-).[161] Four interconnected beads mimicking an elementary
water cluster constitute the WT4 water model. Since each bead carries a partial charge, WT4 creates its dielectric
permittivity, while the use of explicit electrolytes allows setting the ionic strength in the solution.

SIRAH uses the standard two-body classical Hamiltonian implemented in most common MD packages, and in
particular in Amber. Hence, common concepts as partial charges, atom types, and equilibrium distances/angles can
be straightforwardly transferred from atomistic to CG simulations. In this way, simulations performed with SIRAH
can fully profit from GPU acceleration and analysis programs included in common MD packages. Mapping from

60

(@]

3.11. Coarse-grained and multiscale simulations using the SIRAH force field

fully atomistic structures uses the position of real atoms to place interacting beads. Therefore, equilibrium values
in the bonded terms of the Hamiltonian are directly extracted from experimental or canonical structures, reducing
free parameters and facilitating the backmapping from CG to all-atoms.[162] Because of this, conformational
preferences (i.e., helical, extended beta or coil conformations in proteins, and the B-form in DNA) are introduced
in the bonded part of the Hamiltonian, obviating topological biases or the need to impose elastic network models
to fix secondary structures.

Since CG beads carry a partial charge, electrostatic interactions are calculated at long range via the Particle
Mesh Ewald method.

Perhaps the main difference with a fully atomistic force field regards the use of parameters for the calculation of
the Lennard-Jones potential. Although most of the interactions are calculated in the standard way, some of them
are not calculated using normal combination rules but set to specific values between pairs of beads. This provides
a flexible and convenient option to fix interactions that only apply to certain pairs of beads without modifying the
entire force field. In particular, this feature is used in SIRAH to fine-tune the balance between electrostatic and
Lennard-Jones interactions.

3.11.1. Available simulation schemes
Currently, the following CG and multiscale simulation schemes are available in SIRAH:

1. Explicit solvent CG simulations: they may include complex systems (Protein, DNA, Membranes, water, and
ions)[156, 158, 161]

2. Implicit solvent CG simulations: Currently available only for DNA using generalized Born model with
igb=1.[157, 163]
3. Multiscale simulations: These can be performed in three fashions:

a) - Multiscale solvation: fine grain (FG, or fully atomistic) solute solvated with atomistic water + CG
water + supra CG water. This scheme is particularly well suited for highly solvated systems as virus
capsids[164] and is transferable to different force fields. Indeed, the WT4 water model has been tested
to work in combination with TIP3P, SPC and SPC/e water models.[165]

b) - Dual scale DNA simulations: this scheme can deal with single or double-stranded DNA in which
a certain number of nucleotides are defined at the atomistic level, while the rest is treated at the CG
level. Simulations can be performed in explicit or implicit solvent (see point 2). SIRAH parameters
have been developed to work with the bscO FG force field,[166, 167] and successfully checked for
compatibility with the newer bscl version.

¢) - QM/(FG/CG) simulations: this scheme profits from the possibility to run QM/MM simulations in
AMBER. The current implementation has been only tested in a Russian-doll fashion with a quantum
region surrounded by FG nucleotides nested in a CG double helix.[168]

3.11.2. Preparing your system for a CG simulation

In a nutshell, SIRAH is provided simply as another force field, plus a set of tools. In principle, all you need to
get started is previous knowledge on how to run an MD simulation with AMBER and a fully protonated structure.
Schematically, you can set up a CG simulation in three very simple steps.

1. Create a symbolic link in your working directory to ensure you will find the required files:
ln -s $AMBERHOME/dat/SIRAH/

2. Map the FG structure to CG. In its simplest form just type:

./SIRAH/tools/CGCONV/cgconv.pl —-i your_protonated FG_file.pdb -o your_CG_file.pd
This will return a CG PDB file with standard mapping options. All options are shown by typing:
./SIRAH/tools/CGCONV/cgconv.pl -h

61

3. Molecular mechanics force fields

3. In your LEaP input file include:

AddPath SIRAH
source leaprc.sirah

For instance, a typical LEaP file for the protein 1CRN would look like:

Load SIRAH force field
addPath ./sirah.amber
source leaprc.sirah
Load model
protein = loadpdb 1CRN_cg.pdb
Info on system charge
charge protein
Set S-S bridges
bond protein.3.BSG protein.40.BSG
bond protein.4.BSG protein.32.BSG
bond protein.16.BSG protein.26.BSG
Add solvent, counterions and 0.15M NaCl
Tuned solute-solvent closeness for best hydration
solvateOct protein WT4BOX 20 0.7
addIonsRand protein NaW 22 ClW 22
Save Parms
saveAmberParmNetcdf protein 1CRN_cg.prmtop 1CRN_cg.ncrst
EXIT

quit

Notice that three disulfide bonds are created. For this to work, the Cysteine names in your PDB file must be
edited from their thiol name (see comment on residue naming below).

Thereafter it is just normal Amber stuff!

Step-by-step tutorials on different cases of interest can be found in SAMBERHOME/dat/SIR AH/tutorial/. In
particular, using input files and initialization protocols contained therein is strongly suggested. Note that the version
included in this release corresponds to the version SIRAH 2.1. We recommend users to check and download the
latest updates from www.sirahff.com.

3.11.3. Tips and tricks.
Answers to frequently asked questions can be found at SAMBERHOME/dat/SIRAH/tutorial/SIRAH_FAQs.pdf.

1.

62

The FG to CG mapping in SIRAH is intended to preserve physicochemically important interaction points
(for example, Watson-Crick interactions in DNA). Therefore, the positions of Hydrogen atoms are needed
in some residues, for instance, in Serine. Because of this, the starting point for CG simulation is a properly
protonated PDB file. Amber naming is fully supported.

An important point to keep in mind is that the use of a 12-6 term for the Lennard-Jones interaction in
a generally flatten CG surface may be potentially troublesome. Large steric repulsions in the absence of
topological restraints could produce spurious structural distortions particularly sensitive to steric clashes.
Hence, it is always a good idea (although not strictly necessary) to start with a well-relaxed set of starting
coordinates.

Although appealing, the coarse-graining philosophy based on keeping important interaction points has the
negative feature that a simple recipe for arbitrary molecular moieties does not exist, and new functional
groups must be tested case by case.

Solvation may be a potential source of problems. SIRAH uses LEaP tools solvateBox or solvateOct to solvate
CG solutes. However, the relatively large size of a CG water molecule may create vacuum holes nearby the
solute that can lead to strong (unscreened) electrostatic interactions in the solute’s surface. Similarly, when

http://www.sirahff.com

3.12. Obsolete force field files

adding electrolytes, the use of addlons or addlonsRand, which substitute one water molecule by one ion,
might be problematic if the ionic positions lie very close to the solute’s surface. Most likely, these problems
will be fixed during the initialization protocol described in the tutorials. However, as in any simulation, the
user should carefully check the initial set up.

5. In proteins, residues are named with lower "s" and the one-letter-code for amino acids (i.e., Alanine is sA). A
third letter may indicate a residue modification. For instance, SE or sD stands for a Glutamate or Aspartate,
respectively, while sEh or sDh correspond to protonated versions of those amino acids. Besides standard
amino acids, the following modifications are available.

a) sX: Cysteine in S-S bond

b) sCp: Palmitoylated cysteine.

¢) sEh, sDh: protonated acidic residues

d) sHe, sHd: Histidine protonated in epsilon and delta positions

e) sSp, sTp, sYp: phosphorylated aminoacids.

f) sKa, sKm: Acetylated and methylated Lysine, respectively.

6. Zwitterionic and non-zwitterionic terminals are available. However, unlike the protein force fields included

in AMBER, ACE and NME residues do not exist in SIRAH. Zwitterionic terminals are the default option
but neutral terminals can be set by renaming the corresponding residues from s[one-letter-code] to a[one-

letter-code] (Nt-acetylated) or m[one-letter-code] (Ct-amidated) after mapping. For example, to set a neutral
N-terminal Histidine protonated at N¢ rename it from “sHe” to “aHe”.

7. Analysis: The Tcl script sirah_vmdtk.tcl provided in SAMBERHOME/dat/SIRAH/tools/ contains a series
of analysis and visualization tools to be used in VMD including backmapping, calculation of secondary
structures. Additionally, it provides visualization macros to obtain the right connectivity, sizes, etc.[162]

3.12. Obsolete force field files

The following files are included for historical interest. We do not recommend that these be used any more for
molecular simulations. The leaprc files that load these files have been moved to $AMBERHOME/dat/leap/cmd/oldff.

3.12.1. The Weiner et al. (1984,1986) force fields

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.
allnt.in All atom database input, NH3+ Amino acids.
uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.
unint.in United atom database input, NH3+ Amino acids.
parm91X.dat Parameters for 1984, 1986 force fields.

The ff86 parameters are described in early papers from the Kollman and Case groups.[169, 170] [The “parm91”’
designation is somewhat unfortunate: this file is really only a corrected version of the parameters described in
the 1984 and 1986 papers listed above.] These parameters are not generally recommended any more, but may
still be useful for vacuum simulations of nucleic acids and proteins using a distance-dependent dielectric, or for
comparisons to earlier work. The material in parm91X.dat is the parameter set distributed with Amber 4.0. The
STUB nonbonded set has been copied from parmuni.dat; these sets of parameters are appropriate for united atom
calculations using the “larger” carbon radii referred to in the “note added in proof” of the 1984 JACS paper. If
these values are used for a united atom calculation, the parameter scnb must be defined in the prmtop file and
should be set to 8.0; for all-atom calculations it should be 2.0. The scee parameter should be defined in the prmtop

63

3. Molecular mechanics force fields

file and set to 2.0 for both united atom and all-atom variants. Note that the default value for scee is now 1.2 (the
value for 1994 and later force fields); this must be explicitly defined in the prmtop file when using the earlier force
fields.

parm91X.dat is not recommended. However, for historical completeness a number of terms in the non-bonded
list of parm91X.dat should be noted. The non-bonded terms for I (iodine), CU (copper) and MG (magnesium) have
not been carefully calibrated, but are given as approximate values. In the STUB set of non-bonded parameters, we
have included parameters for a large hydrated monovalent cation (IP) that represent work by Singh ez al.[171] on
large hydrated counterions for DNA. Similar values are included for a hydrated anion (IM).

The non-bonded potentials for hydrogen-bond pairs in ff86 use a Lennard-Jones 10-12 potential. If you want to
run sander with ff86 then you will need to recompile, adding -DHAS_10_12 to the Fortran preprocessor flags.

3.12.2. The Cornell et al. (1994) force field

all nuc94.in Nucleic acid input for building database.

all _amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all _aminont94.in NH3+ amino acid input for database.

nacl.in Ion file.

parm9%4 .dat 1994 force field file.

parm96.dat Modified version of 1994 force field, for proteins.
parm98.dat Modified version of 1994 force field, for nucleic acids.

Contained in ff94 are parameters from the so-called “second generation” force field developed in the Kollman
group in the early 1990s.[33] These parameters are especially derived for solvated systems, and when used with an
appropriate 1-4 electrostatic scale factor, have been shown to perform well at modeling many organic molecules.
The parameters in parm94.dat omit the hydrogen bonding terms of earlier force fields. This is an all-atom force
field; no united-atom counterpart is provided. 1-4 electrostatic interactions are scaled by 1.2 instead of the value
of 2.0 that had been used in earlier force fields.

Charges were derived using Hartree-Fock theory with the 6-31G* basis set, because this exaggerates the dipole
moment of most residues by 10-20%. It thus “builds in” the amount of polarization which would be expected in
aqueous solution. This is necessary for carrying out condensed phase simulations with an effective two-body force
field which does not include explicit polarization. The charge-fitting procedure is described in Ref [33].

The ff96 force field [172] differs from parm94.dat in that the torsions for ¢ and y have been modified in
response to ab initio calculations [173] which showed that the energy difference between conformations were
quite different than calculated by Cornell et al. (using parm94.dat). To create parm96.dat, common V1 and V2
parameters were used for ¢ and y, which were empirically adjusted to reproduce the energy difference between
extended and constrained alpha helical energies for the alanine tetrapeptide. This led to a significant improvement
between molecular mechanical and quantum mechanical relative energies for the remaining members of the set of
tetrapeptides studied by Beachy et al. Users should be aware that parm96.dat has not been as extensively used
as parm94.dat, and that it almost certainly has its own biases and idiosyncrasies, including strong bias favoring
extended f conformations.[25, 174, 175]

The 198 force field [176] differs from parm94.dat in torsion angle parameters involving the glycosidic torsion
in nucleic acids. These serve to improve the predicted helical repeat and sugar pucker profiles.

3.12.3. The Wang et al. (1999) force field

parm99.dat Basic force field parameters

all _amino94.in topologies and charges for amino acids
all amino94nt.in same, for N-terminal amino acids

all amino94ct.in same, for C-terminal amino acids

all nuc94.in topologies and charges for nucleic acids
gaff.dat Force field for general organic molecules
all modrna08.1lib topologies for modified nucleosides

64

3.12. Obsolete force field files

Lall_modrnaOB.frcmod parameters for modified nucleosides

The 99 force field [177] points toward a common force field for proteins for “general” organic and bio-organic
systems. The atom types are mostly those of Cornell ef al. (see below), but changes have been made in many
torsional parameters. The topology and coordinate files for the small molecule test cases used in the development
of this force field are in the parm99_lib subdirectory. The ff99 force field uses these parameters, along with the
topologies and charges from the Cornell et al. force field, to create an all-atom nonpolarizable force field for
proteins and nucleic acids.

There are more than 99 naturally occurring modifications in RNA. Amber force field parameters for all these
modifications have been developed to be consistent with ff94 and ff99.[60] The modular nature of RNA was taken
into consideration in computing the atom-centered partial charges for these modified nucleosides, based on the
charging model for the “normal” nucleotides.[178] All the ab initio calculations were done at the Hartree-Fock
level of theory with 6-31G(d) basis sets, using the GAUSSIAN suite of programs. The computed electrostatic
potential (ESP) was fit using RESP charge fitting in antechamber. Three-letter codes for all of the fitted nucleosides
were developed to standardize the naming of the modified nucleosides in PDB files. For a detailed description of
charge fitting for these nucleosides and an outline for the three letter codes, please refer to Ref. [60].

The AMBER force field parameters for 99 modified nucleosides are distributed in the form of library files. The
all_modrna08.1ib file contains coordinates, connectivity, and charges, and all_modrna0S8.frcmod contains infor-
mation about bond lengths, angles, dihedrals and others. The AMBER force field parameters for the 99 modified
nucleosides in RNA are also maintained at the modified RNA database at http://ozone3.chem.wayne.edu.

3.12.4. The 2002 polarizable force fields

frcmod. ££02pol.rl Recommended initialization file

parm9%9.dat Force field, for amino acids and some organic molecules;
can be used with either additive or
non-additive treatment of electrostatics.

parm99EP .dat Like parm99.dat, but with "extra-points": off-center
atomic charges, somewhat like lone-pairs.

frcmod. ££02pol.rl Updated torsion parameters for £f£02.

all nuc02.in Nucleic acid input for building database, for a non-
additive (polarizable) force field without extra points.

all_amino02.in Amino acid input

all _aminoct02.in COO- amino acid input

all aminont02.in NH3+ amino acid input

all nucO2EP.in Nucleic acid input for building database, for a non-
additive (polarizable) force field with extra points.

all aminoO2EP.in Amino acid input

all_aminoctO2EP.in COO- amino acid input
all _aminontO2EP.in NH3+ amino acid input

The ff02 force field is a polarizable variant of ff99. (See Ref. [179] for a recent overview of polarizable force
fields.) Here, the charges were determined at the B3LYP/cc-pVTZ//HF/6-31G* level, and hence are more like “gas-
phase” charges. During charge fitting the correction for intramolecular self polarization has been included.[114]
Bond polarization arising from interactions with a condensed phase environment are achieved through polarizable
dipoles attached to the atoms. These are determined from isotropic atomic polarizabilities assigned to each atom,
taken from experimental work of Applequist. The dipoles can either be determined at each step through an iterative
scheme, or can be treated as additional dynamical variables, and propagated through dynamics along with the
atomic positions, in a manner analogous to Car-Parinello dynamics. Derivation of the polarizable force field
required only minor changes in dihedral terms and a few modification of the van der Waals parameters.

Subsequently, a set up updated torsion parameters has been developed for the ff02 polarizable force field.[180]
These are available in the fremod. [f02pol.rl file.

The user also has a choice to use the polarizable force field with extra points on which additional point charges
are located; this is called ff02EP. The additional points are located on electron donating atoms (e.g. O,N,S), which

65

3. Molecular mechanics force fields

mimic the presence of electron lone pairs.[181] For nucleic acids we chose to use extra interacting points only on
nucleic acid bases and not on sugars or phosphate groups.

There is not (yet) a full published description of this, but a good deal of preliminary work on small molecules
is available.[114, 182] Beyond small molecules, our initial tests have focused on small proteins and double helical
oligonucleotides, in additive TIP3P water solution. Such a simulation model, (using a polarizable solute in a non-
polarizable solvent) gains some of the advantages of polarization at only a small extra cost, compared to a standard
force field model. In particular, the polarizable force field appears better suited to reproduce intermolecular inter-
actions and directionality of H-bonding in biological systems than the additive force field. Initial tests show ffO2EP
behaves slightly better than ff02, but it is not yet clear how significant or widespread these differences will be.

3.12.5. Older ion parameters

In the past, for alkali ions with TIP3P waters, Amber has provided the values of Aqvist,[183] adjusted for
Amber’s nonbonded atom pair combining rules to give the same ion-OW potentials as in the original (which were
designed for SPC water); these values reproduce the first peak of the radial distribution for ion-OW and the relative
free energies of solvation in water of the various ions. Note that these values would have to be changed if a
water model other than TIP3P were to be used. Rather arbitrarily, Amber also included chloride parameters from
Dang.[184] These are now known not to work all that well with the Aqvist cation parameters, particularly for the
K/Cl pair. Specifically, at concentrations above 200 mM, KCI will spontaneously crystallize; this is also seen with
NaCl at concentrations above 1 M.[185] These “older” parameters are now collected in frcmod.ionsff99_tip3p, but
are not recommended except to reproduce older simulations.

66

4. The Generalized Born/Surface Area Model

Implicit solvent methods can speed up atomistic simulations by approximating the discrete solvent as a contin-
uum, thus drastically reducing the number of particles in the system. An additional effective speedup often comes
from much faster sampling of the conformational space afforded by these methods.[186—190] The generalized
Born (GB) solvation model is the most commonly used implicit solvent model for atomistic MD simulation; it has
been most widely tested on ff99SB and ff14SBonlysc, but in principle could be used with other non-polarizable
force fields, such as ff03. A recent (2019) review gives a good overview.[191] To estimate the total solvation
free energy of a molecule, AGy,;,, one typically assumes that it can be decomposed into the "electrostatic" and
"non-electrostatic" parts:

AGSOIV = AGel + AGnonel (41)

where AG,,,,; is the free energy of solvating a molecule from which all charges have been removed (i.e. partial
charges of every atom are set to zero), and AG,; is the free energy of first removing all charges in the vacuum,
and then adding them back in the presence of a continuum solvent environment. Generally speaking, AG,oer
comes from the combined effect of two types of interaction: the favorable van der Waals attraction between the
solute and solvent molecules, and the unfavorable cost of breaking the structure of the solvent (water) around the
solute. In the current Amber codes, this is taken to be proportional to the total solvent accessible surface area (SA)
of the molecule, with a proportionality constant derived from experimental solvation energies of small non-polar
molecules, and uses a fast LCPO algorithm [192] to compute an analytical approximation to the solvent accessible
area of the molecule.

The Poisson-Boltzmann approach described in the next section has traditionally been used in calculating AG,;.
However, in molecular dynamics applications, the associated computational costs are often very high, as the
Poisson-Boltzmann equation needs to be solved every time the conformation of the molecule changes. Amber
developers have pursued an alternative approach, the analytic generalized Born (GB) method, to obtain a rea-
sonable, computationally efficient estimate to be used in molecular dynamics simulations. The methodology has
become popular,[193-200] especially in molecular dynamics applications,[201-204] due to its relative simplicity
and computational efficiency, compared to the more standard numerical solution of the Poisson-Boltzmann equa-
tion. Within Amber GB models, each atom in a molecule is represented as a sphere of radius R; with a charge g;
at its center; the interior of the atom is assumed to be filled uniformly with a material of dielectric constant 1. The
molecule is surrounded by a solvent of a high dielectric € (80 for water at 300 K). The GB model approximates
AG,; by an analytical formula,[193, 205]

1 qiq; (1 _exp[—KfGs] > @2)

AGy ~ —=

¢ zizj’fGB(VipRiaRj) €

where 7;; is the distance between atoms i and j, the R; are the so-called effective Born radii, and Sfes() is a certain
smooth function of its arguments. The electrostatic screening effects of (monovalent) salt are incorporated [205]
via the Debye-Huckel screening parameter k.

A common choice [193] of fgp is

1/2

fep= [rlzj +RiR; eXP(_’izj/4Rin)] 49

although other expressions have been tried.[196, 206] The effective Born radius of an atom reflects the degree of its
burial inside the molecule: for an isolated ion, it is equal to its van der Waals (VDW) radius p;. Then one obtains
the particularly simple form:

67

4. The Generalized Born/Surface Area Model

2
AG, = —di (1 - 1) 4.4)

where we assumed x = O (pure water). This is the famous expression due to Born for the solvation energy of
a single ion. The function fgp() is designed to interpolate, in a clever manner, between the limit ri; — 0, when
atomic spheres merge into one, and the opposite extreme r;; — oo, when the ions can be treated as point charges
obeying the Coulomb’s law.[199] For deeply buried atoms, the effective radii are large, R; > p;, and for such atoms
one can use a rough estimate R; ~ L;, where L; is the distance from the atom to the molecular surface. Closer to
the surface, the effective radii become smaller, and for a completely solvent exposed side-chain one can expect R;
to approach p;.

The effective radii depend on the molecule’s conformation, and so have to be re-computed every time the confor-
mation changes. This makes the computational efficiency a critical issue, and various approximations are normally
made that facilitate an effective estimate of R;. With the exception of GBNSRG6 (see Section 5.1), the so-called
Coulomb field approximation, or CFA, is used for Amber GB models, which replaces the true electric displacement
around the atom by the Coulomb field. Within this assumption, the following expression can be derived:[199]

1
R =p = [6(rl = p)r iy 4.5)

where the integral is over the solute volume surrounding atom i. For a realistic molecule, the solute boundary
(molecular surface) is anything but trivial, and so further approximations are made to obtain a closed-form ana-
Iytical expression for the above equation, e.g. the so-called pairwise de-screening approach of Hawkins, Cramer
and Truhlar,[207] which leads to a GB model implemented in Amber with ighb=1. The 3D integral used in the
estimation of the effective radii is performed over the van der Waals (VDW) spheres of solute atoms, which im-
plies a definition of the solute volume in terms of a set of spheres, rather than the complex molecular surface,[208]
commonly used in the PB calculations. For macromolecules, this approach tends to underestimate the effective
radii for buried atoms,[199] arguably because the standard integration procedure treats the small vacuum—filled
crevices between the van der Waals (VDW) spheres of protein atoms as being filled with water, even for struc-
tures with large interior.[206] This error is expected to be greatest for deeply buried atoms characterized by large
effective radii, while for the surface atoms it is largely canceled by the opposing error arising from the Coulomb
approximation, which tends [194, 198, 209] to overestimate R;.

The deficiency of the model described above can, to some extent, be corrected by noticing that even the opti-
mal packing of hard spheres, which is a reasonable assumption for biomolecules, still occupies only about three
quarters of the space, and so "scaling-up" of the integral by a factor of four thirds should effectively increase the
underestimated radii by about the right amount, without any loss of computational efficiency. This idea was devel-
oped and applied in the context of pH titration,[199] where it was shown to improve the performance of the GB
approximation in calculating pKa values of protein sidechains. However, the one-parameter correction introduced
in Ref. [199] was not optimal in keeping the model’s established performance on small molecules. It was therefore
proposed [204] to re-scale the effective radii with the re-scaling parameters being proportional to the degree of the
atom’s burial, as quantified by the value I; of the 3D integral. The latter is large for the deeply buried atoms and
small for exposed ones. Consequently, one seeks a well-behaved re-scaling function, such that R; = (pf] —I)™!
for small /;, and R; > (pf] —I;)~! when I; becomes large. The following simple, infinitely differentiable re-scaling
function was chosen to replace the model’s original expression for the effective radii:

R7'=p; " —p; ! tanh(aW — BW* + y¥7) (4.6)
where ¥ = [;p;, and o, 3, y are treated as adjustable dimensionless parameters which were optimized using the
guidelines mentioned earlier (primarily agreement with the PB). Currently, Amber supports two GB models (
termed OBC) based on this idea. These differ by the values of o, 8, ¥, and are invoked by setting igb to either
igb=2 or igb=5. The details of the optimization procedure and the performance of the OBC model relative to the
PB treatment and in MD simulations on proteins is described in Ref. [204]; an independent comparison to the PB
in calculating the electrostatic part of solvation free energy on a large data set of proteins can be found in Ref.
[210].

Our experience with generalized Born simulations is mainly with ff99SB, ff14SBonlysc or ff03; the current GB

68

4.1. GB/SA input parameters

.t [2 [5 [7 [8 |
’ mbondi ‘ mbondi2 ‘ mbondi2 ‘ bondi ‘ mbondi3 ‘

Table 4.1.: Recommended radii sets for various GB models. For values of igh given in the top row, the string in the
second row should be entered in LEaP as “set default PBRadii xxx”.

models are not compatible with polarizable force fields. Replacing explicit water with a GB model is equivalent to
specifying a different force field, and users should be aware that none of the GB options (in Amber or elsewhere)
is as mature as simulations with explicit solvent; user discretion is advised. For example, it was shown that
salt bridges are too strong in some of these models [211, 212] and some of them provide secondary structure
distributions that differ significantly from those obtained using the same protein parameters in explicit solvent,
with GB having too much ¢-helix present.[213, 214] The combination of the ff/4SBonlysc force field with igb=8
gives the best results for proteins [28][215], nucleic acids and protein-nucleic acid complexes. [216]

Despite these limitations, implicit treatment of solvent is widely used in molecular simulations for two main
reasons: algorithmic/computational speed and conformational sampling. [190, 217] Implicit solvent methods can
be algorithmically/computationally faster, as measured by simulation time steps per processor (CPU) time, because
the vast number of individual interactions between the atoms of individual solvent molecules do not need to be
explicitly computed. Implicit-solvent simulations can also sample conformational space faster in the low viscosity
regime afforded by the implicit solvent model.[186—190] To some extent, the interest in implicit-solvent-based
simulations is motivated by the need to sample very large conformational spaces for problems such as protein
folding, binding-affinity calculations, or large-scale fluctuations of nucleosomal DNA fragments. The speedup of
conformational change can vary considerably, depending on the details of the transition, and can range from no
speedup at all to almost a 100-fold speedup. [190] In general, the larger the conformational change, the higher the
speedup one may expect, but this tendency is not universal or uniform. These speedup values are also expected to
vary by the specific flavour of GB model used, a detailed analysis for igb5 can be found in Ref. [190].

The generalized Born models used here are based on the "pairwise" model introduced by Hawkins, Cramer and
Truhlar,[207, 218] which in turn is based on earlier ideas by Still and others.[193, 198, 209, 219] The so-called
overlap parameters for most models are taken from the Tinker molecular modeling package (http://tinker.wustl.edu).
The effects of added monovalent salt are included at a level that approximates the solutions of the linearized
Poisson-Boltzmann equation.[205] The original implementation was by David Case, who thanks Charlie Brooks
for inspiration. Details of our implementation of generalized Born models can be found in Refs. [220, 221].

4.1. GB/SA input parameters

As outlined above, there are several "flavors" of GB available, depending upon the value of igh. The version
that has been most extensively tested corresponds to igh=1; the "OBC" models (igh=2 and 5) are newer, but ap-
pear to give significant improvements and are recommended for most projects (certainly for peptides or proteins).
The newest, most advanced, and least extensively tested model, GBn (igh=7), yields results in considerably better
agreement with molecular surface Poisson-Boltzmann and explicit solvent results than the "OBC" models under
many circumstances.[214] The GBn model was parameterized for peptide and protein systems and is not rec-
ommended for use with nucleic acids. A modification on the GBn model (ighb=8) further improves agreement
between Poisson-Boltzmann and explicit solvent data compared to the original formulation (igh=7).[28] Users
should understand that all (current) GB models have limitations and should proceed with caution. Generalized
Born simulations can only be run for non-periodic systems, i.e. where ntb=0. Unlike its use in explicit solvent
PME simulations, short nonbonded cutoff values have much stronger impact on accuracy of the GB calculations.
Essentially, any cutoff values other than cut > structure size can lead to artifacts. Current GPU implementation of
the GB can not use cutoffs. If the nonbonded cutoff is used in GB calculations, it should be greater than that for
PME calculations, perhaps cut=16. The slowly-varying forces generally do not have to be evaluated at every step
for GB, either nrespa=2 or 4, although that option may lead to some artifacts as well.

igb =0 No generalized Born term is used. (Default)

69

4. The Generalized Born/Surface Area Model

70

=1 The Hawkins, Cramer, Truhlar[207, 218] pairwise generalized Born model is used, with pa-

rameters described by Tsui and Case.[220] This model uses the default radii set up by LEaP.
It is slightly different from the GB model that was included in Amber6. If you want to com-
pare to Amber 6, or need to continue an ongoing simulation, you should use the command
"set default PBradii amber6" in LEaP, and set igh=1 in sander. For reference, the Amber6
values are those used by an earlier Tsui and Case paper.[202] Note that most nucleic acid
simulations have used this model, so you take care when using other values. Also note that
Tsui and Case used an offset (see below) of 0.13 10\, which is different from its default value.

=2 Use a modified GB model developed by A. Onufriev, D. Bashford and D.A. Case; the main

idea was published earlier,[199] but the actual implementation here[204] is an elaboration
of this initial idea. Within this model, the effective Born radii are re-scaled to account for
the interstitial spaces between atom spheres missed by the GB#CT approximation. In that
sense, GBYBC is intended to be a closer approximation to true molecular volume, albeit in an
average sense. With igh=2, the inverse of the effective Born radius is given

by:cedure
R;l = ﬁ;l —tanh (a‘P — B+ Y‘{‘3) /Pi

where p; = p; —of fset, and ¥ = Ip;, with I given in our earlier paper. The parameters c,
B, and y were determined by empirical fits, and have the values 0.8, 0.0, and 2.909125. This
corresponds to model I in Ref [204]. With this option, you should use the LEaP command
"set default PBradii mbondi2" to prepare the prmtop file.

= 3 or 4 These values are unused; they were used in Amber 7 for parameter sets that are no longer

supported.

=5 Same as igh=2, except that now o, 3,y are 1.0, 0.8, and 4.85. This corresponds to model II

in Ref [204]. With this option, you should use the command "set default PBradii mbondi2"
in setting up the prmtop file, although "set default PBradii bondi" is also OK. When tested in
MD simulations of several proteins,[204] both of the above parameterizations of the "OBC"
model showed equal performance, although further tests [210] on an extensive set of protein
structures revealed that the igh=>5 variant agrees better with the Poisson-Boltzmann treatment
in calculating the electrostatic part of the solvation free energy.

=6 With this option, there is no continuum solvent model used at all; this corresponds to a non-

periodic, "vacuum", model where the non-bonded interactions are just Lennard-Jones and
Coulomb interactions.

=7 The GBn model described by Mongan, Simmerling, McCammon, Case and Onufriev[222] is

employed. This model uses a pairwise correction term to GB?C” to approximate a molecular
surface dielectric boundary; that is to eliminate interstitial regions of high dielectric smaller
than a solvent molecule. This correction affects all atoms and is geometry-specific, going
beyond the geometry-free, "average" re-scaling approach of GBYEC, which mostly affects
buried atoms. With this method, you should use the bondi radii set. The overlap or screening
parameters in the prmtop file are ignored, and the model-specific GBn optimized values
are substituted. The model carries little additional computational overhead relative to the
other GB models described above.[222] This method is not recommended fcedureor systems
involving nucleic acids.

=8 Same GB functional form as the GBn model (igb=7), but with different parameters. The

offset, overlap screening parameters, and gbneckscale are changed. In addition, individual o
, B, and y parameters can be specified for each of the elements H, C, N, O, S, P. Parameters
for other elements have not been optimized, and the default values used are the ones from
igb=>5, which were not element-dependent. Default values were optimized for H, C, N, O and
S atoms in protein systems.[28] Although the parameters for P in proteins can be specified,
the default values were not optimized and are the igb=5 values. Nucleic acids have separate

intdiel

extdiel

saltcon

rgbmax

4.1. GB/SA input parameters

parameters from those used for proteins, and default values were optimized for H, C, N, O
and P atoms in nucleic acid systems.[216]

The following are the default parameters sander uses with igh=8:

Sh=1.425952, Sc=1.058554, Sn=0.733599,

So=1.061039, Ss=-0.703469, Sp=0.5,

offset=0.195141, gbneckscale=0.826836,

gbalphaH=0.788440, gbbetaH=0.798699, gbgammaH=0.437334,
gbalphaC=0.733756, gbbetaC=0.506378, gbgammaC=0.205844,
gbalphaN=0.503364, gbbetaN=0.316828, gbgammaN=0.192915,
gbalpha0S=0.867814, gbbeta0S=0.876635, gbgammaOS=0.387882,
gbalphaP=0.41836, gbbetaP=0.29005, gbgammaP=0.10642
screen_hnu=1.69654, screen _cnu=1.26890,

screen_nnu=1.425974, screen_onu=0.18401, screen_pnu=1.54506,
gb_alpha_hnu=0.53705, gb_beta_hnu=0.36286, gb_gamma_hnu=0.11670,
gb_alpha_ cnu=0.33167, gb_beta_cnu=0.19684, gb_gamma_cnu=0.09342,
gb_alpha_nnu=0.68631, gb_beta nnu=0.46319, gb_gamma_nnu=0.13872,
gb_alpha_onu=0.60634, gb_beta_onu=0.46301], gb_gamma_onu=0.14226,
gb_alpha_pnu=0.41836, gb_beta_pnu=0.29005, gb_gamma_pnu=0.10642

Parameters for proteins and for nucleic acids were optimized separately and can be inde-
pendently specified. Protein parameters: Sh, Sc, Sn, So, Ss and Sp are scaling parameters,
gbalphaX, gbbetaX, gbgammaX are the o, B , v set for element X. gbalphaOS, gbbetaOS,
gbgammaOS is the o , B, v set applied to both O and S. The phosphorus parameters (in
proteins) were taken from GBneck2nu parameters. Nucleic acid parameters (end with "nu"
screen_Xnu (X=h, c, n, o, p) are scaling parameters, gb_alpha_Xnu (X=h, c, n, o, p) are the
o, 3, v set for element X.

Since parameters are assigned for each atom based on its residue name (hard-coded in
"sander/egb.F90" (subroutine isnucat)), users need to update the residue table in the sander
source code if nucleic acids with different names are simulated using this GB model.

The default values for offset=0.195141, gbneckscale=0.826836 are recommended for both
proteins and nucleic acids.

mbondi3 radii are recommended with igh=8 and can be employed with the LEaP command
"set default PBradii mbondi3". The mbondi3 radii were adjusted based on protein simula-
tions, and optimization of these radii for nucleic acids is currently underway.

=10 Calculate the reaction field and nonbonded interactions using a numerical Poisson-Boltzmann
solver. This option is described in the Chapter 6. Note that this is not a generalized Born
simulation, in spite of its use of igb; it is rather an alternative continuum solvent model.

Sets the interior dielectric constant of the molecule of interest. Default is 1.0. Other values have
not been extensively tested.

Sets the exterior or solvent dielectric constant. Default is 78.5.

Sets the concentration (M) of 1-1 mobile counterions in solution, using a modified generalized
Born theory based on the Debye-Hiickel limiting law for ion screening of interactions.[205] De-
fault is 0.0 M (i.e. no Debye-Hiickel screening.) Setting saltcon to a nonzero value does result in
some increase in computation time.

This parameter controls the maximum distance between atom pairs that will be considered in
carrying out the pairwise summation involved in calculating the effective Born radii. Atoms whose
associated spheres are farther way than rgbmax from given atom will not contribute to that atom’s
effective Born radius. This is implemented in a "smooth" fashion (thanks mainly to W.A. Svrcek-
Seiler), so that when part of an atom’s atomic sphere lies inside rgbmax cutoff, that part contributes

71

4. The Generalized Born/Surface Area Model

rbornstat

offset

gbsa

surften

rdt

to the low-dielectric region that determines the effective Born radius. The default is 25 A, which
is usually plenty for single-domain proteins of a few hundred residues. Even smaller values (of
10-15 A) are reasonable, changing the functional form of the generalized Born theory a little bit,
in exchange for a considerable speed-up in efficiency, and without introducing the usual cut-off
artifacts such as drifts in the total energy.

The rgbmax parameter affects only the effective Born radii (and the derivatives of these values with
respect to atomic coordinates). The cut parameter, on the other hand, determines the maximum
distance for the electrostatic, van der Waals and "off-diagonal" terms of the generalized Born
interaction. The value of rghmax might be either greater or smaller than that of cut: these two
parameters are independent of each other. However, values of cut that are too small are more
likely to lead to artifacts than are small values of rgbmax; therefore one typically sets rgbmax <=
cut.

If rbornstat = 1, the statistics of the effective Born radii for each atom of the molecule throughout
the molecular dynamics simulation are reported in the output file. Default is 0.

The dielectric radii for generalized Born calculations are decreased by a uniform value "offset" to
give the "intrinsic radii" used to obtain effective Born radii. Default is 0.09 A.

Option to carry out GB/SA (generalized Born/surface area) simulations. For the default value of
0, surface area will not be computed and will not be included in the solvation term. If gbsa =
1, surface area will be computed using the LCPO model.[192] If gbsa = 2, surface area will be
computed by recursively approximating a sphere around an atom, starting from an icosahedra.
Note that no forces are generated in this case, hence, ghsa = 2 only works for a single point energy
calculation and is mainly intended for energy decomposition in the realm of MM-GBSA. If gbsa
= 3, surface area will be computed using a fast pairwise approximation [223] suitable for GPU
computing in pmemd.cuda program; the acceleration in pmemd.cuda compared with gbsa = 2 is
~30 times faster [223]. Note that ghsa = 3 is currently not supported in MM-GBSA, QM/MM or
libsff. Although gbsa = 3 is supported in pmemd, its general usage is not recommended as the
speed gain is insignificant because its fast approximation of surface area algorithm was specifically
designed for GPU-accelerated GB simulations. Therefore, we recommend users use gbsa=3 with
pmemd.cuda.

Surface tension used to calculate the nonpolar contribution to the free energy of solvation (when
gbsa = 1), as Enp = surften*SA. The default is 0.005 kcal/mol/AZ2.[224] For gbsa = 3, suften
works comparably with gbsa = I given the same value. [223]

This parameter is only used for GB simulations with LES (Locally Enhanced Sampling). In
GB+LES simulations, non-LES atoms require multiple effective Born radii due to alternate de-
screening effects of different LES copies. When the multiple radii for a non-LES atom differ by
less than RDT, only a single radius will be used for that atom. See Chapter 31 for more details.
Default is 0.0 A.

4.2. Implicit Solvent with Explicit lons model (GBION)

Aqueous solvation plays a critical role in the structure, stability, and function of biomolecules. The Generalized
Born (GB) model offers a computationally efficient way to simulate solvent by treating it as a continuous dielectric
medium. However, the traditional GB model approximates only monovalent ions, and only as a density cloud
distributed according to the Debye—Hiickel approximation. Localized effects of discrete ions around the solute
are missing, the model does not distinguish K™ from Na*t, and does not provide a suitable approximation for
multivalent ions. Differences between ion types interacting with biomolecules, and their discrete nature, are crucial
for most of biologically relevant systems.

72

4.2. Implicit Solvent with Explicit Ions model (GBION)

The GBION model

the Implicit Solvent with EXplicit Ions model (GBION) extends the canonical GB model to include explicit ions
in simulations, providing a more nuanced view of ion-solute interactions. The core innovation lies in modifying
the GB equation to account for disconnected topology[225, 226], which is achieved by accommodating additional
coefficients that help approximate correct charge-charge interactions between the solute atoms and explicit ions,
and between the explicit ions. Interactions between solute atoms are calculated using the canonical GB model.
The whole electrostatic energy of interaction of ith and jth atoms with modified GB equation takes the form:

qid; 1 1
Eij(dij) = - -
' (l]) Ks(a7b)8indij <K8(avb)£in 80ut> 8
qiq

\/dgj + RiRjexp (~d?/4Kan(a,b) (RiR;)

4.7

This equation captures the general nature of charge-charge interactions mediated by the solute or solvent, intro-
ducing Kgg(a,b) and K¢ (a,b) coefficients for tuning the interaction energy. The parameter Kgg(a,b) controls how
the function approximates the interaction between the solvent-separated charges: it was shown previously[225] that
a pure Coulomb interaction works well for solvent separated charges, including ions. That regime is approximated
by setting Kgg(a,b) < 1, see specific recommended values below. Note that when Kgp(a,b) — 0 = E(d;;) —
Sjiijij . Additional flexibility to fine-tune solute-ion and ion-ion interactions is afforded by the coefficient K¢ (a,b)
, which scales the whole electrostatic energy. The introduction of specific coefficients Kgg(a,b) and K¢ (a,b) for
interactions between solute atoms and ions (both anions and cations) enables the model to mimic, fairly accurately,
the localized effects of ions on solvation energetics. For solute-solute interactions, Kgg(a,b) = 1 and K¢ (a,b) =1,
meaning that the canonical GB is used.

The current version of GBION model was optimized and tested against explicit solvent distributions of Na*,
K*, CI~ and CoHex?* ions around DNA. The model was also tested in simulations of the nucleosome with
NaCl and KCl. We recommend to use the model for simulating DNA duplexes in the presence of these ions.
We also cautiously recommend using GBION for simulations of the nucleosome in the presence of ions with
the optimized parameters, especially if the focus on the DNA behavior. We do not recommend using the current
version of GBION model for pure protein simulations, especially for positively charged proteins, without additional
parameter optimization. So far, the GBION model was parametrized and used in combination with GBneck2 model
(igb=8). We do not use Analytical Linearized Poisson-Boltzmann approximation here (alpb=0). To calculate the
non-polar term of solution energy one can apply the widely used approximation based on the assumption that
non-polar term is proportional to the solvent-accessible surface area (SASA) (gbsa=3 in the AMBER input file).

4.2.1. Usage

The setup of an GBION simulation resembles that of a canonical GB simulation, but with an additional step.
First, set up the topology/coordinate files and input parameter files as you would for a simulation using GBneck2
(igb=8). Then, add the explicit ions that correspond to the desired salt concentration, see below. The ions are
confined within a spherical volume, see Fig. 4.1. The simulation volume is defined by standard distance restraints
(nmropt=1 in AMBER input file) , which keep the ions from drifting beyond the pre-defined distance R from the
center of mass of a certain group of atoms (see Fig. 4.1). In the example directory you can find a script (disang.py)
that produces the restraint file disang_NaCl.txt.

To switch on the corresponding restraints, add the lines below to the input file:

/
&wt type='END’,
/
DISANG=disang NaCl.txt
&end

Where disang_NaCl.txt is the file that includes a description of the restraints.

73

4. The Generalized Born/Surface Area Model

Figure 4.1.: Example of the restraining sphere used to set the simulation volume and ion concentration in GBION
model. Purple and green spheres are Na*, and Cl™ ions, respectively. The grey sphere of radius R
with its center near the center of mass of the DNA fragment illustrates the simulation volume. The red
sphere denotes the center of the restraining sphere.

To set up the ion concentration we use SLTCAP method here. It utilizes the equation below to calculate the
numbers of anions and cations that should be added to a simulating system:

. [
Ny = V,ycoe T o) (4.8)

where N is the number of cations to be added, N_ — the number of anions to be added, Q is the total charge of
the molecule (solute), V,, denotes the volume of the solvent in the system, and ¢y is the desired salt concentration
in units of particles per A3; to convert from the common [M/L] one should multiply the M/L value by 6.02% 104,
The solvent volume V,, is defined as the volume of the enclosing sphere less the volume of the solute, Fig.4.1.
The solute volume can be estimated via e.g. ProteinVolume server; however, in practice, it is often the case that
Vioiute < Vi, in which case one can simply neglect the former and calculate the solvent volume V,, as the sphere
volume. Therefore, in most cases, one can use the approximate equation below to calculate the numbers of cations
and anions:

$arsinh<ﬁ)
%6.02% 10" % % cpe 236024107 e 4.9

)

4nR3
Ny =

where R denotes the radius of the confining sphere, and ¢ is the desired salt concentration in [M/L]. If the
formulae return non-integer N and N_, one should take closest integer for either N, or N_ , and subtract it from
the absolute value of Q to find N_ or N, , respectively. The GBION model has so far been optimized against
Joung/Cheatham ion parameters (frcmod.ionsjc_tip3p).

4.2.2. GBION input parameters

gbion Specifies the version of GBION model to be used
= 0 GBION model is turned off (default)

74

4.2. Implicit Solvent with Explicit Ions model (GBION)

3 both Kgg(a,b) and K, depend of the respective atom types (currently recommended)

1 only Kgg(a,b) coefficient is available, which does not depend on the ion type. (under devel-
opment, not recommended)

2 both Kgp(a,b) and K, coefficients are available, but the latter does not depend on the ion type
(under development, not recommended)

Currently, all Kgg(a,b) and K, defaults are 1.0, which effectively means GBION is not invoked unless the corre-
sponding non-default values are specified explicitly. That is to run GBION, set the following non-default parame-
ters (copy and paste into input file)

Parameters for NaCl:

gi_coef 1 n=0.05, gi_coef 2 pn=0.05,
intdiel_ion_1_p=54, intdiel_ion_1_n=8,
intdiel_ion_2 pp=54, intdiel_ion_2_ pn=8,
intdiel_ion_2_ nn=8,

Parameters for KClI:

gi_coef 1 n=0.05, gi_coef 2 pn=0.05,
intdiel_ion_1_p=36, intdiel_ion_1_n=8,
intdiel_ion_2_ pp=36, intdiel_ion_2_ pn=8,
intdiel_ion_ 2 nn=8,

Parameters for CoHex:

gi_coef_ 1 p=0.01, gi_coef_ 1 n=0.01,
gi_coef 2 pp=0.06, gi_coef 2 pn=0.06,
gi_coef_ 2 nn=0.06, intdiel_ion_2_pp=2,
intdiel_ion_2 pn=2, intdiel_ion_2 nn=2,

Below is the general description of all the parameters of the model:

gi_coef_1_p Sets the Kgp(a,b) coefficient for the interaction between solute atoms and cations. The default
is 1.0.

gi_coef_1_n Sets the Kgg(a,b) coefficient for interactions between solute atoms and anions. The default is
1.0.

gi_coef_2_pp Setsthe Kgp(a,b) coefficient for cation-cation interactions. The default is 1.0.
gi_coef_2_pn Sets the Kgg(a,b) coefficient for cation-anion interactions. The default is 1.0.
gi_coef_2_nn Setsthe Kgp(a,b) coefficient for anion-anion interactions. The default is 1.0.

intdiel_ion_1_p Sets the internal dielectric constant K¢ (a,b) for solute-cation interactions. The default is
1.0.

intdiel_ion_1_n Sets the internal dielectric constant K¢(a,b) for solute-anion interactions. The default is
1.0.

intdiel_ion_2_pp Sets the internal dielectric constant K¢ (a,b) for cation-cation interactions. The default is
1.0.

intdiel_ion_2_pn Sets the internal dielectric constant K, (a,b) for cation-anion interactions. The default is
1.0.

intdiel_ion_2_nn Sets the internal dielectric constant K¢ (a,b) for anion-anion interactions. The default is
1.0.

75

4. The Generalized Born/Surface Area Model

The parameters listed below are unused in the current version of the model, but that may change in the future. These
parameters scale the “neck” correction used to eliminate interstitial regions of high dielectric smaller than a solvent
molecule. In GBneck models, the contribution of this neck correction is defined by the parameter gbneckscale,
which can be scaled by Kys(a,b). In the current parametrization Kys(a,b) = 1 for all atoms and ions, but that may
change when new ions are parametrized.

gb_neckscale_ion_1_p=1 Setsthe Kys(a,b) coefficient for the interaction between solute atoms and cations.
The default is 1.0.

gb_neckscale_ion_1_n=1 Sets the Kys(a,b) coefficient for the interaction between solute atoms and an-
ions. The default is 1.0.

gb_neckscale_ion_2_pp=1 Sets the Kys(a,b) coefficient for cation-cation interactions. The default is 1.0.
gb_neckscale_ion_2_pn=1 Sets the Kys(a,b) coefficient for cation-anion interactions. The default is 1.0.

gb_neckscale_ion_2_nn=1 Sets the Kys(a,b) coefficient for anion-anion interactions. The default is 1.0.

4.3. ALPB (Analytical Linearized Poisson-Boltzmann)

Like the GB model, the ALPB approximation [227, 228] can be used to replace the need for explicit solvent,
with similar benefits (such as enhanced conformational sampling) and caveats. The basic ALPB equation that
approximates the electrostatic part of the solvation free energy is

1/1 1 1 1 of
AG, ~ A =—|——— 72 iqgil —+— 4.10
Gel Galpb) <£in 8@x> 1+ (Xﬁ T qiqj (fGB + A > ()

where 3 = €;,/¢€,y is the ratio of the internal and external dielectrics, ®=0.571412, and A is the so-called effective
electrostatic size of the molecule, see the definition of Arad below. Here fgp is the same smooth function as in the
GB model. The GB approximation is then just the special case of the ALPB when the solvent dielectric is infinite;
however, for finite values of solvent dielectric the ALPB tends to be more accurate. For aqueous solvation, the
accuracy advantage offered by the ALPB is still noticeable, and becomes more pronounced for less polar solvents.
Statistically significant tests on macromolecular structures [228] have shown that ALPB is more likely to be a
better approximation to PB than the GB. At the same time, the ALPB has virtually no additional computational
overhead relative to GB. However, users should realize that at this point the new model has not yet been tested
nearly as extensively as the canonical GB model. The ALPB can potentially replace the GB in the energy analysis
of snapshots via the MM-GB/SA scheme. The electrostatic screening effects of monovalent salt are currently
introduced into the ALPB in the same manner as in the GB, and are determined by the parameter saltcon .

alpb Flag for using ALPB to handle electrostatic interactions within the implicit solvent model.

=0 No ALPB (default).

=1 ALPB is turned on. Requires that one of the analytical GB models is also used to compute
the effective Born radii, that is one must set igh=1,2,5, or 7. The ALPB uses the same sets of
radii as required by the particular GB model.

arad Effective electrostatic size (radius) of the molecule. Characterizes its over-all dimensions and
global shape, and is not to be confused with the effective Born radius of an atom. An appropriate
value of Arad must be set if alpb=1: this can be conveniently estimated for your input structure
with the utility elsize that comes with the main distribution. The default is 15 A. While Arad may
change during the course of a simulation, these changes are usually not very large; the accuracy
of the ALPB is found to be rather insensitive to these variations. In the current version of Amber
Arad is treated as constant throughout the simulation, the validity of this assumption is discussed
in Ref. [228]. Currently, the effective electrostatic size is only defined for "single-connected"
molecules. However, the ALPB model can still be used to treat the important case of complex

76

4.3. ALPB (Analytical Linearized Poisson-Boltzmann)

formation. In the docked state, the compound is considered as one, with its electrostatic size well
defined. When the ligand and receptor become infinitely separated, each can be assigned its own
value of Arad.

4.3.1. elsize
NAME

elsize - Given the structure, estimates its effective electrostatic size
(parameter Arad) need by the ALPB model.

SYNOPSIS

Usage: elsize input-pqr-file [-options]

—-det an estimate based on structural invariants. DEFAULT.
—-ell an estimate via elliptic integral (numerical).

—-elf same as above, but via elementary functions.

—abc prints semi-axes of the effective ellipsoid.

—-tab prints all of the above into a table without header.
—-hea prints same table as —-tab but with a header.

—deb prints same as -tab with some debugging information.
-xyz uses a file containing only XYZ coordinates.

DESCRIPTION

elsize is a program originally written by G. Sigalov to estimate the effective electrostatic size of a structure via a
quick, analytical method. The algorithm is presented in detail in Ref. .[228] You will need your structure in a pqr
format as input, which can be easily obtained from the prmtop and inpcrd files using ambpdb utility described
above:

ambpdb -p prmtop —-pgr -c¢ inpcrd > input-file-pqr

After that you can simply do: elsize input-file-pgr , the value of electrostatic size in Angstroms will be output on
stdout. The source code is in the src/etc/ directory, its comments contain more extensive description of the options
and give an outline of the algorithm. A somewhat less accurate estimate uses just the XYZ coordinates of the
molecule and assumes the default radius size of for all atoms:

elsize input-file—xyz

This option is not recommended for very small compounds. The code should not be used on structures made up
of two or more completely disjoint" compounds — while the code will still produce a finite value of Arad , it is not
very meaningful. Instead, one should obtain estimates for each compound separately.

77

5. GBNSR6

GBNSRG6 is an implementation of the Generalized Born (GB) model in which the effective Born radii are com-
puted numerically, via the so-called “R6” integration[229, 230] over molecular surface of the solute:

1 r—r; 173
-1 _ [_ i
Ry = (= .%av r—r; o dS) 5.1

For most structures, GB solvation based on the numerical R6 radii are virtually as accurate[222] as the GB energies
based on the “gold standard” perfect effective radii, which can in principle be obtained from numerical solution
of the PB equation[206]. As a result, the numerical R6 formulation is generally more accurate than the fast
analytical approaches described above. In contrast to most GB practical models, GBNSR6 model is parameter-
free in the same sense as the numerical PB framework is. Thus, accuracy of GBNSR®6 relative to the PB standard
is virtually unaffected by the choice of input atomic radii. However, unlike the analytical GB models in AMBER,
GBNSRG6 can not yet be used in dynamics. Recent benchmarks show that electrostatic binding energies computed
by GBNSRG6 are in good agreement with the numerical PB reference[231, 232].

Within GBNSRG6, any of the following three versions of the pairwise GB equation can be used for computation of
the solvation energies: (1) the canonical (Still 1990) GB[193], (2) the canonical GB with the ALPB correction[227,
228], and (3) the charge hydration asymmetric generalized Born (CHAGB) model[233]. The models are listed
below; the first two are described in more detail in the GB section of the main manual, a brief introduction into
CHAGSB is below. For more information about these models please refer to the original references.

5.1. GB equations available in gbnsr6

* Canonical GB: the original equation due to Still et al, Eqs.4.2, 4.3.

* ALPB: an inexpensive correction, Eq. 4.10, to Still’s equation that restores correct dependence on dielectric
constants. The correction is recommended in all cases except small molecules with decidedly non-spherical
topology (e.g., rings) or structures that are topologically not singly-connected, e.g., two molecules not in
contact with each other. The electrostatic size is computed automatically, no need to specify it in GBNSR6.

¢ CHAGB: The effect of charge hydration asymmetry (CHA)[117] — non-invariance of solvation free energy
upon solute charge inversion — is incorporated into the Generalized Born framework[233]. The CHA is
added to the GB equation (with or without the ALPB correction) to emulate asymmetric response to solvated
charge of the specified explicit water model, e.g. TIP3P; the asymmetric response, which can be very
strong, is ultimately determined by the charge distribution within the water model. Note that in contrast to
standard GB or PB, CHAGB employs a novel definition of the dielectric boundary that does not subsume
the CHA effects into the intrinsic atomic radii, therefore a special input radii set is used with this model.
This model has so far been tested on a diverse set of neutral small molecules, charged and uncharged amino
acid analogs and small proteins. Noticeable accuracy improvement over the uncorrected GB was reported
for individual solvation energies. The optimum radii set for CHAGB available in this implementation shows
better transferability between different classes of molecules. However, the model has not been tested in the
context of protein-ligand binding, which may require a different radii set for optimum performance.

5.2. Numerical implementation of the R6 integral

* The R6 integral for computing the effective Born radius, Eq. 5.1, is performed for each atom over grid-based
molecular surface of the solute. The molecular surface is based on the field-view method[234] also used in

78

5.3. Usage

the PBSA tool. A uniform Cartesian grid is utilized to discretize a rectangular box containing the molecular
structure. By exploiting the conservation of “electric flux” through the surface, the resulting finite difference
grid surface elements traverse the same solid angle as the spherical surface elements obtained from the Lee
and Richards molecular surface. More details of this implementation can be found in Ref.[234].

5.3. Usage

Just like other GB models available in AMBER, GBNSR6 can be used for efficient estimates of solvation free
energy in situation where numerical PB estimates are too expensive. In addition to the value of the total solvation
free energy, AG,its pairwise decomposition AG;; can be obtained without significant additional computational
expense typically associated with such estimates within the PB formalism. Options to output components of the
non-polar solvation energy are available as well.

5.3.1. Input files

gbnsro6 has a similar usage as amber/sander:
gbnsr6 -i mdin -o mdout -p prmtop -c inpcrd

mdin input control data for the computations.

mdout output of the program in a user readable state info and diagnostics. “-o stdout” will send the output to the
terminal.

prmtop input molecular topology file.

inperd input initial coordinate file.

5.3.2. Basic input options

The input file is very similar to the Amber/sander format. There are two namelist &cntrl and &gb . The only
flag available in &cntrl is inp, the rest of the flags are in the namelist &gb. The following is a description of the
available flags:

B Specifies the value of uniform offset [222] to the (inverse) effective radii, the default value is 0.028
A~ which gives better agreement with the PB model, regardless of the structure size. For best
agreement with the explicit solvent (TIP3P) solvation energies, optimal value of B depends on the
structure size: for small molecules (number of atoms less than 50), we recommend B=0. With
-chagb option, B is calculated automatically based on the solute size.

alpb Specifies if ALBP correction is to be used.

= 0 Canonical GB is used.
1 ALPB is used (default)

epsin Sets the dielectric constant of the solute region, default is 1.0. The solute region is defined to be
the solvent excluded volume.

epsout Sets the implicit solvent dielectric constant for the solvent, the default value is 78.5.

istrng Sets the ionic strength (in mM) for the GB equation. Default is 0 mM. Physiological monovalent
salt would correspond to 145 mM. Note the unit is different from that (in M) used by the other
generalized Born methods implemented in Amber.

Rs Sets the value of the dielectric boundary shift compared to the molecular surface, default value is
0.52A (only relevant for the -chagb option).

dprob Sets the radius of the solvent robe, default is 1.4 A.

79

5. GBNSR6

space

arcres

rbornstat

dgij

radiopt

chagb

ROH

tau

inp

Sets the grid spacing that determines the resolution of the solute molecular surface, default is 0.5
A. Note that memory footprint of this grid-based implementation of GBNSR6 may become large
for large structures, e.g. the nucleosome (about 25,000 atoms) will take close to 2 GB of RAM
when the default grid spacing is used. For very large structures, one may consider increasing the
value of space, which will reduce the memory footprint and execution time; however, the accuracy
will also decrease.

Sets the arc resolution used for numerical integration over molecular surface, the default value is
0.2 A.

= 0 values of the inverse effective Born radii are not printed (default).

1 print the inverse effective Born radii to the outfile.

This flag is used for printing pairwise electrostatic energies. The values will be found in the output
file, starting with the label “DGij”. The second and third columns of these lines especify the atom
indexes of the respective atomic pair. Energy units are kcal/mol.

0 does not print pairwise terms (default).

1 prints polar component only of the solvation energy between all pairs of atoms.

Specifies the set of intrinsic atomic radii to be used with the chagb option.

0 uses hardcoded intrisic radii optimized for small drug like molecules, and single amino acid
dipeptides[233] (default)

1 intrinsic radii are read from the topology file. Note that the dielectric surface defined using
these radii is then shifted outwards by Rs relative to the molecular surface. The option is not
recommended unless you are planning to re-optimize the input radii set for your problem.

0 Do not use CHAGB (default).
1 Use CHAGB.

Sets the value of Rp,;, for CHA GB model, the default is 0.586A. This parameter defines which
explicit water model is being mimicked with respect to its propensity to cause CHA, the default
corresponds to TIP3P and SPC/E. For OPC, R, = 0.699A, for TIP4P RS, = 0.734A, and 0.183A
for TIPSP/E. A perfectly tetrahedral water , which can not cause charge hydration asymmetry,
would have R, = 0.

Sets the value of 7 in the CHAGB model, the default is 1.47. This dimensionless parameter
controls the effective range of the neighboring charges (j) affecting the CHA of atom (i), see
Ref.[233] for details.

0 do not compute nonpolar solvation energy.

= 1 compute nonpolar solvation energies.

cavity_surften Sets the surface tension parameter for nonpolar solvation calculation, the default value is

0.005 (kcal/mol/A?). This will be read only if the inp=1.

More options are available in a stand-alone version of GBNSR6 code not based on Cartesian grid [229].

5.3.3. Examples of input files

Compute electrostatic energy using default parameters.

&cntrl
inp=0
/

80

5.3. Usage

Compute electrostatic energies including nonpolar solvation energies and print the inverse effective Born radii

&cntrl

inp=1

/

&gb

epsin=1.0, epsout=78.5, istrng=0, dprob=1.4, space=0.5,
arcres=0.2, B=0.028, alpb=1l, rbornstat=1l, cavity_surften=0.005
/

Use chagb to compute solvation energy, include ALPB correction.

&cntrl

inp=1

/

&gb

alpb=1, chagb=1
/

81

6. PBSA

Several efficient finite-difference numerical solvers, both linear [235, 236] and nonlinear,[237] are implemented
in pbsa for various applications of the Poisson-Boltzmann method. The GPU support of those solvers is also
implemented in pbsa.cuda.[238, 239] In the following, a brief introduction is given to the method, numerical
solvers, and numerical energy and force calculations. This is followed by a detailed description of the usage
and keywords. Example input files are explained for typical pbsa applications. The GPU-enabled pbsa.cuda is
illustrated in section 6.7. For more information on the background and how to use the method, please consult the
cited references and online Amber tutorial pages.

6.1. Introduction

Solvation interactions, especially solvent-mediated dielectric screening and Debye-Hiickel screening, are es-
sential determinants of the structure and function of proteins and nucleic acids.[240] Ideally, one would like to
provide a detailed description of solvation through explicit simulation of a large number of solvent molecules and
ions. This approach is frequently used in molecular dynamics simulations of solution systems. In many appli-
cations, however, the solute is the focus of interest, and the detailed properties of the solvent are not of central
importance. In such cases, a simplified representation of solvation, based on an approximation of the mean-force
potential for the solvation interactions, can be employed to accelerate the computation.

The mean-force potential averages out the degrees of freedom of the solvent molecules, so that they are often
called implicit or continuum solvents. The formalism with which implicit solvents can be applied in molecular
mechanics simulations is based on a rigorous foundation in statistical mechanics, at least for additive molecular
mechanics force fields. Within the formalism, it is straightforward to understand how to decompose the total mean-
field solvation interaction into electrostatic and non-electrostatic components that scale quite differently and must
be modeled separately (see for example [241]).

The Poisson-Boltzmann (PB) solvents are a class of widely used implicit solvents to model solvent-mediated
electrostatic interactions.[240] They have been demonstrated to be reliable in reproducing the energetics and con-
formations as compared with explicit solvent simulations and experimental measurements for a wide range of
systems.[240] In these models, a solute is represented by an atomic-detail model as in a molecular mechanics force
field, while the solvent molecules and any dissolved electrolyte are treated as a structure-less continuum. The
continuum treatment represents the solute as a dielectric body whose shape is defined by atomic coordinates and
atomic cavity radii.[242] The solute contains a set of point charges at atomic centers that produce an electrostatic
field in the solute region and the solvent region. The electrostatic field in such a system, including the solvent
reaction field and the Coulombic field, may be computed by solving the PB equation:[243, 244]

V.[e(r)Vé(r)] = —4mp(r) —4mA(r) Zzici exp(—z;¢(r)/kpT) (6.1)

where £(r) is the dielectric constant, ¢ (r) is the electrostatic potential, p(r) is the solute charge, A(r) is the Stern
layer masking function, z; is the charge of ion type i, c; is the bulk number density of ion type i far from the solute,
kp is the Boltzmann constant, and 7 is the temperature; the summation is over all different ion types. The salt
term in the PB equation can be linearized when the Boltzmann factor is close to zero. However, the approximation
apparently does not hold in highly charged systems. Thus, it is recommended that the full nonlinear PB equation
solvers be used in such systems.

The non-electrostatic or non-polar (NP) solvation interactions are typically modeled with a term proportional
to the solvent accessible surface area (SASA).[224] An alternative and more accurate method to model the non-
polar solvation interactions is also implemented in pbsa.[245] The new method separates the non-polar solvation
interactions into two terms: the attractive (dispersion) and repulsive (cavity) interactions. Doing so significantly

82

6.1. Introduction

improves the correlation between the cavity free energies and solvent accessible surface areas or molecular vol-
umes enclosed by SASA for branched and cyclic organic molecules.[246] This is in contrast to the commonly used
strategy that correlates total non-polar solvation energies with solvent accessible surface areas, which only corre-
lates well for linear aliphatic molecules.[224] In the alternative method, the attractive free energy is computed by
a numerical integration over the solvent accessible surface area that accounts for solvation attractive interactions
with no cutoff.[247]

6.1.1. Numerical solutions of the PB equation

In pbsa both the linear form and the full nonlinear form of the PB equation are supported. Many strategies
may be used to discretize the PB equation, but only the finite-difference (FD) method, or more rigorously, the
finite-volume method [248-250] is fully supported in pbsa for both the linear and nonlinear PB equations. A FD
method involves the following steps: mapping atomic charges to the FD grid points (termed grid charges below);
assigning non-periodic/periodic boundary conditions, i.e., electrostatic potentials on the boundary surfaces of the
FD grid; and applying a dielectric model to define the high-dielectric (i.e., water) and low-dielectric (i.e., solute
interior) regions and mapping it to the FD grid edges.

These steps allow the partial differential equation to be converted into a linear or nonlinear system with the
electrostatic potential on grid points as unknowns, the charge distribution on the grid points as the source, and
the dielectric constant on the grid edges (and the salt-related term for the linear case) wrapped into the coefficient
matrix, which is a seven-banded symmetric matrix. In pbsa, four common linear FD solvers are implemented:
modified ICCG, geometric multigrid, conjugate gradient, and successive over-relaxation (SOR).[236] In addition,
we have also implemented six nonlinear FD solvers: Inexact Newton(NT)/modified ICCG, NT/geometric multi-
grid, conjugate gradient, and SOR and its improved versions - adaptive SOR and damped SOR.[237]

In addition to the FD method, a new discretization strategy is also introduced to solve the linear PB equation.[251]
The Immersed Interface method (IIM) is a second-order accurate numerical method developed for systems with
interface, i.e. solute/solvent boundary in this case. In the IIM discretization scheme, the linear equations on regular
grid points, i.e. grid points away from the interface, are the same as the standard finite-difference method, but the
linear equations on irregular grid points, i.e. grid points nearby the interface, are constructed by minimizing the
magnitude of the local truncation error in the discretization of the PB equation.[252] It can be proven that the
errors of calculated potentials are at the order of O(h?) on the regular grid points and O(h) on the irregular grid
points.[252]

6.1.2. Numerical interpretation of energy and forces

PB solvents approximate the solvent-induced electrostatic mean-force potential by computing the reversible
work in the process of charging the atomic charges in a solute molecule or complex. The charging free energy is a
function of the electrostatic potential ¢, which can be computed by solving the linear or nonlinear system.

It has been shown (see for example [241]) that the total electrostatic energy of a solute molecule can be approx-
imated through the FD approach by subtracting the self FD Coulombic energy (G%P f) and the short-range FD

coul ,shel
Coulombic energy (GED,) from the total FD electrostatic energy (G52,). and adding back the analytical
short-range Coulombic energy (Gf(’)‘;l7xh{)rl). The self FD Coulombic energy is due to interactions of grid charges
within one single atom. The self energy exists even when the atomic charge is exactly positioned on one grid point.
It also exists in the absence of solvent and any other charges. It apparently is a pure artifact of the FD approach
and must be removed. The short-range FD Coulombic energy is due to interactions between grid charges in two
different atoms that are separated by a short distance, usually less than 14 grid units. The short-range Coulombic
energy is inaccurate because the atomic charges are mapped onto their eight nearest FD grids, thus causing devia-
tion from the analytical Coulomb energy. The correction of Gf 021. shel f and GCF ODML shors1s made possible by the work
of Luty and McCammon’s analytical approach to compute FD Coulombic interactions.[253]

Therefore, the PB electrostatic interactions include both Coulombic interactions and reaction field interactions
for all atoms of the solute. The total electrostatic energy is given in the energy component EEL in the output file.
The term that is reserved for the reaction field energy, EPB, is zero if this method is used. If you want to know how
much of EEL is the reaction field energy, you can set the BCOPT keyword (to be explained below) to compute the

reaction field energy only by using a Coulombic field (or singularity) free formulation.[254]

83

6. PBSA

When the full nonlinear Poisson-Boltzmann equation is used, an additional energy term, the ionic energy, should
also be included. This energy term disappears in the symmetrical linear system because the effects due to opposite
ions cancel out. It is currently approximated by calculation up to the space boundary of the FD grid. It should
be noted that the NBUFFER keyword may need increasing to obtain good precision in the ionic energy for small
molecules with a large FILLRATIO.

An alternative method of computing the electrostatic interactions is also implemented in pbsa. In this method,
the reaction field energy is computed directly after the induced surface charges are first computed at the dielectric
boundary (i.e., the surface that separates solute and solvent). These surface charges are then used to compute the
reaction field energy,[240] and is given as the EPB term. It has been shown that doing so improves the convergence
of reaction field energy with respect to the FD grid spacing. However, a limitation of this method is that the
Coulombic energy has to be recomputed analytically with a pairwise summation procedure. When this method
is used, the EEL term only gives the Coulombic energy with a cutoff distance provided in the input file. The
two ways of computing electrostatic interactions are controlled by the keywords ENEOPT and FRCOPT to be
described below.

The non-polar solvation free energy is returned by the ECAVITY term, which is either the total non-polar
solvation free energy or the cavity solvation free energy in the two different models described above. The EDISPER
term returns the dispersion solvation free energy. Of course it is zero if the total non-polar solvation free energy
has been returned by ECAVITY. The word INP can be used to choose one of the two treatments of non-polar
solvation interactions.[245] Specifically, you can use SASA to correlate total non-polar solvation free energy, i.e.,
Gup = NP_TENSION x SASA+NP_OFFSET as in PARSE.[224] You can also use SASA to correlate the cavity
term only and use a surface-integration approach to compute the dispersion term.[245] i.e., Gup= Guisp+ Geaviry
with Gegyiry = CAVITY _TENSION x SASA+CAVITY _OFFSET. See the discussion of keywords in 8.2.8. These
options are described in detail in Ref. [245].

Finally, in this release, the PB forces are now correctly interpreted for the widely used SES molecular surface
definition, i.e., the partition of dielectric boundary pressure/force can now reproduce the virtual work principle.
This is achieved by proper decomposition of the dielectric boundary force on the reentrant portion of the molecular
surface. Specifically, the molecular surface is computed more accurately by considering the cases when the solvent
probe touches three atoms simultaneously. Next the reentrant force is also distributed onto the three atoms forming
the reentrant surface following the virtual work principle.[255]

6.1.3. Numerical accuracy and related issues

Note that the accuracy of any numerical PB procedure is determined by the discretization resolution specified
in the input, i.e., the grid spacing. The convergence criterion for the iteration procedures also plays some role for
the numerical PB solvers. Finally the accuracy is highly dependent upon the methods used for computing total
electrostatic interactions. In Lu and Luo,[241] the accuracy of the first method for total electrostatic interactions is
discussed in detail. In Ref.[255] the accuracy of the second method is discussed.

It is recommended that the second method for total electrostatic interactions be used for most calculations.
Apparently the cutoff distance for charge-charge interactions strongly influences the accuracy of electrostatic in-
teractions. The default setting is infinity, i.e., no cutoff is used. In this method, the convergence of the reaction
field energy with respect to the grid spacing is much better than that of the first method. Our experience shows
that the reaction field energies converge to within ~2% for tested proteins at the grid spacing of 0.5 A when the
weighted harmonic average of dielectric constants is used at the solute/solvent interface (when SMOOTHOPT =
1, see below).[256]

The reaction field energies computed with the second method (when SMOOTHOPT = 2) are also in excellent
agreement (differences in the order of 0.1%) with those computed with the Delphi program which uses the same
method for energy calculation. For example, see the computational set up documented in test case pbsa_delphi in
this release.[257]

The accuracy of non-polar solvation energy depends on the quality of SASA which is computed numerically by
representing each atomic surface by spherically distributed dots. Thus a higher dot density gives more accurate
atomic surface and molecular surface. However, it is found that the default setting for the dot density is quite
sufficient for typical applications.[245] Should you encounter any memory allocation error for surface calculation,
you are advised to use a coarser surface dot resolution if the physical memory of your computer is limited.

84

6.2. Usage and keywords

Numerical solvation calculations are memory intensive for macromolecules due to the fine grid resolution re-
quired for sufficient accuracy. Thus, the efficiency of pbsa depends on how much memory is allocated for it and
the performance of the memory subsystem. The option that is directly related to its memory allocation is the FD
grid spacing for the PB equation and the surface dot resolution for molecular surface. Apparently the geometric
dimension and the number of atoms are also important for predicting the memory usage. In general for a typical
computer configuration with 8GB memory, the geometric dimension can be as large as 180 x 180 x 180 A at the
default grid spacing of 0.5 A before the computer responds too slowly.

6.2. Usage and keywords

6.2.1. File usage

pbsa has a very similar user interface as the Amber/sander program, though much simpler.
pbsa [-0] -i mdin —-o mdout [-p prmtop —-c inpcrd]/[-pgr pgr]

Starting from the 2014 release, pbsa supports the free format pqr file. Once the pqr reading is enabled, the default
Amber file reading and processing would be bypassed. Here is a brief description of the files mentioned above.

mdin input control data for the run.

mdout output user readable state info and diagnostics “-o stdout” will send output to stdout (to the terminal)
instead of to a file.

prmtop input molecular topology, force field, atom and residue names, and (optionally) periodic box type.
inperd input initial coordinates and (optionally) velocities and periodic box size.
pqr input initial coordinates, atomic charges and radii in the free format pqr.

Here are a few comments on the “free-formatted” pqr file used by pbsa. First all fields are delimited by spaces only.
Second there is no strict format requirement as in a standard pdb file. This more liberal style is to accommodate
par files of different origins. pbsa reads data on a per-line basis using the following format:

Tag AtomNumber AtomName ResidueName ChainID ResidueNumber XYZ Charge Radius

Tag A string specifying either ATOM or HETATM. Lines with other strings are ignored.
AtomNumber The sequence no of the atom, which is reset to start from 1.

AtomName The atom name.

ResidueName The residue name.

ChainID The chain ID of the atom, optional, which is ignored.

ResidueNumber The sequence no. of the residue, which is ignored.

XYZ The floating numbers representing the atomic coordinates (in Angstrom).

Charge A float number providing the atomic charge (in electron).

Radius A float number providing the atomic radius (in Angstrom).
Finally it is worth to point out that it is apparently very hard to know whether the charge and radius fields are

swapped as in the Delphi generated pqr file. Here we have assumed that the data are in the plain P.Q.R. order.
Please make sure you are following the same convention in generating the pqr files.

85

6. PBSA

6.2.2. Basic input options

The layout of the input file is in the same way as that of Amber/sander for backward compatibility with previous
releases in Amber. The keywords are put in the the namelist of &cntrl for basic controls and &pb for more detailed
manipulation of the numerical procedures. This subsection discusses the basic keywords, either retained from
sander or newly created to invoke different energetic analyses. To reduce confusion most keywords from sander
have been removed from the namelist so they can no longer be read since the current implementation in pbsa only
performs single-structure calculations with the coordinates from inperd and exits. However, the current release is
compatible with the mdin file generated with the mmpbsa script in previous releases in Amber. Users interested in
energy minimization and molecular dynamics with the PB implementation are referred to sander in the release of
Amber. Nevertheless, for purposes of validation and development, the atomic forces can be dumped out in a file
when requested as described below.

The numerical electrostatic procedures can be turned on by setting IPB to either 1, 2 or 4. The flag IGB = 10 is
phased out in this release. The numerical non-polar procedures can be turned on by setting INP to either 1 or 2.
The backward compatible flag NPOPT is also phased out in this release.

imin Flag to run minimization. Both options give the same output energies though the output formats
are slightly different. This option is retained from previous releases in the Amber package for
backward compatibility. The current release of pbsa only supports single point energy calculation.

=0 No minimization. Dynamics is available with sander and NAB.

=1 Single point energy calculation. Default. Multiple-step PB minimization is also available with
sander and NAB.

ntx Option to read the coordinates from the “inpcrd” file. Only options 1 and 2 are supported in this
releases. Other options will cause pbsa to issue a warning though it does not affect the energy
calculation.

=1 Xis read formatted with no initial velocity information. Default.

=2 X is read unformatted with no initial velocity information.

ipb Option to set up a dielectric model for all numerical PB procedures. IPB = 1 corresponds to a
classical geometric method, while a level-set based algebraic method is used when IPB > 2. The
default IPB is 2.

=0 No electrostatic solvation free energy is computed.
=1 The dielectric interface between solvent and solute is built with a geometric approach. [235]

= 2 The dielectric interface is implemented with the level set function. Use of a level set function
simplifies the calculation of the intersection points of the molecular surface and grid edges
and leads to more stable numerical calculations. Default.[257]

=4 The dielectric interface is also implemented with the level set function. However, the linear
equations on the grid points nearby the dielectric boundary are constructed using the IIM. In
this option, The dielectric constant do not need to be smoothed, that is, SMOOTHOPT is use-
less. Only the linear PB equation is supported, that is, NPBOPT = 0. Starting from the Amber
2018 release, SOLVOPT is no longer relevant as only one stable solver is supported.[251]

=6 The dielectric interface is implemented analytically with the revised density function approach
(SASOPT=2). The linear equations on the irregular points are constructed using the IIM and
fully utilizing the analytical surface. Otherwise, it is exactly the same as [IPB=4.[258]

=7 The dielectric interface is implemented analytically with the revised density function approach
(SASOPT=2). The linear equations on the irregular points are constructed using the X-factor
harmonic average method.[259]

= 8 The dielectric interface is implemented analytically with the revised density function approach
(SASOPT=2). The linear equations on the irregular points are constructed using the second-
order harmonic average method.[259]

86

inp

6.2. Usage and keywords

Option to select different methods to compute non-polar solvation free energy.

=0 No non-polar solvation free energy is computed.

=1 The total non-polar solvation free energy is modeled as a single term linearly proportional
to the solvent accessible surface area, as in the PARSE parameter set, that is, if INP = 1,
USE_SAV must be equal to 0. See Introduction. [245]

=2 The total non-polar solvation free energy is modeled as two terms: the cavity term and the
dispersion term. The dispersion term is computed with a surface-based integration method
[245] closely related to the PCM solvent for quantum chemical programs.[247] Under this
framework, the cavity term is still computed as a term linearly proportional to the molec-
ular solvent-accessible-surface area (SASA) or the molecular volume enclosed by SASA.
Default.

Once the above basic options are specified, pbsa can proceed with the default options to compute the solvation free
energies with the input coordinates. Of course, this means that you only want to use default options for default
applications. More PB options described below can be defined in the &pb namelist, which is read immediately
after the &cntrl namelist. We have tried hard to make the defaults for these parameters appropriate for calcula-
tions of solvated molecular systems. Please use caution when changing any default options. Also note that the
default options may have changed over time. For a detailed discussion of all related options on the quality of the
calculations, please refer to our recent publication [260].

6.2.3. Options to define the physical constants

epsin

epsout

epsmem

smoothopt

istrng

pbtemp

radiopt

Sets the dielectric constant of the solute region, default to 1.0. The solute region is defined to be
the solvent excluded volume.

Sets the implicit solvent dielectric constant, default to 80. The solvent region is defined to be the
space not occupied the solute region. i.e., only two dielectric regions are allowed in the current
release.

Sets the membrane dielectric constant. Only used if membraneopt > 0, does nothing otherwise.
Value used should be between epsin and epsout or there may be errors. Previously spelled as
epsmemb, which is being phased out. Defaults to 1.0.

Instructs PB how to set up dielectric values for finite-difference grid edges that are located across
the solute/solvent dielectric boundary.

=0 The dielectric constants of the boundary grid edges are always set to the equal-weight har-
monic average of EPSIN and EPSOUT.

=1 A weighted harmonic average of EPSIN and EPSOUT is used for boundary grid edges. The
weights for EPSIN and EPSOUT are fractions of the boundary grid edges that are inside or
outside the solute surface.[261] Default.

=2 The dielectric constants of the boundary grid edges are set to either EPSIN or EPSOUT de-
pending on whether the midpoints of the grid edges are inside or outside the solute surface.

Sets the ionic strength (in mM) for the PB equation. Default is 0 mM. Note the unit is different
from that (in M) in the generalized Born methods implemented in Amber. Note also that we are
only dealing with symmetrical solution, so the ionic strength should be equal to the square of the
valence of the symmetrical ions times the ion concentration (in mM).

Temperature (in K) used for the PB equation, needed to compute the Boltzmann factor for salt
effects; default is 300 K.

Option to set up atomic radii.

87

6. PBSA

=0 Use radii from the prmtop file for both the PB calculation and for the NP calculation (see
INP).

=1 Use atom-type/charge-based radii by Tan and Luo [262] for the PB calculation. Note that the
radii are optimized for Amber atom types as in standard residues from the Amber database.
If a residue is built by antechamber, i.e., if GAFF atom types are used, radii from the prmtop
file will be used. Please see [262] on how these radii are optimized. The procedure in [262]
can also be used to optimize radii for nonstandard residues. These optimized radii can be read
in if they are incorporated into the radii section of the prmtop file (of course via RADIOPT
=0). Default.

dprob Solvent probe radius for molecular surface used to define the dielectric boundary between solute
and solvent. DPROB = 1.4 by default.

iprob Mobile ion probe radius for ion accessible surface used to define the Stern layer. Default to 2.0 A.

sasopt Option to determine which kind of molecular surfaces to be used in the Poisson-Boltzmann im-
plicit solvent model. Default is 0.

=0 Use the solvent excluded surface (SES) as implemented by[257].

=1 Use the solvent accessible surface (SAS). Apparently, this reduces to the van der Waals surface
(VDW) when the dprobe is set to zero.

=2 Use the smooth surface defined by a revised density function.[263] This must be combined
with IPB > 2.

=3 Use the solvent excluded surface inferred by the machine-learned solvent excluded surface
(MLSES) model. This must be combined with IPB = 2 (See 6.2.9 for details).

saopt Option to compute the surface area of a molecule. Default is 0. Once the computation is enabled,
the surface area will be reported in the output file with the subtitle “Total molecular surface”. Note
that only the surface areas for the solvent excluded surface and the solvent accessible surface are
supported in this release.

=0 Do not compute any surface area.

=1 Use the field-view method to compute the surface area.[234]

triopt Option to add trimer arc dots for a more accurate and lower memory mapping method of the
analytical solvent excluded surface. See [257]

=0 Trimer arc dots are not used.

=1 Trimer arc dots are used. Default.

arcres pbsa uses a numerical method to compute solvent accessible arcs. See [257]. The ARCRES
keyword gives the resolution (in the unit of A) of dots used to represent these arcs, default to 0.25
A. These dots are first checked against nearby atoms to see whether any of the dots are buried.
The exposed dots represent the solvent accessible portion of the arcs and are used to define the
dielectric constants on the grid edges. It should be pointed out that ARCRES should be reduced
to (0.125 A) when the TRIOPT option is turned off to achieve a similar accuracy in the reaction
field energies. More generally, ARCRES should be set to max(0.125 A, 0.5h) when the TRIOPT
option is turned on, or max(0.0625 A, 0.25h) when the TRIOPT option is turned off (% is the grid
spacing).

6.2.4. Options for Implicit Membranes

membraneopt Option to turn the implicit membrane on and off. The membrane is implemented as a slab like
region with a uniform or heterogeneous dielectric constant depth profile.

88

mprob

mthick

mctrdz

poretype

poreradius

6.2. Usage and keywords

=0 No implicit membrane used (default).
=1 Use a uniform membrane dielectric constant in a slab-like implicit membrane.[264]

=2 Use a heterogeneous membrane dielectric constant in a slab-like implicit membrane. The
dielectric constant varies with depth from a value of 1 in the membrane center to 80 at
the membrane periphery. The dielectric constant depth profile was implemented using the
PCHIP fitting.[265]

=3 Use a heterogeneous membrane dielectric constant in a slab-like implicit membrane. The
dielectric constant varies with depth from a value of 1 in the membrane center to 80 at the
membrane periphery. The dielectric constant depth profile was implemented using the Spline
fitting.[265]

Membrane probe radius in A, default to 2.70. This is used to specify the highly different lipid
molecule accessibility versus that of the water.[266]

Membrane thickness in A, default to 40.0. This is different from the previous default of 20 A.

Membrane center in A in the z direction. Default is O - membrane centered at the center of the
protein.

Turn on and off the automatic depth-first search method to identify the pore.[266]
=0 Do not turn on the pore searching algorithm.

=1 Turn on the pore searching algorithm.

Controls the radius, in A, of the cylindrical exclusion region. This is no longer needed given the
automatic pore searching algorithm.

6.2.5. Options to select numerical procedures

npbopt

solvopt

accept

maxitn

Option to select the linear [236]or the full nonlinear PB equation.[237]

=0 Linear PB equation is solved. Default.

=1 Nonlinear PB equation is solved.

Option to select iterative solvers.

=1 Modified ICCG or Periodic (PICCG) if bcopt = 10 is. Default.
=2 Geometric multigrid. A four-level v-cycle implementation is applied by default.

= 3 Conjugate gradient (Periodic version available under bcopt = 10). This option requires a large
MAXITN to converge.

=4 SOR. This option requires a large MAXITN to converge.

=5 Adaptive SOR. This is only compatible with NPBOPT = 1. This option requires a large
MAXITN converge.[237]

=6 Damped SOR. This is only compatible with NPBOPT = 1. This option requires a large MAX-
ITN to converge.[237]

Sets the iteration convergence criterion (relative to the initial residue). Default to 0.001.

Sets the maximum number of iterations for the finite difference solvers, default to 100. Note that
MAXITN has to be set to a much larger value, e.g. 10,000, for the less efficient solvers, such as
conjugate gradient and SOR, to converge.

89

6. PBSA

fillratio The ratio between the longest dimension of the rectangular finite-difference grid and that of the
solute. Default is 2.0. It is suggested that a larger FILLRATIO, for example 4.0, be used for a
small solute, such as a ligand molecule. Otherwise, part of the small solute may lie outside of the
finite-difference grid, causing the finite-difference solvers to fail.

space Sets the grid spacing for the finite difference solver; default is 0.5 A.

nbuffer Sets how far away (in grid units) the boundary of the finite difference grid is away from the so-
lute surface; default is O grids, i.e., automatically set to be at least a solvent probe or ion probe
(diameter) away from the solute surface.

nfocus Set how many successive FD calculations will be used to perform an electrostatic focussing calcu-
lation on a molecule. Default to 2, the maximum. When NFOCUS = 1, no focusing is used. It is
recommended that NFOCUS = 1 when the multigrid solver is used.

fscale Set the ratio between the coarse and fine grid spacings in an electrostatic focussing calculation.
Default to 8.

npbgrid Sets how often the finite-difference grid is regenerated; default is 1 step. For molecular dynamics
simulations, it is recommended to be set to at least 100. Note that the PB solver effectively takes
advantage of the fact that the electrostatic potential distribution varies very slowly during dynam-
ics simulations. This requires that the finite-difference grid be fixed in space for the code to be
efficient. However, molecules do move freely in simulations. Thus, it is necessary to regenerate
the finite-difference grid occasionally to make sure a molecule is well within the grid.

6.2.6. Options to compute energy and forces

ENEOPT is the option to set a method to compute electrostatic energy and forces, and DBFOPT is phased out
in this release.

bcopt Boundary condition options.

=1 Boundary grid potentials are set as zero, i.e. conductor. Total electrostatic potentials and
energy are computed.

=5 Computation of boundary grid potentials using all grid charges. Total electrostatic potentials
and energy are computed. Default.

=6 Computation of boundary grid potentials using all grid charges. Reaction field potentials and
energy are computed with the charge singularity free formalism.[254]

=10 Periodic boundary condition is used. Total electrostatic potentials and energy are computed.
Can be used with SOLVOPT =1, 2, 3, or 4 and IPB = 1 or 2. It should only be used on charge-
neutral systems. If the system net charge is detected to be nonzero, it will be neutralized by
applying a small neutralizing charge on each grid (i.e. a uniform plasma) before solving.

eneopt Option to compute total electrostatic energy and forces.

=1 Compute total electrostatic energy and forces with the particle-particle particle-mesh (P3M)
procedure outlined in Lu and Luo.[241] In doing so, energy term EPB in the output file is set
to zero, while EEL includes both the reaction field energy and the Coulombic energy. The
van der Waals energy is computed along with the particle-particle portion of the Coulombic
energy. The electrostatic forces and dielectric boundary forces can also be computed.[241]
This option requires a nonzero CUTNB and BCOPT =5.

=2 Use dielectric boundary surface charges to compute the reaction field energy. Default. Both
the Coulombic energy and the van der Waals energy are computed via summation of pairwise
atomic interactions. Energy term EPB in the output file is the reaction field energy. EEL is
the Coulombic energy.

90

frcopt

scalec

cut fd

cutnb

nsnba

6.2. Usage and keywords

= 3 Similar to the first option above, a P3M procedure is applied for both solvation and Coulombic
energy and forces for larger systems.

=4 Similar to the third option above, a P3M procedure for the full nonlinear PB equation is ap-
plied for both solvation and Coulombic energy and forces for larger systems. A more robust
and clean set of routines were used for the P3M and dielectric surface force calculations.

Option to compute and output electrostatic forces to a file named force.dat in the working directory.

=0 Do not compute or output atomic and total electrostatic forces. This is default.

=1 Reaction field forces are computed by trilinear interpolation. Dielectric boundary forces are
computed using the electric field on dielectric boundary. The forces are output in the unit of
kcal/mol-A.

=2 Use dielectric boundary surface polarized charges to compute the reaction field forces and
dielectric boundary forces [255] The forces are output in the unit of kcal/mol-A.

=3 Reaction field forces are computed using dielectric boundary polarized charge. Dielectric
boundary forces are computed using the electric field on dielectric boundary. [267] The
forces are output in the unit of kcal/mol-A.

Option to compute reaction field energy and forces.

=0 Do not scale dielectric boundary surface charges before computing reaction field energy and
forces. Default.

=1 Scale dielectric boundary surface charges using Gauss’s law before computing reaction field
energy and forces.

Atom-based cutoff distance to remove short-range finite-difference interactions, and to add pair-
wise charge-based interactions, default is 5 A. This is used for both energy and force calculations.
See Eqn (20) in Lu and Luo.[241]

Atom-based cutoff distance for van der Waals interactions, and pairwise Coulombic interactions
when ENEOPT = 2. Default to 0. When CUTNB is set to the default value of 0, no cutoff will be
used for van der Waals and Coulombic interactions, i.e., all pairwise interactions will be included.
When ENEOPT = 1, this is the cutoff distance used for van der Waals interactions only. The
particle-particle portion of the Coulombic interactions is computed with the cutoff of CUTFD.

Sets how often atom-based pairlist is generated; default is 1 step. For molecular dynamics simula-
tions, a value of 5 is recommended.

6.2.7. Options for visualization and output

phiout

phiform

pbsa can be used to output spatial distribution of electrostatic potential for visualization. [264]

=0 No potential file is printed out. Default.

=1 Electrostatic potential is printed out in a file named pbsa.phi in the working directory. Please
refer to examples in the next section on how to display electrostatic potential on molecular
surface.

Controls the format of the electrostatic potential file.
=0 The electrostatic potential (kT/mol-e) is printed in the Delphi binary format. Default.
=1 The electrostatic potential (kcal/mol-e) is printed in the Amber ASCII format.

=2 The electrostatic potential (kcal/mol-e) is printed in the DX volumetric data format for use
with VMD.

91

6. PBSA

outlvlset

outmlvlset

npbverb

pbsa can be set to write the total level set, used in locating interfaces between regions of differing
dielectric constant, to a DX format volumetric data file. This option will control printing of the
total level set (i.e. both solute-solvent and membrane level sets combined if membrane present)

= false No level set file printed out. Default.

= true Level set printed out in a file named pbsa_lvlset.dx

pbsa can be set to write the membrane level set, used in locating interfaces between regions of
differing dielectric constant, to a DX format volumetric data file. This option controls printing a
separate file for the membrane level set. Does nothing if membraneopt is not turned on.

= false No level set file printed out. Default.

=true Level set printed out in a file named pbsa_lvlset.dx

When set to 1, turns on verbose mode in pbsa; default is 0.

6.2.8. Options to select a non-polar solvation treatment

decompopt

use_rmin

sprob

vprob

Option to select different decomposition schemes when INP = 2. See [245] for a detailed discus-
sion of the different schemes. The default is 2, the ¢ decomposition scheme, which is the best
of the three schemes studied.[245] As discussed in Ref. [245], DECOMPOPT = 1 is not a very
accurate approach even if it is more straightforward to understand the decomposition.

=1 The 6/12 decomposition scheme.
=2 The o decomposition scheme. Default

=3 The WCA decomposition scheme.

The option to set up van der Waals radii. The default is to use rmin to improve the agreement with
TIP3P [245].

=0 Use atomic van der Waals ¢ values.

=1 Use atomic van der Waals rmin values. Default.

Solvent probe radius for solvent accessible surface area (SASA) used to compute the dispersion
term, default to 0.557 A in the o decomposition scheme as optimized in Ref. [245] with respect to
the TIP3P solvent and the PME treatment. Recommended values for other decomposition schemes
can be found in Table 4 of [245]. If USE_SAV = 0 (see below), SPROB can be used to compute
SASA for the cavity term as well. Unfortunately, the recommended value is different from that
used in the dispersion term calculation as documented in Ref. [245] Thus two separate pbsa
calculations are needed when USE_SAV = 0, one for the dispersion term and one for the cavity
term. Therefore, please carefully read Ref. [245] before proceeding with the option of USE_SAV
= 0. Note that SPROB was used for ALL three terms of solvation free energies, i.e., electrostatic,
attractive, and repulsive terms in previous releases in Amber. However, it was found in the more
recent study [245] that it was impossible to use the same probe radii for all three terms after each
term was calibrated and validated with respect to the TIP3P solvent. [245, 262]

Solvent probe radius for molecular volume (the volume enclosed by SASA) used to compute
non-polar cavity solvation free energy, default to 1.300 A, the value optimized in Ref. [245] with
respect to the TIP3P solvent. Recommended values for other decomposition schemes can be found
in Tables 1-3 of Ref. [245].

rhow_effect Effective water density used in the non-polar dispersion term calculation, default to 1.129 for

92

DECOMPOPT = 2, the ¢ scheme. This was optimized in Ref. [245] with respect to the TIP3P
solvent in PME. Optimized values for other decomposition schemes can be found in Table 4 of
Ref. [245].

6.2. Usage and keywords

use_sav The option to use molecular volume (the volume enclosed by SASA) or to use molecular surface
(SASA) for cavity term calculation. The default is to use the molecular volume enclosed by
SASA. Recent study shows that the molecular volume approach transfers better from small training
molecules to biomacromolecules.

=0 Use SASA to estimate cavity free energy.
=1 Use the molecular volume enclosed by SASA. Default.

cavity_surften The regression coefficient for the linear relation between the total non-polar solvation free
energy (INP = 1) or the cavity free energy (INP = 2) and SASA/volume enclosed by SASA. The
default value is for INP = 2 and set to the best of three tested schemes as reported in Ref. [245],
i.e. DECOMPOPT =2, USE_RMIN =1, and USE_SAV = 1. See recommended values in Tables
1-3 for other schemes.

cavity_offset The regression offset for the linear relation between the total non-polar solvation free energy
(INP = 1) or the cavity free energy (INP = 2) and SASA/volume enclosed by SASA. The default
value is for INP = 2 and set to the best of three tested schemes as reported in Ref. [245], i.e.
DECOMPOPT =2, USE_RMIN = 1, and USE_SAV = 1. See recommended values in Tables 1-3
for other schemes.

maxsph pbsa uses a numerical method to compute solvent accessible surface area.[245] MAXSPH variable
gives the approximate number of dots to represent the maximum atomic solvent accessible surface,
default to 400. These dots are first checked against covalently bonded atoms to see whether any
of the dots are buried. The exposed dots from the first step are then checked against a non-bonded
pair list with a cutoff distance of 9 A to see whether any of the exposed dots from the first step are
buried. The exposed dots of each atom after the second step then represent the solvent accessible
portion of the atom and are used to compute the SASA of the atom. The molecular SASA is
simply a summation of the atomic SASA’s. A molecular SASA is used for both PB dielectric map
assignment and for NP calculations.

6.2.9. Options to enable the machine-learned solvent excluded surface model

The Machine-Learned Solvent Excluded Surface (MLSES) model, GENIUSES,[268] offers a significantly more
efficient generation of molecular surfaces, with over 26 times faster performance on GPUs and 4 times faster on
CPUs while retaining ~95% accuracy compared to the classical solvent-excluded surface implementation refer-
enced in the classical implementation of SES in AMBER.[257] A sample input file for single point calculation is
provided in6.4.4.

mlses_opt Option to select the runtime for the MLSES model. To enable this feature, SASOPT = 3 is required.
Users can choose from different runtime options:

=0 Use the customized Fortran function/CUDA kernel to run the MLSES model on a CPU/GPU.
Default.

=1 Use the LibTorch runtime to run the MLSES model on a CPU or GPU. The LibTorch library
must be included during compilation. Detailed installation of LibTorch is provided in the
following.

6.2.10. Options to enable active site focusing

Active site focusing is an extension to the electrostatic focusing method. Electrostatic focusing can be regarded
as a multi-level FDPB calculation (two levels currently implemented) in which a coarse-grid solution is conducted
to set up the boundary condition for the requested fine-grid solution. In the original implementation of electrostatic
focusing, the fine grid always covers all the solute atoms. However in the enhanced implementation, the fine grid
is allowed to cover only a local region of interest, such as an enzyme active site or ligand docking site. In such
applications, most or all of the protein atoms are held frozen during a calculation while only the active site side

93

6. PBSA

chain and the substrate ligand are allowed to move. In principle, energies computed with the local electrostatic fo-
cusing method should correlate with those computed with the original electrostatic focusing method if the movable
substrate/ligand atoms are well within the local region of interest. The “active site” or the local region is specified
as a rectangular box by the following six variables:[269]

xmax The upper boundary of the box in x direction.
xmin The lower boundary of the box in x direction, XMAX has to be greater than XMIN.
ymax The upper boundary of the box in y direction.
ymin The lower boundary of the box in y direction, YMAX has to be greater than YMIN.
zmax The upper boundary of the box in z direction.
zmin The lower boundary of the box in z direction, ZMAX has to be greater than ZMIN.

Of course, these keywords are zero by default, i.e. the original electrostatic focusing would be invoked if these
keywords remain to be the default value of zero.

6.2.11. Options to enable multiblock focusing

This option is no longer supported starting in the Amber 2018 release.

6.3. LibTorch Installation

LibTorch is a C++ runtime library developed by the PyTorch team.[270] It facilitates flexible tensor computations
and dynamic deep neural network modeling. With LibTorch, developers can seamlessly deploy their trained neural
network models built on PyTorch to their desired C++ platforms, bypassing the overhead of a Python interpreter.
PBSA incorporates LibTorch to perform inference using the MLSES model in a pure C++ runtime. Leveraging
LibTorch, the MLSES model within PBSA achieves satisfactory performance acceleration on both CPU and GPU
environments without the need for complex, hand-crafted optimizations. Additionally, the LibTorch library offers
general-purpose, high-performance numerical computing capabilities with the abstraction of tensors, which is
beneficial for Amber developers seeking to create efficient numerical algorithms and integrate custom machine
learning models into the Amber software. Currently, there are two methods to enable the LibTorch library in
Amber: built-in mode and user-installed mode.

Built-in mode automatically installs LibTorch during Amber compilation, with version 1.12.1 supporting comput-
ing runtimes on CPU, CUDA 11.6, CUDA 11.3, and CUDA 10.3. The specific runtime is determined by the user’s
configuration (i.e., the CUDA setting state). To enable built-in LibTorch, specify the following variables before
configuring CMake:

-DLIBTORCH=ON Instruct CMake to enable LibTorch during the configuration of the Amber project.

—-DCUDNN=TRUE Instruct CMake to enable CUDNN runtime. Required when CUDA computing with LibTorch
is desired.

—DCUDNN_INCLUDE_PATH=<PATH_OF_CUDNN_INCLUDE> Instruct CMake to find the header file location
of the CUDNN runtime. Required when CUDA computing with LibTorch is desired.

-DCUDNN_LIBRARY_PATH=<PATH_OF_CUDNN_LIB> Instruct CMake to find the library location of the CUDNN
runtime. Required when CUDA computing with LibTorch is desired.

User-installed mode requires users to have already installed the desired LibTorch library in their environment. For
details on installing LibTorch, please refer to the official PyTorch homepage at https://pytorch.org/. Once LibTorch
is installed, specify the following variables before configuring CMake to enable user-installed LibTorch:

~DLIBTORCH=ON Instruct CMake to enable LibTorch during the configuration of the Amber project.

94

6.4. Example inputs and demonstrations of functionalities

-DTORCH_HOME=<PATH_OF_LibTorch> Instruct CMake to locate the LibTorch library.

~DCUDNN=TRUE Instruct CMake to enable CUDNN runtime. Required when CUDA computing with LibTorch
is desired.

—DCUDNN_INCLUDE_PATH=<PATH_OF_CUDNN_INCLUDE> Instruct CMake to find the header file location
of the CUDNN runtime. Required when CUDA computing with LibTorch is desired.

-DCUDNN_LIBRARY_PATH=<PATH_OF_CUDNN_LIB> Instruct CMake to find the library location of the CUDNN
runtime. Required when CUDA computing with LibTorch is desired.

6.4. Example inputs and demonstrations of functionalities

6.4.1. Single-point calculation of solvation free energies

Normally the default pbsa options are capable of dealing with most situations. Users should be fully aware of
the meaning of an option before they change its default value. In all the following example inputs, only the
options that are different from their default values will be shown, and the explanations on the changes will be
given in detail. Here is a sample input file that might be used to perform single structure calculations.

Sample single point PB calculation

&cntrl

/

&pb

npbverb=1, istrng=150, fillratio=1.5, saopt=1,
/

Note that NPBVERB = 1 above. This generates much detailed information in the output file for the PB and NP
calculations. A useful printout is atomic SASA data for both PB and NP calculations which may or may not
use the same atomic radius definition. Since the FD solver for PB is called twice to perform electrostatic focus
calculations, two PB printouts are shown for each single point calculation. For the PB calculation, a common error
message can be generated when FILLRATIO is set to the default value of 2.0 for small molecules. This may cause
a solute to lie outside of the focusing finite-difference grid.

In this example INP is not set and equal to the default value of 2, which calls for non-polar solvation calculation
with the new method that separates cavity and dispersion interactions. The EDISPER term gives the dispersion
solvation free energy, and the ECAVITY term gives the cavity solvation free energy. The default options for the
NP calculation are set to the recommended values for the o decomposition scheme and to use molecular volume
to correlate with cavity free energy. You can find recommended values for other decomposition schemes and other
options in Tables 1-4 of Ref. [245]. If INP is set to 1, the ECAVITY term would give the total non-polar solvation
free energy.

Finally, a few words on the RADIOPT option, set to the default value of 1 instructing PB to use the optimized
values instead of reading the radii from the prmtop file. Starting this release, the RADIOPT option only controls
the radius definition for the PB calculation. The INP=2 calculation automatically uses the default values, such as
atomic radii and solvent probes as optimized in Ref. [245]. On the other hand, the INP=1 calculation is allowed to
use whatever radii that a user decides to use.

The ion strength option ISTRNG is set to 150 in unit mM, a typical value for a physiological environment. The
FILLRATIO option is set to 1.5 because the biomolecule is relatively large. We set saopt to 1 because we need the
information of the molecular surface area (the molecular surface is defined as the solvent excluded surface since
SASOPT is set to its default value 0).

6.4.2. Implicit membrane model

pbsa now supports inclusion of an implicit membrane region in implicit solvation calculations. This feature
is enabled by setting MEMBRANEOPT to 1 (default value is 0, for off). The membrane will extend the solute

95

6. PBSA

dielectric region to include a slab-like planar region running parallel to the xy plane. The thickness is controlled by
the MTHICK option. The default is 40 A. The membrane region will be centered on the protein center by default,
and can be set to a user-provided value using the MCTRDZ option (default is 0). Neither option will have any
effect unless MEMBRANEOPT is set to 1. The dielectric constant can be controlled using epsmem. We set the
membrane interior dielectric constant to a value of 4.0 in this example. This is four times that of the solute which
defaults to 1 (same as vacuum). The value of epsmem should always be set to a value greater than or equal to
EPSIN (solute dielectric constant) and less than EPSOUT (solvent dielectric constant). These default to 1.0 and
80.0 respectively.

When using the implicit membrane model, we recommend SASOPT=0, i.e. the classical solvent excluded
surface, due to its better numerical behavior. When running with the default options, the program will compute
solvent excluded surfaces both with the water probe (DPROB=1.40 by default) and the membrane probe
(MPROB=2.70 by default). This setting was found to be consistent with the explicit solvent MD simulations. It is
also suggested that periodic boundary conditions be used to avoid unphysical edge effects. This is supported in all
linear solvers. In the following we choose Periodic Incomplete Cholesky Conjugate Gradient (PICCG). So we set
IPB =1, BCOPT = 10, and SOLVOPT = 1 (default). In addition, ENEOPT needs to be set to 1 because the
charge-view method (ENEOPT = 2) is not supported for this application.

Sample single point PB calculation with membrane region
&cntrl

ipb=1, inp=0

/

&pb

radiopt=0, nfocus=1, maxitn=200,

bcopt=10, eneopt=1l, solvopt=1l,

sasopt=0, membraneopt=1l, epsmem = 4.0

outlvlset=true, outmlvlset=true

/

The MAXITN option is set to a bigger value, 200, than the default one, 100, because the linear solvers, when
applied to periodic boundary conditions, seem to require slightly more iterations than non-periodic solvers to
converge.

To aid in visualization of the dielectric model, the level set function, which is used to locate the interfacial
surfaces between regions of differing dielectric constant, can be written to output files. Output of the total level
set function, including both the solute-solvent and membrane contributions, can be written to a DX formatted
volumetric data file by setting the OUTLVLSET option to “true”. The membrane contribution can be written to a
separate file by setting the OUTMLVLSET option to “true”. This may take a good deal of extra time, so be sure to
leave it off if you don’t want / need to visualize the levelset surface. Accordingly, NFOCUS is set to 1 because of
the use of periodic boundary condition.

Finally, if calculations need to be performed on a protein with a solvent-filled channel region, this region would
be identified automatically by setting PORETYPE=1.

6.4.3. Single point calculation of forces

Since pbsa is released for single point calculations in AmberTools, no energy minimization or molecular
dynamics is supported. However, the PB procedure can be invoked to print out the numerical electrostatic forces
for developmental purposes. Here is a sample input:

Sample PB force computation
&cntrl

inp=0

/

&pb

npbverb=1, radiopt=0, frcopt=2
/

96

6.4. Example inputs and demonstrations of functionalities

Note that INP is set to 0 to turn off non-polar solvation interactions. RADIOPT = 0 means the atomic radii from the
topology files will be used. FRCOPT is set to 2, i.e., induced surface charges are used to compute the electrostatic
energy and forces. Since CUTNB is equal to the default value of zero, an infinite cutoff distance is used for both
Coulombic and van der Waals interactions.

6.4.4. Single point calculation with MLSES

Here is a sample input file to turn on the MLSES surface in PB calculations. Note that [PB=2 and SASOPT=3
must be set together for this model to work.

Sample PB input to use MLSES

&cntrl

ntx=1, imin=1, ipb=2, inp=0

/

&pb

npbverb=1, istrng=0,

epsout=80.0, epsin=1.0, dprob=1.4, radiopt=0, sasopt=3,
fillratio=1.25, nfocus=1, space=0.5,
accept=0.000001, maxitn=10000, solvopt=3,
npbopt=0, bcopt=6,

eneopt=1, frcopt=0, cutnb=15, cutsa=8, cutfd=7
/

6.4.5. Comparing with Delphi results

Under identical condition, pbsa is highly consistent with Delphi in term of computed reaction field energies. In
this subsection, we briefly go over the details on how you can obtain comparable energies from both programs.
Apparently, you need coordinates, atomic charges, and atomic radii that have exactly the same numerical values in
both the Amber format and the Delphi format, i.e., the pqr format.

For a Delphi computation with the following input parameters:

salt=0.150
ionrad=2.0
exdi=80.0
indi=1.0
scale=2.0
prbrad=1.5
perfil=50
bndcon=4
1linit=1000

A comparable computation in pbsa can be obtained by using the following input file:

Sample PB for delphi comparison

&cntrl

ipb=1, inp=0

/

&pb

istrng=150, ivalence=1, iprob=2.0, dprob=1.5,
radiopt=0, bcopt=5, smoothopt=2, nfocus=1,

/

IPB is set to 1 to make sure pbsa uses exactly the same surface definition as Delphi. Note that the values of exdi,
indi, prbrad, and ionrad in Delphi should be consistent with the values of EPSOUT, EPSIN, DPROB, and IPROB
in pbsa, respectively. In Delphi salt=0.150 is set in the unit of M, while in pbsa ISTRNG = 150 is in the unit of

97

6. PBSA

mM. In Delphi the grid spacing is set as the number of grids per A, i.e., scale=2.0, while in pbsa the grid spacing
is set straight in A as SPACE =0.5. In Delphi the grid dimension is set as percentage of the solute dimension over
the grid dimension, i.e., perfil=50, which is equivalent to the ratio of solute dimension over grid dimension set as
FILLRATIO = 2 in pbsa. Finally, Delphi sets the boundary condition by bndcon=4 and pbsa sets the boundary
condition as BCOPT = 5; both programs mean to use the Debye-Huckel limiting behavior for each atomic charged
sphere. There are additional options in pbsa that do not have corresponding counterparts in Delphi. For example,
SMOOTHORPT is used to instruct the program to use a specific dielectric boundary smoothing option, which is
equivalent to that used in Delphi when set to 2. (see Section 6.2.3).

6.5. Visualization functions in pbsa

pbsa can produce volumetric data files to allow visualization of electrostatic potential and level set maps.[264]
There are two points to note before continuing.

1. The data files generated can become quite large if small grid spacings are used since they will scale as the
cube of the inverse of grid spacing

2. Unless singularity removal methods are used, the potential at grid nodes corresponding to atom centers may
be quite large when compared to the potential at the molecular / atomic surface. This will often result in poor
contrast during visualization of the potential map, particularly when it is used as a color map for a molecular
surface.

These two points should be kept in mind when determining grid spacing. For visualization purposes, a grid spacing
of about one angstrom should provide good results. If finer spacing is needed, singularity removal (BCOPT = 6)
can be used to prevent poor contrast that could result from the presence of singularities. Lastly, when using grid
spacings of 0.5 A or lower, the output files may become quite large (tens, or even hundreds of megabytes each)
and may take a significant amount of time (up to several seconds each) to generate.

6.5.1. Visualization of electrostatic potential using PyMol

pbsa can produce an electrostatic potential map for visualization in PyMol when setting PHIOUT = 1.[264] By
default, pbsa outputs a file pbsa.phi in the Delphi binary format. The sample input file is listed below:

Sample PB visualization input
&cntrl

inp=0

/

&pb

npbverb=1, space=1l.,
phiout=1, phiform=0

/

To be consistent with the surface routine of PyMol, the option PHIOUT = 1 instructs pbsa to use the radii as defined
in PyMol. The finite-difference grid is also set to be cubic as in Delphi. The default DPROB value is equal to that
used in PyMol, 1.4 A A large grid spacing, e.g. 1 A or higher, is recommended for visualization purposes, as
commented above.

Here is an example of loading the potential map in PyMol. First load the molecule in the form of prmtop and
inpcrd. In our case we need to rename our prmtop file to molecule.top and inpcrd file to molecule.rst and load the
molecule with commands

PyMol> load molecule.top
PyMol> load molecule.rst

The molecule will appear as an object “molecule”. Next display the surface of the molecule in the PyMol menu
by clicking “S” and then select surface. Now import the potential map generated by pbsa with the command in
PyMol

98

6.5. Visualization functions in pbsa

PyMol> load pbsa.phi

to create a value map object called “pbsa”. After this, create a value ramp called e_lvl from the potential map with
the command

PyMol> ramp_new e_1lvl, pbsa, [-7, 0, 7]
You can assign surface_color to the e_lvl ramp with the command
PyMol> set surface_color, e_1lvl, molecule

This will display the surface with the color scale according to the potential. You can adjust the value scale, such as
[-5, 0, 5], to change the color scale and use “rebuild” command to redraw the surface.

6.5.2. Writing electrostatic potential to DX format volumetric data file

To visualize the pbsa potential using VMD, you will need to set the output to DX format by changing
PHIFORM = 0 to PHIFORM = 2.[264]

Sample PB visualization input
&cntrl

inp=0

/

&pb

npbverb=1, space=l., sasopt=2,
phiout=1, phiform=2

/

The program will now generate a file called pbsa_phi.dx. This format should be automatically recognized by
VMD. It can be either loaded directly into your molecule or as a separate file.

6.5.3. Loading DX format electrostatic potential data in VMD

1. go to the “File” menu in the VMD Main window.

2. Select “New Molecule...”.
* This will bring up the “Molecule File Browser” window

3. Click on the “Browse...” button in the “Molecule File Browser” window

4. Select the file “pbsa_phi.dx” that was generated by pbsa using the file selection dialogue that pops up.
* The “Determine file type:” drop down menu should now read “DX”.

5. Click the “Load” button.

VMD will, by default, display the data with an isosurface representation.

6.5.4. Visualization Example of MLSES

To visualize the solvent surface generated by the MLSES model, you will need to set the output file to an XYZ
format data file.

Sample PB visualization input
&cntrl

ntx=1, imin=1, ipb=2, inp=0

/

&pb

99

6. PBSA

npbverb=1, istrng=0,

epsout=80.0, epsin=1.0, dprob=1.4, radiopt=0, sasopt=3,
fillratio=1.25, nfocus=1, space=0.5, mlses_bench=0,
accept=0.000001, maxitn=10000, solvopt=3,

npbopt=0, bcopt=6,

eneopt=1, frcopt=0, cutnb=15, cutsa=8, cutfd=7

/

The program will now generate a file called interface.dot. After adding the total atom number as the first line of
the file, rename it to interface.xyz. This format should be automatically recognized by VMD.

Rendering Examples of GENIUSES

The following image displays the validation of our GENIUSES [268](blue) on protein, unseen nucleic acids, and
protein complex datasets, compared with the classical SES [257](red). The nearly indistinguishable superimposed
surfaces suggest that GENIUSES closely mirrors SES across various shapes and conformations while significantly
reduced computation time, particularly on GPUs.

Nucleic Acids Protein

Protein Complex

6.5.5. Changing the representation model

1. Select “Representations...” from the “Graphics” menu in the “VMD Main” window

100

6.5. Visualization functions in pbsa

* The “Graphical Representations” window should pop up

2. Select the object corresponding to the volumetric data you loaded from the “Selected Molecule” pull down
menu

3. Click on the representation you wish to change

* There should be one present for the isosurface being displayed
4. Click on the “Draw style” tab if it is not already selected

5. Select “Volume” from the “Coloring Method” pull down menu if it is not already chosen

* Another pull down menu will appear next to it.
¢ If you have multiple data files loaded for the same object you can choose which is used to color your
chosen draw method representation here

6. The “Drawing Method” pull down menu will let you choose a different visual representation model.

» To directly visualize potential data, use either “Isosurface” or “Volume Slice”

e VMD can also be used to visualize the corresponding electric field by choosing “Field Lines”.

Displayed below are Volume Slice representations of electrostatic potential maps generated for an aquaporin sys-
tem. Computations were run using the periodic conjugate gradient solver for a 1 A grid spacing, and FILLRATIO
of 2.0. For the systems using implicit water, the charge singularity removal methodology was used.

From Left to right: Vacuum, Water only, Water and 20 A slab-like membrane, Water and 20 A slab-like mem-
brane with 6 A cylindrical channel region removed.

Often, the data ranges will not be consistent between potential distributions for different implicit solvent setups.
E.g. the range of the electrostatic values seen for vacuum will likely be larger than the range for implicit water.
The range of values displayed can be set manually to provide consistent color scaling for comparison.

6.5.6. Adjusting the color scale of the color map
1. Select “Colors...” from the “Graphics” menu in the “VMD Main” window

¢ This should cause the “Color Controls” window to pop up

2. Select the “Color Scale” tab

* The color scheme can be selected from the “Method” pull down menu
* The “Offset” and “Midpoint” sliders can be used to adjust the scaling of the color map.

— If singularities are present, it may be difficult to get a good scaling for volume maps generated
with fine grid spacings. In this case, either re-run with singularity removal on, or set the color
scale range manually as shown in the next section.

When singularity removal is not employed, the presence of singularities will cause the range of the electrostatic
potential distribution near the atom centers to be much wider than near the molecular surface. This typically results
in very poor contrast particularly for implicit solvent since the high dielectric constant in the solvent region will
amplify the effect. This can be compensated for by manually setting the Color Scale Data Range.

101

6. PBSA

6.5.7. Changing the color scale range
1. Select desired representation to modify

2. Select “Volume” Coloring Method and Select the desired volumetric map to rescale from the pull down
menu.

* Each time you change the volumetric map being displayed, you will need to repeat this, so it is a good
idea to make multiple representations for each potential data set rather than switching between them
on the same representation.

3. Select the “Trajectory” tab

4. You should see the automatically computed range in the “Color Scale Data Range:” boxes. The left hand
box controls the minimum value for the range, the right hand box controls the maximum value for the range.

5. Set the minimum and maximum values as needed to improve the contrast. Often the inner 10% to 30% of
the total (automatic) range will give good contrast for a one angstrom grid spacing.

6. Click on the “Set” button when you are finished

7. To return to the automatic scaling that was originally calculated by VMD, click the “Autoscale” button.

Electrostatic potential data can also be used as a color map for other drawing methods. You will need to first load
the data into the molecule you wish to display.

6.5.8. Loading electrostatic potential data into an existing molecule

The names of the files are used as labels, so it is useful to rename them from “pbsa_phi.dx” to something more
descriptive before loading.

1. Select the molecule you wish to display the potential color map on in the “VMD Main” window
2. Go to the “File” menu in the VMD Main window.

3. Select “Load Data Into Molecule...”.

* This will bring up the “Molecule File Browser” window
4. Click on the “Browse...” button in the “Molecule File Browser” window

5. Select the file “pbsa_phi.dx” that was generated by pbsa using the file selection dialogue that pops up.

* The “Determine file type:” drop down menu should now read “DX”.
6. Click the “Load” button.

The data should now be loaded into the molecule you selected.

6.5.9. Using the electrostatic potential data as a color map

Once you have loaded a volumetric data file into a molecule, it can be used to generate a color map for any
representations of that molecules model.

1. Open the “Graphical Representations” window if it is not already open

 Select “Representations...” from the “Graphics” menu in the “VMD Main” window
2. Select the molecule you loaded the data into from the “Selected Molecule” pull down menu

3. Select the representation you wish to map the potential color map onto

102

6.5. Visualization functions in pbsa

4. Select the “Draw Style” tab if it is not already selected

5. Select “Volume” from the “Coloring Method” pull down menu

* Another pull down menu should appear next to it

* Choose the selection that corresponds to the data you just loaded, it should be the last one on the list if
it is the last one that was loaded.

VMD will attempt to automatically scale the color mapping used for Volumetric data that you load. The color scale
may be manually adjusted if needed (see previous section)

6.5.10. Loading and displaying the level set map

The level set used by pbsa to model the solute - solvent interface can be written to an output file in DX format
by setting OUTLVLSET to “true” in the input file.

Sample PB visualization input
&cntrl

inp=0

/

&pb

npbverb=1, space=l., sasopt=2,
phiout=1, phiform=2,
outlvlset=true

/

The level set will be written to a DX format volumetric data file named “pbsa_lvlset.dx”. This file can be used
to visualize the corresponding molecular surface. The level set file is loaded into VMD in the same manner as an
electrostatic potential data file. Cross sections can be viewed using the “Volume Slice” representation.

Shown below are the level sets for the aquaporin systems shown previously (no level set is shown for vacuum as
there is no dielectric interface being modeled in that system)
From left to right: Water, Water + Slab-like membrane, Water + Membrane with pore region

6.5.11. Visualizing the molecular surface as an isosurface of the level set

The level set is constructed such that the molecular surface is the locus of all points where the level set is zero.
This allows us to use the Isosurface representation in VMD to display the solvent excluded surface by setting the
“Isovalue” to 0. Alternatively, if we wish to view the potential just outside the surface, we can set the “Isovalue”
to a number slightly higher than 0. E.g. 0.1 or 0.01.

1. Load the level set data file into the molecule.

* This is done using the same procedure as loading an electrostatic potential data file, but the level set
data file will be chosen instead of the potential data file.

103

6. PBSA

2. Create a new Isosurface representation in the “Graphical Representations” window.
3. Select the volume map for the level set from the pull down menu
4. Choose an “Isovalue” at or slightly above 0.

5. Using the “Coloring Method” pull down menu, you may also use a previously loaded electrostatic potential
data file as a color map by selecting “Volume” and then selecting the appropriate volume map from the pull
down menu that appears.

* VMD will automatically assign color scale range every time.

* To compare multiple potential maps, it is often desirable to use the same color scale range for each.
The best way to do this is to make a new representation for each potential map and manually assign the
same color scale range to be identical for each (see previous section)

The examples below were generated for Aquaporin (1IHS in the protein data bank) under various implicit solvent
options using a FILLRATIO of 2.0, grid spacing of 1A. For each calculation, the periodic conjugate gradient
solver with singularity removal was used. The level set for the system modeling implicit water was used to build
the isosurfaces. The electrostatic potential data files were then overlayed as color maps with the color scale ranges
set to [-80000,80000].

From Left to right: Water only, Water + Slab Like Membrane, Water + Membrane with 6A cylindrical pore.

6.5.12. Visualizing interior channels, voids, and solvent pockets

One of the common roles for membrane proteins is to act as a transmembrane channel, to allow specific sub-
stance to pass from one side of a membrane to another. Features such as solvent / ion channels or internal voids
will often be occluded from view by the exterior surface. One option that can allow these to be viewed is to use
the clipping plane tool in VMD.

1. Open the “Exensions” pull down menu in the “VMD Main” window and go to the “Visualization” submenu
and select “Clipping Plane Tool”.

2. The “Clip Tool” window should pop up.
3. The “Distance” slider allows clipping to be set

4. The “Normal” slider sets the normal of the clipping plane.

* The “flip” button on the right will let you clip from front to back, which will be useful to clip the
occluding exteriro surface from the view and reveal the interior.

The clipping tool was used to reveal the internal pore region for the aquaporin system setups used in the previous
section.
From Left to right: Water only, Water + Slab like Membrane, Water + Membrane with pore region excluded.

104

6.5. Visualization functions in pbsa

As an alternative, the level set map generated using PORTYPE=1 with the implicit membrane option will allow
a cylindrical region to be excluded from the membrane level set. The corresponding isosurface will show any
interior cavities or voids which fall within this region for isovalues at or slightly above 0 (since the level set at the
membrane-solute interface will be below 0). See the previous section for details on writing and loading the level
set file.

Shown below is the level set isosurface for the aquaporin system with implicit water plus a membrane with a
cylindrical region removed. The corresponding potential data was again overlayed as a color map. The surface of
the channel region, and the membrane-solvent interface planes are now clearly visible.

6.5.13. Importing / Modifying Atomic Radii to VMD from the prmtop file

Currently, VMD does not support loading radii for atoms directly from the prmtop file when it loads a molecule.
These values can be loaded relatively easily using the tkconsole, however. To do so:

1. select “Tk Console” from the “Extensions” menu in the “VMD Main” window.

* The “VMD TkConsole” window will then open

2. Be sure that the atom you want to import radii for is the top molecule on the list in the VMD Main window.
If it is not, you will need to replace “top” with the appropriate ID

3. Type or copy and paste the following lines, but DO NOT hit enter yet.

set prot [atomselect “top” all]
$prot set radius {#Radiilist#}

4. You will now need to replace #RadiiList# with the one from the prmtop file.
a) Open the prmtop file for the molecule using a text editor
b) find the section that starts with “%FLAG RADII”
c) Highlight/Select the list of numbers that follows “%FORMAT(5E16.8)”

d) Copy the list (usually done by selecting “Copy” from the “Edit” menu in your text editor)
e) Go back to the “VMD TkConsole” window

105

6. PBSA

f) Highlight/Select #RadiiList#
g) Select “Paste Ctrl-v” from the “Edit” menu in the “VMD TkConsole” window

5. Now hit return

« If this was successful, you should now have the correct radii for each atom in the molecule.
* you can have the console print the list of all radii by typing:

$prot get radius
* For a more human readable printout, use:

for {set ind 0} {$ind<[llength $rad]} {incr ind} \
{puts "Atom $ind radius is [lindex $rad $ind]"}

These radii are used by VMD to display the VDW surface (made by selecting “VDW” from the “Drawing
Method” pull down menu in the “Graphical Representations” window). One useful trick is to set them to be a
small amount larger (say .01 A) than those used to generate the surface. This will ensure that the color map will
represent the external field just outside of the molecule. To modify the radii type or copy the following in the Tk
Console:

set rad [$prot get radius]
for {set ind 0} {$ind<[llength $rad]} {incr ind} \
{1lset rad $ind [expr [lindex $rad $ind] +.01]}

The above code will increase all atomic radii by .01 angstroms. This can be changed if a different amount is
desired. (The code assumes you already followed steps 1 through 5 otherwise $prot will be undefined!)

6.6. pbsain sander and NAB

6.6.1. Electrostatic forces/gradients in pbsa

Force calculation in the finite-difference Poisson-Boltzmann method is straightforward, though not a trivial
issue. It can be shown, by using the variation of the electrostatic free energy, that the electrostatic force density
consists of three components, viz., the reaction field force, the dielectric boundary force, and the ionic force. [271]
Since the ionic force is much smaller in absolute value than the other two components, we only include the reaction
field force and the dielectric boundary force in this release.

The reaction field force only exists where there are atomic charges, so that it is straightforward to be mapped
onto atoms. In contrast, the dielectric boundary force exists on the molecular surface where the dielectric constant
changes. The surface force, or pressure, cannot be easily mapped onto atoms. This is because a force-mapping
procedure from the molecular surface to atoms apparently needs the derivatives of molecular surface with respect
to atomic positions. However such derivatives do not exist for the widely used molecular surface definition, i.e.,
the solvent excluded surface (SES). We are actively developing an analytical molecular surface definition that is
consistent with the widely used SES definition for the numerical PB methods so that this difficulty will be overcome
in future releases.

Temporarily, a partial solution in the mapping of dielectric boundary force as described by Gilson et al[271]
is implemented for PB dynamics and minimization when the SES definition is used. The stability of the MD
simulation has been much improved with a more accurate mapping method of analytical SES.

6.6.2. Example for pbsa in sander

All pbsa functionalities are available in sander and all input options are exactly the same as in the standalone
pbsa. An apparent exception is IPB: you need to really set IPB to nonzero in order to invoke pbsa functionalities.
All other default values of PB options in sander are same as those in pbsa for single point calculations, whereas
there are some options that have different recommended or default values when PB minimization or dynamics is
enabled. These options are

106

6.7. GPU accelerated pbsa

space=0.25
arcres=0.125
fscale=4
eneopt=2
bcopt=6
frcopt=2

The SPACE, ARCRES and FSCALE are all set for higher resolution of the grid so that the force calculation can
be more accurate. The charge view method (ENEOPT = 2, FRCOPT = 2) is used here because it has been tested
to be able to run stable molecular dynamics simulations. Plus, BCOPT is set to 6 to remove charge singularity for
the same stability purpose. An example input for PBMD is given as follows

Sample PB visualization input
&cntrl

imin=0, ntx=1l, irest=0,

ipb=2, ntb=0,

ntc=2, ntf=2,

tempi=100, temp0=100, ntt=3, gamma_1ln=1,
nstlim=100000, dt=0.002,
ntpr=100, ntwr=100000, ntwx=100,
/

&pb

npbgrid=500, nsnba=5,

/

IPB is explicitly set to 2 to enable PB dynamics. The NPBGRID option is set to 500, which means the finite
difference grid is regenerated every 500 dynamics steps. NSNBA = 5 means the atom-based pairlist is generated
every 5 steps. Please refer to Chapter 21 for the other &cntrl options. Note that the above input can be used with
sander only.

6.7. GPU accelerated pbsa

The GPU version of pbsa is called pbsa.cuda. Starting from the Amber 2019 release, some bottleneck setup
routines of pbsa are also ported into the GPU code. A new biconjugate gradient (BiCG) GPU solver is added
for solving the linear system using the second-order IIM (IPB=6)[258] or improved harmonic average methods
(IPB=7/8),[259] which generate unsymmetrical matrices. Together with the GPU-supported solvers, pbsa.cuda is
fully GPU-enabled. The workflow and additional bottlenecks are still in the process of optimization. Based on the
pbsa.cuda, a GPU-supported MMPBSA is under development.

For the numerical solver phase, our test shows that Geometric Multigrid (MG), Jacobi-preconditioned CG, and
Red-black SOR are among the optimal ones.[238][239] Our analysis shows that a speedup ratio of about 7 can be
achieved for the overall time, while depending on the solvers and tested systems. Note that the timing measurement
is preliminary and we expect more efficiency gain as the optimization is ongoing.

While the GPU code is considered to be production ready, it is still evolving and has not been tested to the
same extent as the CPU code. Users should excercise caution when using pbsa.cuda. The error checking on
the GPU is not as verbose as it is on the CPU. In particular, simulation failures such as failed PB setup or other
simulation instabilities, may manifest themselves as CUDA launch errors or GPU download failures. These are not
informative error messages. If you encounter problems during a simulation on the GPU you should first try to run
the identical simulation on the CPU to ensure that it is not your simulation setup causing the problems. Feedback
and questions should be posted to the Amber mailing list (see http://lists.ambermd.org/). Future development will
aim for more robust code and user-friendly interface, and more performance-boost.

This section of the manual describes supported features, accuracy and memory considerations, installation and
other aspects of pbsa.cuda at the time of the release. Note that the rapidly changing nature of this field means the
frequent updates are likely. You should refer to the AmberTools update page (see https://ambermd.org/bugfixesat.html)
for the most up to date information.

107

6. PBSA

6.7.1. Supported features

pbsa.cuda supports only linear FDPB solvers. The available solver options for this release are MG,
Jacobi-preconditioned CG, Red-black SOR. The BiCG solver is also available for solving linear systems with
unsymmetrical matrices. While among the available solvers, MG is clearly the best solver for large systems as
shown in our analysis. To use this feature, the solver option of pbsa.cuda must be specified as:

solvopt=2 (for MG)
or

solvopt=3 (for Jacobi-preconditioned CG)
or

solvopt=4 (for Red-black SOR)

MG solver is very fast to converge, usually in a few steps with the acceptance criterion of 10~*. For a higher
criterion such as 10° for very large systems, the MG solver may fail to converge due to the single precision used.
To overcome this issue, we have hooked up the MG solver to the Jacobi-preconditioned CG when the residual
norm no longer decreases rapidly, to utilize both the efficiency of MG and the stability of Jacobi-preconditioned
CG. Make sure you reset MAXITN to a much larger number, i.e. 5000 (versus the default value of 100 for the
default solver). This is to prevent premature termination of the Jacobi-preconditioned CG solver. Currently, the
free boundary condition or the conductor boundary condition (NBC) is supported for all GPU solvers. In
addition, the periodic boundary condition (PBC) is also supported for the Jacobi-preconditioned CG solver or the
BiCG solver. The latter option is useful when simulating periodic systems such as those with membranes. The
boundary condition options to use are:

bcopt=5, or 1 (for NBC)
or
bcopt=10 (for PBC)

We strongly recommend BCOPT=1 for NBC. This is the conductor boundary and has zero cost to set up, but its
solvation energies are very close to those with BCOPT=S5 for typical proteins that we have tested. Once
SOLVOPT and BCOPT options are set as above, all other standard serial pbsa features are supported as usual;
you should refer to the previous sections on the usage of the CPU version of pbsa. An example input of single
point solvation free energy calculation using the MG solver in pbsa.cuda is as follows:

&cntrl
ntx=1, imin=1, ipb=2, inp=0

/

&pb
npbverb=1, istrng=0, epsout=80.0, epsin=1.0, space=.5,
accept=0.0001, dprob=1.4, radiopt=1l, fillratio=1l.5,
smoothopt=0, arcres=0.0625, nfocus=1,
bcopt=1, solvopt=2, maxitn=3000

6.7.2. Advanced PB algorithms on the GPU platform

A set of novel PB algorithms have also been developed and implemented into the GPU platform, i.e., IPB=6 for
the analytical IIM,[258] IPB=7 for the X-factor harmonic average method, and IPB=8 for the second order
harmonic average method.[259] These new methods are more elaborative than the classic harmonic average
method (IPB=1/2) in handling the solute/solvent interface conditions, and thus give more accurate results. The
analytical IIM (IPB=6) is now a recommended substitution of the old IIM algorithm (IPB=4), which employs

108

6.7. GPU accelerated pbsa

analytical routines for setting up the linear system and is more stable. Between IPB=7 and IPB=8, the former is
recommended for most situations, as it has a better balance between efficiency and accuracy. It can also reproduce
the most accurate analytical IIM very well while requiring only third of its executing time. An example input of
using these PB algorithms in pbsa.cuda is as follows, notice that all three methods require sasopt=2 and all
uses the BiCG solver only.

&cntrl
ntx=1, imin=1, ipb=6/7/8, inp=0

/

&pb
npbverb=0, istrng=0, epsout=80.0, epsin=1.0, space=.5,
accept=0.0001, dprob=1.4, radiopt=0, fillratio=1l.5,
smoothopt=0, nfocus=1, sasopt=2,
bcopt=2, maxitn=3000, cutnb=15, cutsa=8, cutfd=7

6.7.3. Supported GPUs

pbsa.cuda has been developed based on the NVIDIA CUDA environment and thus only runs on NVIDIA GPUs
at present. Since the GPU code is written in the single precision mode thus there is no requirement for GPU
hardware to support double precision calculations. Consistent with the Amber CUDA requirements, compute
capability 3.0 or above is required. We tested the released code and found it functions well on multiple NVIDIA
GPUs, including Quadro P5000, TITAN Xp, GeForce GTX 1080, and GeForce RTX 2080. We expect that most
mid- to high-end GPUs are supported.

Currently selection of which GPU is used for single GPU runs is automatic if the GPUs are set to process-
exclusive mode (nvidia—-smi -c 3), butthe recommended approach is to use the CUDA_VISIBLE_DEVICES
environment variable to select which GPU should be used. More details are provided in the section 6.7.5.

6.7.4. Accuracy consideration and memory usage

pbsa.cuda was developed in single precision as single precision operations are widely supported with high
efficiency on most consumer-grade GPUs. Nevertheless, double precision operations are possible, but are at a sig-
nificant performance disadvantage. Specifically we adopted a hybrid precision scheme: the linear system solution
uses single precision, while the linear system setup (i.e. molecular surface and mapping of dielectric constants
etc) and the post-processing of energy and force use double precision, except that with [PB=2, the reaction energy
calculation, the level set density evaluation and the surface area non-bonded list determination use single precision
as they have been ported to GPUs. Extensive tests of electrostatic solvation energy shows that correlation coeffi-
cients between hybrid and double precision codes are 1.0 for both 1073 and 10~ convergence criteria. Maximum
relative errors are 3.9 x 1073 and 5.8 x 107, respectively.

Memory usage is crucial for GPU implementations since memory is often limited on most consumer-grade
GPUs. In the Jacobi-preconditioned CG implementation, typical GPU memory usage is about 92 x Ngrid bytes,
where Ngrid is the number of grid nodes when discretizing the system with the finite difference method. While in
the MG implementation, where the unified memory is used, the typical GPU memory usage is about 75 x Ngrid
bytes. If the MG—Jacobi-PCG hybrid solver is involved in the computation with tighter convergence criteria, the
typical GPU memory usage is about 135 x Ngrid bytes. Our analysis of the MG solver showed that NVIDIA
Titan Xp cards, which have 12 GB GPU memory, are sufficient to successfully run all our 144 stress tests until
host memory hit the limit first. On the older NVIDIA GTX 980 Ti cards with ~6 GB GPU memory, the MG
implementation is able to successfully complete calculations with ~ 75.0 million grid points given sufficient host
memory. Worth noting is that for extremely large grids, for example those with at least one billion grid points, the
MG implementation generally requires about 70 GB memory, which is far beyond the available memory on most
consumer-grade GPU cards. You can refer to NVIDIA hardware manage tool nvidia-smi to obtain the runtime
memroy allocation information.

109

6. PBSA

6.7.5. Installation and testing

pbsa.cuda must be built separately from the standard serial pbsa installation. Before attempting to build the
GPU version of pbsa, we recommend you first build and test at least the serial version of Amber and AmberTools.
This would help to ensure that issues related to standard compilation on your hardware and operating system are
resolved before you work with the more demanding GPU-related compilation and testing issues. Of course, you
should also be familiar with the Amber compilation and test procedures.

It is assumed that you have already correctly installed and tested the CUDA environment. Additionally the envi-
ronment variable CUDA_HOME should be set to point to your NVIDIA Toolkit installation and SCUDA_HOME/bin/
should be in your $PATH. We recommend users to use CUDA 9.x or CUDA 10.x to use the MG solver, which
relies on advanced data managements, such as unified memory, which are only available in CUDA 8.0 or higher.

To build and install pbsa.cuda, please follow the general instructions for installing CUDA programs, in Sec.
22.6.4. Next you can run the tests using the default GPU with:

cd $SAMBERHOME/AmberTools/test
export CUDA_VISIBLE_ DEVICES=1 # choose the device you wish to test
make test.cuda

Note on some intel platforms, you need to use a larger stack size other than the system default setting to avoid
stack overflow fails when running pbsa.cuda. The following command should do the trick:

ulimit -s unlimited

To determine the device ID for the available hardware in your system, you can run NVIDIA’s deviceQuery
executable included in the CUDA SDK, after unsetting CUDA_VISIBLE_DEVICES environment variable:

unset CUDA_VISIBLE_DEVICES
deviceQuery

110

7. Reference Interaction Site Model

In addition to explicit and continuum dielectric implicit solvation models, Amber also has a third type of sol-
vation model for molecular mechanics simulations, the reference interaction site model (RISM) of molecular
solvation[272-285]. 3D-RISM may be used with both open [286] and periodic boundaries [287]. In AmberTools,
1D-RISM is available as rism1d. 3D-RISM is available as an option in MMPBSA.py and sander. rism3d.snglpnt
is a simplified, standalone interface, ideal for calculating solvation thermodynamics on individual structures and
trajectories. Details specific to using sander and sander.MPI can be found in Chapter 21.

When using 3D-RISM, please cite references [272, 282-284]. Additional references are provided for some
options (see 7.5.2 and 7.6.1).

7.1. Introduction

RISM is an inherently microscopic approach, calculating the equilibrium distribution of the solvent, from which
all thermodynamic properties are then determined. Specifically, RISM is an approximate solution to the Ornstein-
Zernike (OZ) equation[273, 282, 283, 288, 289]

h(ri2,Q1,Q2) = ¢(r12,Q21,) +p /dl‘3dQ3 c(r13,Q1,Q3) h(r,Q3,Q,), (7.1

where ry; is the separation between particles 1 and 2 while Q; and Q, are their orientations relative to the vector
ri2. The two functions in this relation are 4, the total correlation function, and c, the direct correlation function.
The total correlation function is defined as

hap(Taps a4y) = 8ab(Tabs Ras) — 1,

where g, is the pair-distribution function, which gives the conditional density distribution of species b about a. In
cases where only radial separation is considered, for example by orientational averaging over site ¢ of species a
and site 7y of species b, gives the familiar one dimensional site-site radial distribution function, gey(ray).

For real mixtures, it is often convenient to speak in terms of a solvent, V, of high concentration and a solute, U,
of low concentration. A generic case of solvation is infinite dilution of the solute, i.e., pU — 0. We can rewrite
Equation (7.1), in the limit of infinite dilution, as a set of three equations:

VY (r12,Q1,Q0) = CVV(hz,Qsz)-FPV/dI‘z dQsc¥V (r13,Q1,Q3) YV (r32,Q3,Q), (7.2)
WY (112, Q1,Q2) = cUV<r12,Ql,£zz)+pV/dr3 03¢ (113,921, 95) 1YY (132, 93.92), (7.3)
ROV (r12,Q1,Q2) = ¢V (r12,Q1,Q) +pV / dr3dQs VY (r13,Q1,Q3) 1YY (r32,Q3,Q). (7.4)

Equation (7.3) is directly relevant for biomolecular simulations where we are often interested in the properties of
a single, arbitrarily complex solute in the solution phase. Solutions to Equation (7.3) can be obtained using 3D-
RISM. However, a solution to Equation (7.2) for pure solvent is a necessary prerequisite and is readily obtained
from 1D-RISM.

To obtain a solution to the OZ equations it is necessary to have a second equation that relates 4 and ¢ or uniquely
defines one of these functions. The general closure relation is[288]

8(r12,Q1,Q2) = exp[—PBu(ri2, Q1,Q) +h(ri2, 21,Q2) — c(ri2, Q1, Qo) + b(ri2,Q1,)] (7.5)

111

7. Reference Interaction Site Model

u is the potential energy function for the two particles and b is known as the bridge function (a non-local functional,
representable as infinite diagrammatic series in terms of # [288]). It should be noted that u is the only point at
which the interaction potential enters the equations. Depending on the method used to solve the OZ equations, u
is generally an explicit potential. In principle, it should now be possible to solve our two equations. For example,
we may wish to use SPC/E as a water model. Inputting the relevant aspects of the SPC/E model into u, 1D-RISM
can be used to calculate the equilibrium properties of the SPC/E model. A different explicit water model will yield
different properties.

A fundamental problem for all OZ-like integral equation theories is the bridge function, which contains multiple
integrals that are readily solved only in special circumstances. In practice, an approximate closure relation must be
used. While many closures have been developed, at this time only three are implemented in 3D-RISM: hypernetted-
chain approximation (HNC), Kovalenko-Hirata (KH) and the partial series expansion of order-n (PSE-n).

For HNC, we set b = 0, giving[288]

§™NC(r12,Q1,Q2) = exp (—Bu(ri2, Q1, Q) +h(ri2,Q1,2) — c(r12,Q1,Q))
:exp(t*(r]z,Ql,Qz)) (76)

where 1* is the renormalize-indirect correlation function. HNC works well in many situations, including charged
particles, but has difficulties when the size ratios of particles in the system are highly varied and may not always
converge on a solution when one should exist. Also, as the bridge term is generally repulsive, HNC allows particles
to approach too closely, overestimating non-Coulombic interactions[283].

KH is a combination of HNC and the mean spherical approximation (MSA), the former being applied to the
spatial regions of solvent density depletion (g < 1), including the repulsive core, and the latter to those of solvent
density enrichment (g > 1), such as association peaks[282, 283]

exp(t*(rlz,Qth)) for g(}"lz,Ql,Qg) <1

(1.7)
l+l*(}’127§21,.§22) forg(r12,91,92)>1

&M (r12,Q1,Q,) = {

Like HNC, KH handles Coulombic systems well but overestimates non-Coulombic interactions. Unlike HNC, it
does not have difficulties with highly asymmetric particle sizes and readily converges to stable solutions for almost
all systems of practical interest. The reliability of the KH closure makes it particularly suitable for molecular
mechanics calculations.

PSE-n offers the ability to interpolate between KH and HNC. Here, the exponential regions of solvent density
enrichment are treated as a Taylor expansion,

eXP<f*(r1z,Qth)) for g(r12,21,Q) <1

) (7.8)
Yo Q1)) /it for g(ri2,Q1,Q2) > 1

N (112, Q1,Q) = {

In the case of n = 1, the KH closure is obtained, while in the limit of n — o HNC is recovered. This allows a
balance between the numerical stability of KH and the often better accuracy of HNC.

7.1.1. 1D-RISM

1D-RISM is used to calculate bulk properties of the solvent and is a prerequisite for 3D-RISM, for which the
primary result is the bulk solvent site-site susceptibility in reciprocal space, x V" (k). As its name would suggest,
1D-RISM is a one-dimensional calculation. The six-dimensional OZ equations are reduced to one dimension (ra-
dial separation) via the fundamental RISM approximation[273-276, 288, 289], which produces the intramolecular

pair correlation matrix,
Oy(k) = sin(krgy)/ (kray) (7.9)

where o and 7 label the different atom types in the model. Note that atoms of the same type in RISM theory
have the same Lennard-Jones and Coulomb parameters. For example, most three site water models have two
RISM types, oxygen and hydrogen. Depending on the model, propane, C3Hg, may have two carbon types and two

112

7.1. Introduction

hydrogen types. Equation (7.2) then becomes
hay(r) Z/dr'dr"a)a“ ’r—r | Cuv |r —7 | [a)v (r”)—!—pvhvy(r")]
/ ’krdk{ [lfpa)c]‘la)}

gw B et o). (7.10)

ay

Equation (7.10) must be complemented with one of the five closures currently supported by rism1d (see Sub-
section 7.4.1). In 1d, these are site-site closures and there is no orientational dependence. For example, the HNC
closure (Eq. (7.6)) becomes,

8oy (1) = exp [~ Buay(r) + hay(r) = cay(r)] . (71D

Equation (7.10), with KH, HNC or PSE-n closures, is readily applicable to liquid mixtures, with site indices
of the site-site correlation functions enumerating interaction sites on all (different) species in the solution and the
intramolecular matrix (7.9) set equal to zero for sites ¢,y belonging to different species.

A dielectrically consistent version of 1D-RISM theory (DRISM) enforces the proper dielectric asymptotics of
the site-site correlation functions, and so provides the self-consistent dielectric properties of electrolyte solution
with polar solvent and salt in a range of concentrations, including the given dielectric constant of the solution
[290].

The 1D-RISM integral equations are then solved for the site-site direct correlation function in an iterative man-
ner, accelerated by the modified direct inversion of the iterative subspace (MDIIS) [283, 291]. All correlation
functions are represented as one-dimensional grids and the convolution integrals in Equation (7.10) are performed
in reciprocal space by making use of a fast Fourier transform applied to the short-range parts of all the correlations,
while the electrostatic asymptotics are separated out and Fourier transformed analytically [283-285].

1D-RISM is a general method and not restricted to water or pure solvents. For example, 1D-RISM may be used
to treat solutions of aqueous alkali and halide ions at various concentrations [292]. The output from 1D-RISM can
then be used for complex solutes, such as DNA [293], in 3D-RISM.

7.1.2. 3D-RISM

With the results from 1D-RISM, a 3D-RISM calculation for a specific solute can be carried out. For 3D-RISM
calculations, only the solvent orientational degrees of freedom are averaged over and Equation (7.3) becomes[281,

282
Y (r -¥ / 'Y (r—1') 20V (1), (7.12)

where x(}’)\,’ (r) is the site-site susceptibility of the solvent, obtained from 1D-RISM and given by

Xy (r) = 0y (1) + pachyyy (7).

3D-RISM supports HNC, KH and PSE-# closures (see Sections 7.6.1 and 38.3.1). As with the 1D-RISM clo-
sures, these are constructed by analogy from Egs. 7.6-7.8. For example, HNC becomes

g];NC’UV (r) =exp (—ﬁugv (r)+ hl)fv (r)— CEV (1')) . (7.13)

As with 1D-RISM, correlation functions are represented on (3D) grids, convolution integrals are performed in
reciprocal space and a self-consistent solution is iteratively converged upon using the MDIIS accelerated solver.
There is one 3D grid for each solvent type for each correlation function. For example, for a solute in SPC/E water
there will be both gjj" (r) and gg" (r) grids. Each point on the gjj" (r) will give the fractional density of water
hydrogen a that location of real-space.

113

7. Reference Interaction Site Model

To properly treat electrostatic forces in electrolyte solution with polar molecular solvent and ionic species, the
electrostatic asymptotics of all the correlation functions (both the 3D and radial ones) are treated analytically [283,
284, 294]. The non-periodic electrostatic asymptotics are separated out in the direct and reciprocal space and the
remaining short-range terms of the correlation functions are discretized on a 3D grid in a non-periodic box large
enough to ensure decay of the short-range terms at the box boundaries [294]. The convolution of the short-range
terms in the integral equation (7.12) is calculated using 3D fast Fourier transform [295, 296]. Accordingly, the
electrostatic asymptotics terms in the thermodynamics integral (7.15) below are handled analytically and reduced
to one-dimensional integrals easy to compute [294].

With a converged 3D-RISM solution for AUV and YV, it is straightforward to calculate solvation thermody-
namics. From the perspective of molecular simulations, the most important thermodynamic values are the excess
chemical potential of solvation (solvation free energy), u®* and the mean solvation force, f}w (R;), on each solute
atom, i. 4 can be obtained through analytical thermodynamic integration for HNC,

.uex,HNC _ kBTZpg /dl‘ |:; (thJ!V(r))Z o CEV(I.) _ ;hgv(r)cgv(r)] R (7.14)
KH,
”ex,KH _ kBTZPX/dr [; (h[dIV(r»z@ (7}13\](1‘)) _ Cgv(l') — ;hgv(r)cgv(r)} R (7.15)
o
and PSE-n,

X -n ' 1 2 1
pe P T EpY [a5 (0 () - 80 - Y) ()
o

% n+1
—%@(@V(r))} ., (7.16)

where O is the Heaviside function.

Analogous versions of Eqns. 7.6, 7.15 and 7.16 are used in 1D-RISM. While these are used for DRISM they
are have been derived for XRISM. Furthermore, these equations have been derived a number of different ways
with slightly different functional forms of the —%hc term [282, 297-300]. These different functional forms are
equivalent in XRISM but not in DRISM. The form introduced by Pettitt and Rossky [298] is the most popular in
the literature and the default selection in rismld. It is possible to have rismld evaluate and output all three
functional forms (see Output) but, for DRISM, none of these expressions are strictly correct.

The force equation

ou oudY (r—R;)
— _ I d uv o] l
IR; Zp“/ e (N —5k,

o

7V (R;)

is valid for all closures with a path independent expression for the excess chemical potential, such as HNC, KH
and PSE-n closures implemented in 3D-RISM [272, 301-303].

In addition to closure specific expressions for the solvation free energy, other approximations also exist. The
Gaussian fluctuation (GF) approximation[304, 305] is given as

1

pueGF — kBTZpO\; /dr {—cgv (r)— Eh‘év (r)cg" (r) (7.17)
a

and has been shown to yield improved absolute solvation free energies for both polar and non-polar solutes[305,
306] but not necessarily for relative free energies[307]. It is not associated with a particular closure but is typically
used in place of the expression for a given closure.

Egs. (7.14)-(7.16) give the total solvation free energy, AGso, but it is often useful to decompose this into elec-
trostatic (solvent polarization), AGp,l, and non-electrostatic (dispersion and cavity formation), (AGgis +AGeay),
terms. Conceptually, we can divide the path of the thermodynamic integration into two steps: first the solute
without partial charges is inserted into the solvent (dispersion and cavity formation) and then partial charges are

114

7.1. Introduction

introduced, which polarize the solvent,
,uex = AGgo1 = AGpol + AGgis + AGeay-

AGy is produced by a 3D-RISM calculation on the charged solute. AGp is then the difference of the two
calculations. As a point of reference, generalized-Born and Poisson-Boltzmann methods calculate only AGy, and,
typically, use a calculation involving solvent accessible surface area to predict AGgis + AGcay.

7.1.3. Analytic Temperature Derivatives

For the thermodynamic analysis of solvation, it is often useful to calculate the energetic and entropic contribu-
tions, £5°Vand —T'$*°!" respectively, to the solvation free energy. It has been shown that it is possible to analytically
decompose the solvation free energy into these two contributions when the solvation free energy has a closed ana-
Iytical form, such as with HNC and KH closure [308]. In what follows, the analytical expression of energetic and
entropic contributions to the solvation free energy are derived in the framework of 1D-RISM theory with HNC
closure. The similar derivation can be applied to other closures as well as to the framework of 3D-RISM theory.
At this time, temperature derivatives are implemented for with HNC, KH and PSE-n closures in both 1D- and
3D-RISM [309].

The solvation free energy of species U in a solution consisting of N total species is expressed in the RISM-HNC
framework as

U on U on M 1
uI?INC = T Z Z p /dl‘ |: hary Ca}/(r) — 7hay(r)Cay(r) .
a M=1 v 2

The differentiation of the solvation free energy with respect to the temperature 7 leads to

on U

y 1 1
ST“%\I% = “ﬁ)r\l[é‘FkBT Z Z PY/dr [har(”) +Orhay(r) = 8rcoy(r) — §5Thocy(r) “Cay(r)— Ehay(”) : 5Tcoc7(”)] :
oa M=

Q[vji

1

where &7 is T 5. Since lp\e Vo= gsolnU _ 7§50l e have &y [Jfﬁ\][é = —T 5%V and therefore the above equation
can be rearranged as

on U

solv,U ' 1
e = —kgT Z
a

Yy py/dr [hay r) - Orhay(r) — Orcay(r) — %SThay(”) “Cay(r) = zhay(r)'&car(’)]
7
(7.18)

1=

1

It is noted that the solvation energy £*°*U can be viewed as consisting of two contributions: one arising from

creation of a polarized cavity (in pure solvent) and the other corresponding to the energy of embedding the solute
molecule into the cavity. The former is the solvent reorganization energy and the latter is the average
solute-solvent interaction energy that is obtained as }.o Y., Py Jdrugygay.

The temperature derivatives of correlation functionsdrh(r) and drc(r) can be obtained by solving the tempera-
ture derivative of RISM-HNC equations

Srh(k) = w(k)Sre(k)w(k) + pw(k)Sre(k)h(k) + pw(k)e(k)Srh(k)

and

Srhay(r) = %47 + Srhay(r) — 1cay(r)| (hay(r) +1).
Some practical examples can be found in [310], [311] and [309].

115

7. Reference Interaction Site Model

7.1.4. Treecode Summation for Electrostatic Interactions

One of the most computationally expensive parts of the non-periodic 3D-RISM calculation is computing Coulomb
potential between the solute sites and solvent grid in real-space and the related long-range asymptotics of the direct
and total correlation functions in both real- and reciprocal-space [307]. These functions must be computed on Npox
grid points from M solute atoms, which is an O(MNyox) operation and can become prohibitively expensive for large
systems. While the cost of reciprocal-space calculations can be mitigated using a simple cutoff in wavelength (see
the asympKSpaceTolerance option in Sections 7.6.1 and 7.5.2.1), such a treatment would lead to large errors
for real-space calculations. Instead, we employ cluster-particle treecodes, which are a class of fast summation
methods that can be used to reduce the cost of computing the interactions between the N« grid point targets and
M solute atom sources to O((M + Npox) 10g(Npox))-[286]

To speed up computation, the treecode replaces a collection of far-field particle-particle interactions with one
particle-cluster interaction, where the clusters are nodes within a hierarchical octtree. This treecode requires three
parameters: a multipole acceptance criterion (MAC), 0, a Taylor series expansion order parameter, p, and a maxi-
mum target number per leaf, Ny [312]. The MAC determines if the cluster and particle are well-separated and the
interaction is evaluated, or if further children in the tree of target clusters are traversed. If the ratio of the radius
of the cluster of targets to the distance between the cluster center and a source particle is less than 0, then the
interaction is evaluated. Otherwise, we traverse the children clusters of the target cluster. The Taylor series expan-
sion order parameter p specifies the order of the Taylor expansion for evaluating the cluster-particle interaction. A
recurrence relation is used to calculate the Taylor coefficients. Ny determines the maximum number of targets in a
leaf target cluster, i.e., a node at the lowest level of the octtree. If a target leaf-source particle interaction fails the
MAC, then the interactions are evaluated directly.

When such a procedure is used, the potential, V, at a target site,X;, due to a collection of M source particles, y;,
with associated charges, g;, can be written as the sum of the direct interactions for the leaf and the Taylor series
expansions that may be computed at each level,

L
Vi)=Y qoxiy)+ Y, Y q;0(xi.y)),

y;€D I=1y;€l

where ¢ is a general potential function. L is the number of tree levels, where level 1 is the root cluster and level L
denotes the leaves. A target site will then belong to a nested sequence of clusters, x; € C, C ... C Cr, where cluster
C; is at level [. The direct calculation is only performed for source terms not well-separated from the targets, as
determined by the MAC.

When the targets in a cluster, C;, are well-separated from a set of source sites, a Taylor expansion is used to
approximate the potential. Here, the cluster’s geometric center is denoted x. and I; denotes the list of all source
particles y; that are well separated from cluster C; but not from cluster Cy,...,C;_;. Expanding the second term
¢ (x;,y ;) about x., the center of cluster /, gives

P 1 k
Y qioxiy)~ Y a;) EaffP (Xéayj) (Xi—Xi)
i€l yi€l ||k||=0""
P Kk
-) ()

(k]| =0

where the coefficients my are

() = T ()l (.3,

yi€l
and the Taylor coefficients ak are

1
ag (Xian) = Egykﬁb (xi,y;) -

Note that this is a Taylor series in three dimensions, where ||K|| = k| + k, + k3, k! = k; ko k3!, 8;‘ = 8}],(1‘ 8;?22 8)1,{33,

(x; —%c)* = (i1 — %)M (xi2 — x2)*? (xi3 — xe3)", and 1,2, 3 denote the three respective Cartesian directions.

116

7.2. Practical Considerations

Previous work [313, 314] established recurrence relations for Coulomb and screened Coulomb interactions. The
cluster-particle treecode in 3D-RISM employs recurrence relations to calculate Taylor coefficients for Coulomb
interactions as well as the asymptotic direct correlation and total correlation functions. The Taylor series for the
Coulomb potential and the asymptotic direct correlation function converge exactly to their respective interactions;
the Taylor series for the asymptotic total correlation function, however, uses an additional far field approximation
which does not exactly approach the underlying interaction.

See section 7.2.3 and Table 7.2 for suggested settings.

7.1.5. Molecular Reconstruction

3D spatial distributions of solvation thermodynamics can provide insights into the role of water in a binding
site, potentially identifying waters that can or cannot be easily displaced. Such maps can be easily obtained from
the integrands of the relevant functions, such as the excess chemical potential, Eq. (7.16), or solvation energy, Eq.
(7.18). However, since 3D-RISM is a site-site theory, separate distribution grids are produced for the each solvent
site; e.g., one for each of hydrogen and oxygen. The result of simply adding these together is messy and difficult
to interpret.

To obtain molecule thermodynamic distributions, qualitatively similar to those produced by grid inhomogeneous
solvation theory, we use the intramolecular correlation function, Eq. (7.9), to reconstruct the molecular spatial
distribution [315]. We begin by considering an arbitrary thermodynamic quantity, A (r), and identifying a central
site, ¢, such as oxygen in water. Then the molecular distribution is approximated by

A(r) ~Aq (r) +ga (r) ; Woy (r) * Ay (r).
yY#a

Since the intramolecular correlation function contains the distance between two sites in the same molecule, the
convolution, *, radially projects Ay (r) the bond length distance, rqy. The result is then multiplied by the pair
distribution function of the central site, which weights the contributions by the relative density of the central site.
For example, the molecular excess chemical potential of water would be calculated as

1 (1) = 1 (1) + 0 (1) wom (1) 4 (r).

The excluded volume voxels are zeroed out in this approach, so integrating the molecular reconstruction does not
yield the same result as integrating the site distribution grids, though it may be close to the value provided by UC
or PC+ corrections.

At this time, the method is only implemented for water and assumes that oxygen is the first site. The method
can be turned on using the molReconstruct flag in sander or rism3d.snigpnt, in which case the molecular
reconstruction is output in addition to any requested site-based thermodynamic distributions, such as the excess
chemical potential or entropy.

7.2. Practical Considerations

7.2.1. Computational Requirements and Parallel Scaling

Calculating a 3D-RISM solution for a single solute conformation typically requires about 100 times more com-
puter time than the same calculation with explicit solvent or PB. While there are other factors to consider, such as
sampling confined solvent or overall efficiency of sampling in the whole statistical ensemble at once, this can be
prohibitive for many applications. Memory is also an issue as the 3D correlation grids require anywhere from a
few megabytes for the smallest solutes to gigabytes for large complexes. A lower bound and very good estimate

117

7. Reference Interaction Site Model

for the total memory required is

Total memory > 8bytesx | Npox NY | 2Mypis+ 1+ Naecomp Npropagate
—_ N = Y——

¢ residual u polar decomp past solutions

A%
(Nbox + 2N, N;) 4 + 1 + 2N
asymptotics FFT scratch g,h

where Npox = Ny X Ny, X N, is the total number of grid points, N V is the number of solvent atom species and Nypris
is the number of MDIIS vectors used to accelerate convergence. uYY, ¢UV and the residual of cVV are stored in
real-space only and require a full grid for each solvent. ¢YV and its residual also require Nyipys grids for the
MDIIS routine (see the mdiis_nvec keyword) and Npropagate grids to make use of solutions from previous solute
configurations to improve the initial guess (see the npropagate keyword). If a polar/non-polar decomposition is
requested (see the polardecomp keyword) an additional set of grids for past solutions with no solute charges is
kept (Ngecomp = 2); by default this is turned off (Ngecomp = 1). The full real space grid plus an additional 2Ny N,
grid points are needed (due to the FFT) for g and & for each solvent species and for the four grids required
to compute the long range asymptotics. Memory, therefore, scales linearly with N,ox while computation time
scales as O(Nyox 10g(Npox)) due to the requirements of calculating the 3D fast Fourier transform (3D-FFT). To
overcome these requirements, two options are available beyond optimizations already in place, multiple time steps
and parallelization. Multiple time step methods are available only in sander (Chapter 21) and are applicable to
molecular dynamics calculations only. Parallelization is available for all calculations but is limited by system size
and computational resources.

Both sander and rism3d.snglpnt have MPI implementations of 3D-RISM that distribute both memory require-
ments and computational load. As memory is distributed, the aggregate memory of many computers can be used to
perform calculations on very large systems. Memory distribution is handled by the FFTW 3.3 library so decompo-
sition is done along the z-axis. If a variable solvation box size is used, the only consideration is to avoid specifying
a large, prime number of processes (> 7). For fixed box sizes, the number of grids points in each dimension must
be divisible by two (a general requirement) and the number of grid points in the z-axis must be divisible by the
number of processes. sander.MPI also has the additional consideration that the number of processes cannot be
larger than the number of solute residues if SHAKE is used; rism3d.snglpnt does not suffer from this limitation.

7.2.2. Output

gYV, WY and UV files can be output for 3D-RISM calculations and are useful for visualization and calculation of
thermodynamic quantities. As all file formats save only one density per file (see https://ambermd.org/FileFormats.php),
there is one file for each solvent atom type for each requested frame. For the default MRC format, each file is
(256 + Nuox x 4) bytes, which can quickly fill disk space. Note that these file format use single precision floating

point numbers.

7.2.3. Numerical Accuracy

Numerical accuracy depends on the residual tolerance specified for the numerical solution at runtime and the
solvation box physical size and grid spacing. In most cases, you will need to test these parameters to ensure you
have the accuracy required. As a rough guide, the numerical error in the solvation free energy is related to the
tolerance by

EAG,,;, =~ 10 X tolerance. (7.19)

Molecular dynamics [272], minimization and trajectory post-processing [307] have different requirements for
the maximum residual tolerance. Molecular dynamics does well with a tolerance of 10~ and npropagate=5.
Minimization requires tolerances of 10~'! or lower and is typically limited to drms > 10~*. Trajectory post-
processing for MM/RISM should use enough digits to obtain the necessary accuracy when differences in solvation
free energy are computed. For example, if a error < 0.2kcal/mol is required for AAG;qyy, then AGyo)y should

118

https://ambermd.org/FileFormats.php

7.2. Practical Considerations

ljTolerance
<0 0 >0
<0 Fixed box size with Fixed box size with Fixed box size with
dimensions of solvbox. LJ dimensions of solvbox. No dimensions of solvbox. LJ
cutoff fit to box size and LJ cutoff or correction cutoff with 1 jTolerance
correction applied. applied. applied. Correction applied if
ot the box size is large enough.
e 0 l1jTolerance=tolerance/10 Error. Box size is selected to fit the
2 and the box size is selected to cutoff. Correction applied if
fit the cutoff. Correction the box size is large enough.
applied.
>0 Box size determined by Box size determined by Box size determined by
buffer. LJ cutoff fit to box buffer. No LJ cutoff or buffer. Correction applied
size and correction applied. correction applied. if the box size is large enough.

Table 7.1.: The relationship between 1 jTolerance, tolerance, buffer, and solvbox in determining 3D-
RISM solvent box and Lennard-Jones cutoff values.

be computed with an absolute error of 0.1kcal/mol. The relative error required to achieve this depends on the
magnitude of AGgly.

Almost all applications should use a grid spacing of 0.3 to 0.5 A or smaller. A larger grid spacing quickly leads
to severe errors in thermodynamic quantities. Smaller grid spacing may be necessary for some applications (e.g.,
mapping potentials of mean force).

The size of the solvation box can be set in a number of ways; e.g., setting the box size directly, setting a buffer
distance between the solute and the edges of the solvent box or should typically be at least 14 A for water or
larger for ionic solutions. The solvation box size should be increased until the thermodynamic properties converge
(see Section 7.3.2). Systems with a neutral solute or non-ionic solvent are the simplest case, as solvent box size
associated errors are primarily due to the truncation of the Lennard-Jones potential. Fortunately, this error can be
corrected for if a cutoff is applied and the cutoff does not extend beyond the solvent box. In general, when using
this correction, a cutoff where

uL! (rew) < tolerance/10 (7.20)

does not affect numerical precision of the calculation. Since long range Coulomb interactions are handled analyt-
ically by the long range asymptotics functions [284, 307], the solvent box size can be determined by the cutoff
distance in many cases, which is calculated from the maximum error in the Lennard-Jones calculation and is de-
termined at run time by the combination of 1 jTolerance, tolerance, buffer, and solvbox values used.
The behavior is summarized in Table 7.1 on page 119.

For calculations with charged solutes in ionic solvent, the absolute size of the box required for sufficient nu-
merical accuracy will depend on the absolute charge of the concentration of ions. Generally, lower ion concentra-
tions require larger solvent boxes. Here, we recommend experimenting with different buffer sizes and setting the
Lennard-Jones tolerance according to Eq. (7.20).

Independent of solvent-box size and grid spacing, time can be saved by truncating the reciprocal space expres-
sions for the long range asymptotics. In general, a cutoff where

65;”) (keut) < tolerance/10 (7.21)

does not affect numerical precision of the calculation. The cutoff in reciprocal space is determined by asympKSpaceTolerance.

For solutes with more than 1000 atoms, it becomes beneficial to replace the direct sum, real-space calculations of
the Coulomb and long-range asymptotic interactions with treecode fast summation. Table 7.2 contains suggested
parameter choices for treecode summation based off experience. Some calculated values are more sensitive than
others, so we recommend experimenting with these settings for your system.

119

7. Reference Interaction Site Model

treecodeMAC treecodeOrder treecodeNO
Total Correlation Function 0.3 max (2, W 500
Direct Correlation Function 0.3 max (2, W 500
Coulomb 0.3 max (2, W 500

Table 7.2.: Suggested 3D-RISM treecode parameters.

7.2.4. Solvation Free Energy Corrections

3D-RISM with HNC-like closures is known to overestimate the non-polar component of the solvation free
energy. Several alternate expressions for the solvation free energy have been developed to correct this and are
based all, or in part, on the partial molar volume (PMV) of the solute. These include the Universal Correction
(UC) [316], Ng Bridge Correction (NgB) [317] and the Pressure Correction Plus (PC+/3D-RISM) correction [318].
3D-RISM currently implements UC and PV+/3D-RISM as runtime options. NgB results can be calculated from
the standard thermodynamic output if the polarDecomp option is used but is not implemented directly. UC and
NgB are both parameterized corrections. So, parameters for these corrections must be used only with the . xvv
file used to create them. Our implementation of UC uses the excess chemical potential of the closure rather than
the GF functional, as we have found this provides better results in general [309]. All of these corrections have
been almost exclusively used with pure water under ambient conditions, though there are promising results for UC
with non-polar liquids.[319] Using these methods with different solvents and co-solvents is a subject of on-going
research.

7.3. Work Flow

Using 3D-RISM through sander or rism3d.snglpnt for molecular dynamics, minimization or snapshot analysis
is very similar to using implicit solvent models like GBSA or PBSA. However, some additional preliminary setup
is required, the extent of which depends on the solvent to be used.

3D-RISM requires detailed information of the bulk solvent in the form of the site-site susceptibility, ¥ ", and
properties such as the temperature and partial charges. This is read in as an . xvv file, which is produced by a
1D-RISM calculation. These . xvv files are independent of the solute molecule and may be reused with any solute,
any number of times. However, if another 3D-RISM calculation is to be preformed with any details of the bulk
solvent changed (e.g., temperature or pressure), a new .xvv file must be produced. Examples of precomputed
.xvv files for SPC/E and TIP3P water can be found in SAMBERHOME /AmberTools/test/rismld.

\'A%
b

7.3.1. Computing bulk solvent properties with rism1d

Special care must be taken when producing .xvv files for use with 3D-RISM, particularly with respect to
grid parameters. It is important that the spatial extent of the grid be large enough to capture the essential long
range features of the solvent while the spacing must be fine enough to sample the short-range structure. A grid
spacing of 0.025 A is sufficient for most applications. The number of grid points required, which will determine the
physical length of the grid in A, generally depends on the properties of the solvent. Low concentration aqueous salt
solutions typically require much larger grids than pure bulk water. A good indicator that the grid is large enough is
convergence of delhv0 in the .xvv file. When converged, delhv0 should retain four to five digits of precision when
the number of grid points is doubled.

The ability of 3D-RISM to perform temperature derivatives and calculate solvation energy and entropy requires
.xvv files with with temperature dependence information. rism1d must be run with ent ropicDecomp option
turned on (Section 7.4.1). The version number in the . xvv file header indicates the maximum information avail-
able. Version 1.001 (since AmberTools 14) allows temperature derivatives and solvation entropies and energies for
all reported quantities. Version 1.000 (AmberTools 12 and 13) does not allow temperature derivatives of the PMV
or solvation energies and entropies of PMV-based corrections. Version 0.001 does not have information for any
temperature derivatives.

120

7.3. Work Flow

1D-RISM calculations require details of the some bulk properties of the solvent, such as temperature and di-
electric constant, and an explicit model of the molecular components. These are read in from one or more .md1l
files, depending on the composition of the solvent. Several .md1 files are included in the Amber distribution and
can be found in $AMBERHOME /dat /rismld/mdl. These include many of the explicit models for solvent and
ions used with the Amber force fields. Other solvents models may be used by creating appropriate MDL files. See
Section 7.7 for format details.

7.3.2. Selecting the Solvation Box Size

The non-periodic solvation box super-cell can be defined as variable or fixed in size. When a variable box size
is used, the box size will be adjusted to maintain a minimum buffer distance between the atoms of the solute and
the box boundary. This has the advantage of maintaining the smallest possible box size while adapting to changes
of solute shape and orientation. Alternatively, the box size and grid spacing can be explicitly specified at run-time
and used for the duration of the calculation. Generally, the box should be large enough to provide the desired
numerical accuracy. See section 7.2.3 for details on how to best achieve this.

For calculations with periodic boundaries, the unit cell is taken from the input coordinate file, whether it is a
restart file or trajectory. You should select a unit cell size that is appropriate for you system, as you would for an
explicit solvent calculation.

For both periodic and open boundary calculations, the grid spacing is an input parameter. Generally, a grid
spacing of 0.5A is the largest that will provide useable results. The grid spacing should be decreased to obtain
better numerical precision.

Solvent box dimensions have a strong effect on the numerical precision of 3D-RISM. See Subsection 7.2.3 for
recommendation on selecting an appropriate box size and resolution.

7.3.3. Selecting Solute Centering

Regardless of how the solvation box is defined, the “center” of the solute is placed in the middle of the box. The
center of the solute and how it is placed in the solvent box is controlled with the centering keyword. Generally,
centering=1 (center=center-of-mass) is the default for open boundary and should be used for MD and centering=2
(center=center-of-geometry) should be used for minimization. Center-of-mass and center-of-geometry are con-
served quantities in each method respectively. For periodic boundaries, the default is centering=0 (no centering).
For visualization purposes, centering=1 or centering=2 may be better choices.

Other options for solute centering are available for special situations. To restrict the absolute position of grid-
points to be integer multiples of the grid-spacing (e.g., (2.5 A,3.0 A) for a grid spacing of 0.5 A) use centering=3
for center-of-mass and centering=4 for center-of-geometry. To perform centering only on the first calculation (i.e.,
first step of MD or minimization or first frame of a trajectory analysis), use the negative integer corresponding
to the desired center definition. This allows the solute to drift in the solvent box. Finally, with some care, it is
possible to achieve custom centering using centering=0. Here, no solute centering is performed and the solvent
grid has an origin of (0,0,0) and a center of (X'le;gth + dx,y'le;gth + dy,z'leggth +dz). If you use centering=0 with
open boundaries, it is advisable to use a fixed-size solvent box.

7.3.4. Solution Convergence

The default parameters for 3D-RISM are selected to provide the best performance for the majority of systems.
In cases where a convergence is not achieved, the strategies below may be useful.

7.3.4.1. Closure Bootstrap

When a PSE-n or HNC closure is desired, the most effective method to overcome convergence issues is to use
a low order closure solution as a starting guess. The KH closure should be the starting point as it is numerically
robust and, typically, converges easily in the vast majority of case. After this, higher orders of PSE-n can be used
until the desired closure is reached. The procedure for 1D-RISM and 3D-RISM differs slightly in practice.

121

7. Reference Interaction Site Model

1D-RISM rismld can use restart files to implement this approach (see Section Subsection 7.4.1). First, run
rismld with the KH closure to convergence. Then use the .sav file as input for the next highest closure. The root
name of the .sav file must be the same as your .inp file. To avoid overwriting lower order solutions, name the files
by closure or use separate directories. You will have to rename the .sav files as you go.

3D-RISM All 3D-RISM interfaces have closure bootstrapping builtin via the closure and tolerance keywords.
Closures should be specified as an ordered list with last closure being the highest order closure. The solutions of
the intermediate closures can have a high tolerance. The default tolerance for intermediate closures is 1 and there
is no observed benefit to tolerances less than le-2. See details in Subsection 7.6.1 and Subsection 7.5.2.1.

7.3.4.2. MDIIS Settings

MDIIS default setting are appropriate for most cases. Should your residual diverge or the solver get stuck on a
particular value, you can try modest adjustments.

Decrease mdiis_del mdiis_del controls the step size of MDIIS. A smaller step size can help convergence but if
this is set too small it can cause convergence problems. For rismld, this should be no lower than 0.1 or 0.2. For
3D-RISM, it should be 0.5 at the lowest.

Increase mdiis_nvec This is the number of trial solutions that are saved for predicting a new solution. The
optimal number for rapid convergence is typically 10 for 3D-RISM and 20 for 1D-RISM. However, for 3D-RISM,
the default choice of 5 requires much less memory and is computationally faster even though more iterations are
required. Increasing the mdiis_nvec may help for 3D-RISM but is unlikely to help for 1D-RISM.

Increase mdiis_restart Occasionally, the MDIIS routine goes in the wrong direction and the residual increases
significantly. If it increases more than mdiis_restart then the MDIIS routine selects the solution with the lowest
residual and purges the other trial solutions. The default value of 10 can be too aggressive and cause the solver to
cycle. Increasing the value to 100 or 1000 sometimes allows the solver to recover from a misstep.

7.3.4.3. Parameter Annealing

Chargeless, hot gases are the easiest systems to converge. For 1D-RISM, this can be used to bootstrap a solution
in a similar manner to closure bootstrapping. By slowly turning on charges, lowering the temperature or increasing
the density, a converged solution may be reached. This only works for 1D-RISM because it requires restarting
from a previous solution. As with closure bootstrapping, files should be carefully renamed during the procedure.
There is no general protocol but the parameter increment should be reduced as the target value is approached. E.g.,
turning on charges in a linear fashion usually isn’t helpful.

7.3.4.4. Forcefield selection

The forcefield may affect convergence due to the number of solvent sites involved or the particular parameters
of the forcefield.

Number of Sites Molecules with more sites are more difficult to converge. Six or more sites is already difficult
to converge and more that 10 may not be possible under any circumstances. One solution is to use a united atom
or coarse grained forcefields to reduce the number of sites.

Alternate Parameterization Some parameter sets simply yield a stiffer set of equations to solve. Choosing an
alternate parameter set may allow convergence with only small differences in the numerical results. For example,
the cSPC/E water model with SPC/E Joung/Cheatham ions is easier to converge at higher ion concentrations in
1D-RISM than cTIP3P water with TIP3P Joung/Cheatham ions. Both models give nearly identical results in RISM
at lower concentrations but NaCl in cTIP3P water will not converge above 0.5 M for the PSE-3 closure despite
using all of the above methods.

122

7.4. rismld

7.3.5. Thermodynamic Output

When nptrism## 0 thermodynamic data about the solvent is output as a table of solute and solvent information.
When using the rism3d.snglpnt interface, units are indicated in the key table or as indicated below. The sander
interface provides the same output, but does not provide a reference table at the beginning of the calculation.

7.3.5.1. Solute Information

solutePotentialEnergy [kcal/mol] provides the total potential energy of the solute and its decomposition into
the potential energy terms. The solvation free energy for the current 3D-RISM closure is included as this
corresponds to the solvation forces the solute would experience. The energy terms, in order, are Total, LJ,
Coulomb, Bond, Angle, Dihedral, H-Bond, LJ-14, Coulomb-14, Restraints, and 3D-RISM.

7.3.5.2. Solvent Information

Solvent information consists of core set of thermodynamic information and optional solvation free energy cor-
rections. Temperature derivatives and polar/non-polar decomposition is performed when entropicDecomp and
polarDecomp options are used. Temperature derivatives names have a postfix of _dT, except for free energies,
which are decomposed into solvationEnergy and -TS. Polar/non-polar components have polar or apolar added to
the front of the quantity name.

rism_excessChemicalPotential [kcal/mol] Excess chemical potential or solvation free energy for the selected
closure (see Section 7.1.2).

rism_excessChemicalPotentialGF [kcal/mol] (Optional) Excess chemical potential or solvation free energy us-
ing the Gaussian fluctuation functional (see Eq. (7.17)).

rism_excessChemicalPotentialPCPLUS [kcal/mol] (Optional) Excess chemical potential or solvation free en-
ergy using the PC+/3D-RISM functional (see Section 7.2.4).

rism_excessChemicalPotentialUC [kcal/mol] (Optional) Excess chemical potential or solvation free energy us-
ing the UC functional (see Section 7.2.4).

rism_solventPotentialEnergy [kcal/mol] Interaction energy between the solute and solvent, calculated from
MU =Y pa [drgl (1l v)
04
rism_excessParticlesCorrected [#] Excess number of solvent particles compared to a uniform distribution at

bulk density.

rism_excessChargeCorrected [e] Excess charge of solvent particles compared to a uniform distribution at bulk
density.

rism_KirkwoodBuff [A3] All space integral of the total correlation function.

rism_DCFintegral [A3] All space integral of the direct correlation function.

7.4. rismid

1D-RISM calculations are carried out with rism1d, and require only one input file with an . inp suffix. The
input file is listed on the command line without this suffix.

rismld inputfile

Parameters for the calculation are read in from parameters name list.

123

7. Reference Interaction Site Model

7.4.1. Parameters

Note that these keywords are not case sensitive.

Theory

theory

closure

[DRISM] The 1D-RISM theory to use.

DRISM Dielectrically consistent RISM (recommended).
XRISM Extended RISM.

[KH] The type of closure to use.

KH Kovalenko-Hirata (recommended).

PSEn Partial serial expansion of order n. E.g., “PSE3”.
HNC Hyper-netted chain equation.

PY Percus-Yevick.

entropicDecomp [1] Solve another set of integral equations to calculate the temperature derivative. This

Grid Size

dr

nr

Output

outlist

124

typically adds less than 50% to the compute time and yields an energy/entropy decomposition of
the excess chemical potential for all species and sites. [309]

0 Do not calculate the temperature derivative.

1 Calculate the temperature derivative.

[0.025] Grid spacing in real space in A.
[16384] Number of grid points. Should be a product of small prime factors (2, 3 and 5).

[1 Indicates what output files to produce. Output file names use the root name of the input file
with an extension listed below. This is a list of any combination of the following characters in any
order, upper or lower case.

U UYV(r) Solvent site-site potential in real space, inputfile.uvv (see
https://ambermd.org/FileFormats.php).

X xVV(k) Solvent site-site susceptibility in reciprocal space. Required input for 3D-RISM,
inputfile.xvv (see https://ambermd.org/FileFormats.php).

G GVYV(r) Solvent site-site pair distribution function in real-space, inputfile.gvv (see
https://ambermd.org/FileFormats.php).

B BYV(r) Solvent site-site bridge correction in real space, inputfile.bvv (see
https://ambermd.org/FileFormats.php).

T Thermodynamic properties of the solvent, inputfile.therm (see
https://ambermd.org/FileFormats.php).

E exNVV(r), exNVV Solvent site-site running, inputfile.exnvy, and total, inputfile.n00
(see https://ambermd.org/FileFormats.php), excess coordination numbers in real space.

N NVV(r) Solvent site-site running coordination numbers in real space, input file.nvv (see
https://ambermd.org/FileFormats.php).

Q exQVV Solvent site-site excess total charge of site ¥ about &, input £ile.q00 (see
https://ambermd.org/FileFormats.php).

https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php
https://ambermd.org/FileFormats.php

7.4. rismld

S SVV(k) Solvent site-site structure factor in reciprocal space, input file.svv (see
https://ambermd.org/FileFormats.php).

rout [0] Largest real space separation in A for output files. If O then all grid points will be output.

kout [0] Largest reciprocal space separation in A for output files. If O then all grid points will be
output.

ksave [-1] Output an intermediate solution every ksave steps. If ksave <= 0 then no intermediate

restart files are written. If any restart files are present at run time (. sav suffix) they are automat-
ically used. However, such files are non-portable binary files.

progress [1] Write the current residue to standard output every progress iteration. If progress <= 0
then residue is not reported.

selftest [0] If “1°, perform a self-consistency check and output the results to inputfile.self.test.
Only tests applicable to the input parameters and system are performed. The results will depend
on the input parameters (e.g., ‘tolerance’) used.

Species keywords

For each molecular species in the solvent mixture, a species name list should be provided.
density [1 (Required.) Density of the species in M. See "units’ below.

units [‘M’] Units for density value. Options are ‘M’ (molar), ‘mM’ (millimolar), ‘1/A”3’ (number per
A3), ‘g/lem?3’ (g/cm?) or ‘kg/m”3’ (kg/m?).

model [1 (Required.) Relative or absolute path to and name of the .md1 file with the parameters for this
solvent molecule.

Solution Convergence

rism1d uses MDIIS to accelerate convergence. The default parameters for this method are usually near optimal
but some systems can be difficult to converge. In such cases it may be useful to use a small step size (mdiis_del=0.1
or 0.2). Occasionally, the target tolerance of 10~!? can not be achieved. A tolerance of 10719 to 10~!! is often
sufficient but it is advisable to check how sensitive your calculations are to this.

mdiis_nvec [20] Number of MDIIS vectors to use.[291]
mdiis_del [0.3] MDIIS step size.[291]

mdiis_restart [10] If the current residual is mdiis_restart times larger than the smallest residual in
memory, then the MDIIS procedure is restarted using the lowest residual solution stored in mem-
ory. Increasing this number can sometimes help convergence.[291]

tolerance [le-12] Target residual tolerance for the self-consistent solution.
maxstep [10000] Maximum number of iterations to converge to a solution.

extra_precision [1] Controls the use of extra precision routines at key points in the 1D-RISM solver. This
can be useful for achieving low tolerances or for very large box lengths but increases computational
cost. Strongly recommended for solutions with charged particles (e.g., salts).

0 No extra precision routines are used.

1 Sensitive matrix multiplication and addition routines are done in extra precision.
A small computational cost is incurred.

125

https://ambermd.org/FileFormats.php

7. Reference Interaction Site Model

Solvent Description

temperature [298.15] Temperature in Kelvin.

dieps [1 (Required.) Dielectric constant of the solvent.

nsp [1 (Required.) Number of species (molecules) in the solutions. Also indicates the number of
species name lists to follow.

Other

smear [1.0] Charge smear parameter in A for long range asymptotics corrections.
adbcor [0.5] Numeric parameter for DRISM.

7.4.2. Example

Mixed ionic solvent.

&PARAMETERS
THEORY='DRISM', CLOSURE='KH', !Theory
NR=16384, DR=0.025, !Grid size and spacing
OUTLIST='x', ROUT=384, KOUT=0, !Output
MDIIS_NVEC=20, MDIIS_DEL=0.3, TOLERANCE=l.e-12, IMDIIS
KSAVE=-1, !Check pointing
PROGRESS=1, !'Output frequency
MAXSTEP=10000, IMaximum iterations
SMEAR=1, ADBCOR=0.5, 'Electrostatics
TEMPERATURE=310, DIEPS=78.497, NSP=3 !bulk solvent properties
/
&SPECIES
!SPC/E water
DENSITY=55.296d0, !very close to 0.0333 1/A3
MODEL="../../../dat/rismld/model/SPC.mdl"
/
&SPECIES
!Sodium
units="'mM'
DENSITY=100,
MODEL="../../../dat/rismld/model/Na+.mdl"
/
&SPECIES
!Chloride
units='g/cm”3’
DENSITY=35.45e-4,
MODEL="../../../dat/rismld/model/Cl-.mdl"
/

7.5. 3D-RISM in sander

3D-RISM functionality is available in sander and is built as part of the standard install procedure. Some features
specific to sander are discussed here.

126

7.5. 3D-RISM in sander

7.5.1. Multiple Time Step Methods for 3D-RISM

At this time, the computational cost of 3D-RISM is still prohibitive for performing calculations at each step of
molecular dynamics calculations. One of the most effective ways to reduce this computational burden is to reduce
the number of solutions calculated by using multiple time step (MTS) methods. Two MTS methods, r-RESPA and
force-coordinate extrapolation (FCE), are implemented for 3D-RISM in sander and can be combined such that
solutions are only calculated once every 4 ps [320].

r-RESPA[321, 322] and I-Verlet[323] impulse MTS algorithms are widely used methods to reduce the compu-
tational load of long-range interactions while maintaining the desirable properties of energy conservation and time
reversibility. Impulse MTS can be invoked for 3D-RISM independent of the existing r-RESPA implementation
using the RISMnRESPA variable. For typical biomolecular simulations, impulse MTS is limited to a maximum
step size of 8 fs if using the optimized Nose-Hoover thermostat (nt t=9) and 5 fs[324] for the Langevin thermo-
stat. Since the computational load of calculating all internal interactions of the solute is small compared to the
3D-RISM calculation, it is recommend to use dt=0.001, nrespa=1 and RISMnRESPA=2 or 5, depending
on the integrator.

To overcome the stability limitation of impulse MTS, FCE uses one of several available extrapolation methods
to efficiently predict the forces for some time steps rather than computing a full 3D-RISM solution[272, 325].
In the simplest extrapolation scheme, corresponding to FCEnt rans=0, forces, {F}, on NV solute atoms for the
current time step f; are approximated as a linear combination of forces from the n previous time steps obtained
from 3D-RISM calculations,

(F}0 = Y ay {F}) 1€ 3D-RISM steps. (7.22)
=1

The weight coefficients ay; are obtained by expressing the current set of coordinates, {R}<k), as a linear combination
of coordinates from the n previous time steps for which 3D-RISM calculations were performed. That is, the current
set of coordinates is projected onto the basis of n previous solute arrangements by minimizing the norm of the
difference between the current 3 x NY matrix of coordinates {R}(k) and the corresponding linear combination of

the previous ones {R}U),
2

minimize [{R}* — Y ay {R})] .
=1

Coefficients ay; are then used in Equation (7.22)to extrapolate forces at the current intermediate time step. Simi-
larly, the known coordinates for the current time step can be approximated from previous time steps as

RYV = Y (R},
=1

Five extrapolation methods are available (FCEnt rans=0-4, see below) and each differs in computational cost
along with the largest permitted outer time step, ranging from 20 fs (FCEnt rans=4 with Langevin dynamics,
ntt=3) all the way up to 4 ps (FCEnt rans=6 using OIN, nt t=9). The latter procedures utilize a more complex
extrapolation protocol than pictured above, involving a rotation of the outer basis coordinates and coefficient weight
normalization and minimization. For a detailed description of these methods, please refer to [325] and [320]. Note
that FCE MTS does not conserve energy and is not time reversible.

Combined impulse FCE MTS calculations (see Figure 7.1) start the simulation using impulse MTS, where
full RISM-3D solutions are computed every RISMnRESPA time steps until the requested size for the basis set,
FCEnbasis, is achieved. After a large enough basis set is collected, 3D-RISM calculations are only performed
once every FCEstride X RISMnRESPA time steps, and FCEnbase of FCEnbasis saved coordinates are used
for one of the above extrapolation procedures every RISMnRESPA intermediate time steps. The FCEnbase co-
ordinates represent an optimized subset of FCEnbasis, found through distance minimization with the current
solute coordinate. Note that large inaccuracies in the force extrapolation can ensue if FCEnbase is equal to the
number of solute degrees freedom.

127

7. Reference Interaction Site Model

RISMnRESPA

1%
S n
r—M S 3
=3
10 © | ©w
O] = | >
o oy A9
— = o | ™ g
w
o 12 I =
L
| @ J
Y

Time
FCEstride X RISMnRESPA
FCEnbasis

Figure 7.1.: Multiple time step methods in 3D-RISM. RISMnRESPA (= 5) is the number of base time steps between
application of solvation forces (exact or extrapolated). FCEnbasis(= 4) is the number of previous
solutions used to extrapolate forces, in this case four previous solutions. Once FCEnbasi s solutions
have be calculated, exact 3D-RISM forces are calculated every FCEstride(= 2) xRISMnRESPA fime
steps; solvation forces are otherwise obtained through extrapolation.

7.5.2. Usage

Full 3D-RISM functionality is available in sander as part of the standard install procedure. However, some
methods available in sander are not compatible with 3D-RISM, such as QM/MM simulations. At this time, only
standard molecular dynamics, minimization and trajectory post-processing with non-polarizable force fields are
supported. With the exception of multiple time step features, 3D-RISM keywords in sander are identical to those
in rism3d.snglpnt and MMPBSA.py.

3D-RISM specific command line options for sander are

sander [standard options] —-xvv xvvfile —-guv guvroot -huv huvroot

—cuv cuvroot —uuv uuvroot -asymp asympfile
—quv quvroot -chgdist chgdistroot

—exchem exchemroot -solvene solveneroot
—entropy entropyroot —-potUV potUVroot

xvvfile input description of bulk solvent properties, required for 3D-RISM calculations. Produced by rismld.

guvroot output root name for solute-solvent 3D pair distribution function, GVV (R). This will produce one file for
each solvent atom type for each frame requested.

huvroot output root name for solute-solvent 3D total correlation function, HYY (R). This will produce one file for
each solvent atom type for each frame requested.

cuvroot output root name for solute-solvent 3D total correlation function, CYV (R). This will produce one file for
each solvent atom type for each frame requested.

uuvroot output root name for solute-solvent 3D potential energy function, UVY(R), in units of k7. This will
produce one file for each solvent atom type for each frame requested.

asympfile output root name for solute-solvent 3D long-range real-space asymptotics for C and H. This will
produce one file for each of C and H for each frame requested and does not include the solvent site charge.
Multiply the distribution by the solvent site charge to obtain the long-range asymptotics for that site.

quvroot output root name for solute-solvent 3D charge density distribution [e/A]. This will produce one file that
combines contributions from all solvent atom types for each frame requested.

chgdistroot output root name for solute-solvent 3D charge distribution [e]. This will produce one file that com-
bines contributions from all solvent atom types for each frame requested.

128

7.5. 3D-RISM in sander

exchemroot output root name for 3D excess chemical potential distribution files.
solveneroot output root name for 3D solvation energy distribution files.
entropyroot output root name for 3D solvation entropy distribution files.

potUVroot output root name for 3D solute-solvent potential energy distribution files.

Generated output files can be large and numerous. For each type of correlation, a separate file is produced for each
solvent atom type. The frequency that files are produced is controlled by the ntwrism parameter. Every time
step that output is produced, a new set of files is written with the time step number in the file name. For example, a
molecular dynamics calculation using an SPC/E water model with ntwrism=2 and —~guv guv on the command
line will produce two files on time step ten: guv.0.10.mrc and guv.H1.10.mrc.

7.5.2.1. Keywords

With the exception of irism, which is found in the &cntrl name list, all 3D-RISM options are specified in the
&rism name list.

irism [0] Use 3D-RISM. Found in &cnt r1 name list.

=0 Off.
=1 On.

Closure Approximation

closure [KH] Comma separate list of closure approximations. If more than one closure is provided, the
3D-RISM solver will use the closures in order to obtain a solution for the last closure in the list
when no previous solutions are available. The solution for the last closure in the list is used for all
output.

= KH Kovalenko-Hirata (KH).[284]
= HNC Hyper-netted chain equation (HNC).[297, 326]

[T

=PSEn Partial series expansion of order-n (PSE-n), where “n” is a positive integer.[303]

Solvation Free Energy Corrections

gfCorrection [0] Compute the Gaussian fluctuation excess chemical potential functional (see §7.1.2). [304,
305, 309]

=0 Off.
=1 On.

pcpluscorrection [0] Compute the PC+/3D-RISM excess chemical potential functional (see §7.2.4). [309,
327]

=0 Off.
=1 On.

uccoeff [0,0,0,0] Compute the UC excess chemical potential functional with the provided coefficients (see
§7.2.4). a and b are the coefficients for the original UC functional, though using the closure excess

chemical potential functional. al and b/ are optional and provide temperature dependence to the
correction (UCT in [309]).

129

7. Reference Interaction Site Model

Periodic boundaries While 3D-RISM uses open boundaries by default, periodic boundaries may be employed
(section 7.3.2). [287] The unit cell dimension are read from the coordinate file, but the grid spacing is defined in
the &rism namelist.

periodic Use periodic boundaries instead of open boundaries.[287] Options for calculating the periodic
potential are

= pme Particle mesh Ewald summation (recommended)
= ewald Ewald summation
solvcut Sets Lennard-Jones cutoff distance for periodic calculations.
grdspc [0.5,0.5,0.5] Linear grid spacing in A.

Open boundary long-range interactions For open boundary calculations, long-ranged Coulomb interactions
and asymptotic corrections may be calculated using direct summation or treecode summation (section 7.1.4).
[286] Long-range asymptotics are used to analytically account for solvent distribution beyond the solvent box.
Long-range asymptotics are always used when calculating a solution but can be omitted for the subsequent ther-
modynamic calculations, though it is not recommended.

asympcorr [.true.] Use long-range asymptotic corrections for thermodynamic calculations.

true. Use the long-range corrections.

false. Do not use long-range corrections.

treeDCF [.true.] Use direct sum or the treecode approximation to calculate the direct correlation function
long-range asymptotic correction. [286]

false. Use direct sum.

true. Use treecode approximation.

treeTCF [.true.] Use direct sum or the treecode approximation to calculate the total correlation function
long-range asymptotic correction. [286]

false. Use direct sum.

.true. Use treecode approximation.

treeCoulomb [.false.] Use direct sum or the treecode approximation to calculate the Coulomb potential energy.
[286]

false. Use direct sum.

true. Use treecode approximation.

treeDCFMAC [0.1] Treecode multipole acceptance criterion for the direct correlation function long-range asymp-
totic correction.

treeTCFMAC [0.1] Treecode multipole acceptance criterion for the total correlation function long-range asymp-
totic correction.

treeCoulombMAC [0.1] Treecode multipole acceptance criterion for the Coulomb potential energy.

treeDCFOrder [2] Treecode Taylor series order for the direct correlation function long-range asymptotic cor-
rection.

treeTCFOrder [2] Treecode Taylor series order for the total correlation function long-range asymptotic cor-
rection. Note that the Taylor expansion used does not converge exactly to the TCF long-range
asymptotic correction, so a very high order will not necessarily increase accuracy.

130

7.5. 3D-RISM in sander

treeCoulombOrder [2] Treecode Taylor series order for the Coulomb potential energy.

treeDCFNO [500] Maximum number of grid points contained within the treecode leaf clusters for the direct
correlation function long-range asymptotic correction. This sets the depth of the hierarchical oct-
tree.

treeTCFNO [500] Maximum number of grid points contained within the treecode leaf clusters for the total cor-
relation function long-range asymptotic correction. This sets the depth of the hierarchical octtree.

treeCoulombNO [500] Maximum number of grid points contained within the treecode leaf clusters for the
Coulomb potential energy. This sets the depth of the hierarchical octtree.

Open Boundary Solvation Box The open boundary solvation box super-cell can be defined as variable or fixed
in size. When a variable box size is used, the box size will be adjusted to maintain a minimum buffer distance
between the atoms of the solute and the box boundary. This has the advantage of maintaining the smallest possible
box size while adapting to changes of solute shape and orientation. Alternatively, the box size can be specified at
run-time. This box size will be used for the duration of the sander calculation.

Solvent box dimensions have a strong effect on the numerical precision of 3D-RISM. See Subsection 7.2.3 for
recommendation on selecting an appropriate box size and resolution.

Variable Box Size

buffer [14] Minimum distance in A between the solute and the edge of the solvent box. See §7.2.3 for
details on how this affects numerical accuracy and how this interacts with 1 jTolerance, and
tolerance.

< 0 Use fixed box size (ng3 and solvbox).

>= 0 Buffer distance.

grdspc [0.5,0.5,0.5] Linear grid spacing in A.

Fixed Box Size
ng3 [1 Sets the number of grid points for a fixed size solvation box. This is only used if buffer< 0.

nx,ny,nz Points for x, y and z dimensions.

solvbox [] Sets the size in A of the fixed size solvation box. This is only used if buffer< 0. See §7.2.3 for
details on how this affects numerical accuracy and how this interacts with 1 jTolerance, and
tolerance.

1x,1ly, 1z Box length in x, y and z dimensions.

Solution Convergence

tolerance [le-5] A list of maximum residual values for solution convergence. When used in combination
with a list of closures it is possible to define different tolerances for each of the closures. This
can be useful for difficult to converge calculations (see Subsection 7.4.1 for details). For the sake
of efficiency, it is best to use as high a tolerance as possible for all but the last closure. For
minimization a tolerance of le-11 or lower is recommended. See §7.2.3 for details on how this
affects numerical accuracy and how this interacts with 1 jTolerance, buffer, and solvbox.
Three formats of list are possible.

one tolerance All closures but the last use a tolerance of 1. The last tolerance in the list is
used by the last closure. In practice this, is the most efficient.

two tolerances All closures but the last use the first tolerance in the list. The last tolerance
in the list is used by the last closure.

131

7. Reference Interaction Site Model

n tolerances Tolerances from the list are assigned to the closure list in order.

1jTolerance [-1] Determines the Lennard-Jones cutoff distance based on the desired accuracy of the calcu-
lation. See §7.2.3 for details on how this affects numerical accuracy and how this interacts with
tolerance, buffer, and solvbox. [286]

asympKSpaceTolerance [-1] Determines the reciprocal space long range asymptotics cutoff distance based
on the desired accuracy of the calculation. See §7.2.3 for details on how this affects numerical
accuracy. [286] Possible values are

<0 asympKSpaceTolerance=tolerance/10,
0 no cutoff, and
>0 given value determines the maximum error in the reciprocal-space long range

asymptotics calculations.
mdiis_del [0.7] “Step size” in MDIIS.[291]

mdiis_nvec [5] Number of vectors used by the MDIIS method. Higher values for this parameter can greatly
increase memory requirements but may also accelerate convergence.[291]

mdiis_restart [10] If the current residual is mdiis_restart times larger than the smallest residual in
memory, then the MDIIS procedure is restarted using the lowest residual solution stored in mem-
ory. Increasing this number can sometimes help convergence.[291]

mdiis_method [2] Specify implementation of the MDIIS routine.

=0 Original. For small systems (e.g. < 64 grid points) this implementation may be faster than
the BLAS optimized version.

=1 BLAS optimized.
=2 BLAS and memory optimized.

maxstep [10000] Maximum number of iterations allowed to converge on a solution.nrespa
npropagate [5] Number of previous solutions propagated forward to create an initial guess for this solute atom
configuration.

=0 Do not use any previous solutions

=1..5 Values greater than O but less than 4 or 5 will use less system memory but may introduce
artifacts to the solution (e.g., energy drift).

Minimization and Molecular Dynamics

centering [1/0] Controls how the solute is centered/re-centered in the solvent box. Defaults to centering=1
for open boundaries and centering=0 for periodic boundaries.

= -4 Center-of-geometry with grid-point rounding. Center on first step only.

=-3 Center-of-mass with grid-point rounding. Center on first step only.

= -2 Center-of-geometry. Center on first step only.

=-1 Center-of-mass. Center on first step only.

=0 No centering. Default for periodic boundaries. Not recommended for open boundaries.
=1 Center-of-mass. Center on every step. Recommended for molecular dynamics.

= 2 Center-of-geometry. Center on every step. Recommended for minimization.

= 3 Center-of-mass with grid-point rounding.

=4 Center-of-geometry with grid-point rounding.

132

zerofrc

7.5. 3D-RISM in sander

[1] Redistribute solvent forces across the solute such that the net solvation force on the solute is
Zero.

=0 Unmodified forces.

=1 Zero net force.

Trajectory Post-Processing

apply_rism_force [1] Calculate and use solvation forces from 3D-RISM. Not calculating these forces can

save computation time and is useful for trajectory post-processing.

=0 Do not calculate forces.

=1 Calculate forces.

Multiple Time Steps Multiple time step features are only available in sander.

rismnrespa [l] rismnrespa X dt =RISM RESPA multiple time step. 8 fs is the maximum time step if using

fcestride

fcenbasis

fcenbase

fcesort

fcecrd

fceweigh

optimized-isokinetic integrator (ntt=9), and 5 fs using Langevin dynamics (ntt=3). “1” corresponds
to no multiple time stepping.

[0] fcestride X rismnrespa x dt = FCE multiple time step, also called outer time step, i.e.,
full 3D-RISM solutions are performed every fcestride X rismnrespa steps. In between full
solutions extrapolated force impulses are applied every rismnrespa steps. “1” corresponds to
no multiple time stepping.

=0 No FCE multiple time stepping.
=1 Invokes the FCE code but yields the same trajectories as 0.
>=1 Invoke FCE with 3D-RISM solutions every fcestride X rismnrespa steps.

[20] Number of previous full solutions to store, fcenbase of these are used for the force extrap-
olation. If FCE is not desired this can be set to 1 to reduce memory usage.

[20] The number of previous solutions to use for the force extrapolation. This is a subset of
fcenbasis and must be <= fcenbasis. If fcenbase < fcenbasis, then an optimized
subset of fcenbasis is found through minimization of the square distances with the current coordi-
nate - the fcenbase closest solutions are chosen. Options for this selection can be found in the
commands that follow.

[0] Sort the fcenbase basis vectors for the extrapolation according to increasing distance from
the current coordinate. May decrease roundoff errors.

=0 No sorting is performed (default).
=1 Sorting is performed.
[0] The coordinates used for the FCE method.

=0 The absolute x, y, z position of each neighbor atom (with translations due to centering).

=1 For predicting the forces on atom i, use the distance of each neighbor atom as the “coordinate”.
This has one third the number of coordinates to use in the prediction. Also, directional
information is lost.

= 2 For predicting the forces on atom i, use the x, y, z position of each neighbor atom with atom i
as the origin. Recommended.

[0] Use weighted coordinates for the force extrapolation. Works with fcetrans = [1], [2], or [3].

=0 No weighting of the coordinates is performed (default).

133

7. Reference Interaction Site Model

=1 Weighting of basis coordinates in the extrapolation. Expensive but more precise.

fceenormsw [0] Balancing minimization of the squared norm of the basis expansion coefficients from least

fcetrans

134

squares fitting. Specifies the magnitude of the parameter €2 of an additional constraint added to
the least squares fitting problem that balances the equations and resulting coefficients, improving
the quality and stability of the force extrapolation. Used only if fcetrans=2.

=0 No weight minimization is performed (default).

> 0 Minimization is performed with specified balancing parameter fceenormsw. This param-
eter should in general be small as the squared norm is being minimized, and should be opti-
mized to the value that produces the most accurate results from simulation.

[0] The method of transformation of the outer basis coordinates and the method of finding expan-
sion coefficients in the least squares minimization problem. It can significantly affect the permitted
size of the outer time step. Transformations involve a non-Eckhart rotation of all fcenbasis
coordinates. In the least squares minimization problem, for the QR decomposition method, nor-
malization is used if fcenbase > solute degrees of freedom.

=0 (Default) No coordinate transformation of the outer basis coordinates. Fast but not precise
and should only be invoked if using small outer time steps (up to 200fs). Method of QR
decomposition is used for finding expansion coefficients from least squares minimization.

=1 Transformation of basis coordinates with respect to the first (most recent) basis coordinate,
from these the fcenbase subset is selected by minimum distance from current (also ro-
tated) coordinate. QR decomposition is used for the least squares minimization. Permits
large outer time steps on the order of several picoseconds. Fastest with regard to [2] and [3].

=2 ASFE extrapolation: like [1], transformation of basis coordinates with respect to first basis
point, but normal equations method is utilized instead of QR, with additional squared norm
minimization, specified by fceenormsw. An extra precision and stability is gained with
small, positive values of fcernormsw. Most advanced method in Amber 15. This repre-
sents the ASFE extrapolation scheme as laid out in [325].

=3 (place holder, same as 2 above)

=4 Basic force extrapolation - no coordinate transformation, weighting, selecting, and sorting.
Only small outer time steps, on the order of tens of fs, are permitted. This is the method as
implemented in Amber 11.

=5 GSFE extrapolation 1: Individual transformation and selecting with respect to the current co-
ordinate of each atom using a neighbouring scheme complemented by the e-minimization
and ifreq-scheme (see fceifreq below) as well as all other developed techniques. It is rec-
ommended for large macromolecules of greater than 10 A in size and can be used with very
large outer steps (up to order of several picoseconds). See [328]for detailed explaination.
This represents the one of the two new GSFE extrapolation schemes (Generalized Solvent
Force-coordinate Extrapolation) as presented in [328].

=6 GSEFE extrapolation 2: Individual transformation and selecting with respect to the post coordi-
nate of each atom using a neighbouring scheme compemented by the e-minimization and the
full ifreq-support. It is recommended for large macromolecules and can be used with huge
outer steps (up to order of several picoseconds). It appears to be better than the above case
feetrans=35 (partial ifreq-support version) because it can be exploited with larger number (up
to N~100-200) of basic points providing a higher accuracy (with nearly the same computa-
tional efforts as the fcetrans=5-version at N~30), but may require more memory. Note that
at any values of fceifreq, both the approaches have the same scheme for building the index
mask which maps the extended set to the best subset and differ in the way of constructing the
transformation matrix. At fceifreg=1, these two approaches are equivalent. This is the sec-
ond GSFE scheme presented in [328] and [320] and represents the most advanced 3D-RISM
solvent force extrapolation scheme available in AMBER to date.

7.5. 3D-RISM in sander

fceifreq Extended to basic mapping list updating frequency used in the GSFE FCE extrapolation schemes
above. If fceifreq=1 then fcetrans=6 is equivalent to fcetrans=5. See [328]for detailed explaina-
tion. Default value is 1.

fcentfrcor Netforce correction flag for GSFE force extrapolation (fcetrans=5 and fcetrans=6). If fcentfrcor >
0, a correction factor is subtracted from the extrapolated forces. See [328]for in depth explaination.
Default is 0.

Output

ntwrism [0] Indicates that solvent density grid should be written to file every ntwrism iterations.

=0 No files written.

>=1 Output every ntwrism time steps.

molReconstruction [0] For any thermodynamic distributions requested, also out the molecular reconstruc-
tion (see section 7.1.5). [315]

volfmt [‘mrc’] Format of volumetric data files. May be mrc, ccp4, dx or xyzv (see section 7.7).
verbose [0] Indicates level of diagnostic detail about the calculation written to the log file.
=0 No output.

=1 Print the number of iterations used to converge.

=2 Print details for each iteration and information about what FCE is doing every progress
iterations.

write_thermo [1] Print solvation thermodynamics in addition to standard sander output. The format is the
same as that found in rism3d.snglpnt.

polarDecomp [0] Decomposes solvation free energy into polar and non-polar components. Note that this typi-
cally requires 80% more computation time.

=0 No polar/non-polar decomposition.

=1 Polar/non-polar decomposition.

entropicDecomp [0] Decomposes solvation free energy into energy and entropy components. Also performs
temperature derivatives of other calculated quantities. Note that this typically requires 80% more
computation time and requires a .xvv file version 1.000 or higher (see §7.1.3 and 7.3). [309]

=0 No entropic decomposition.

=1 Entropic decomposition.

progress [1] Display progress of the 3D-RISM solution every k show iterations. 0 indicates this information
will not be displayed. Must be used with verbose > 1.

7.5.2.2. Example

Molecular Dynamics (imin=0)

molecular dynamics with 3D-RISM and impulse MTS

&cntrl
ntx=1, ntpr=100, ntwx=1000,ntwr=10000,
nstlim=10000,dt=0.001, INo shake or r—-RESPA
ntt=3, temp0=300, gamma_ln=20, !Langevin dynamics
ntb=0, !Non-periodic
cut=999., !Calculate all

135

7. Reference Interaction Site Model

!solute—-solute

!interactions
irism=1,
/
&rism
rismnrespa=5, !r-RESPA MTS
fcenbasis=10, fcestride=2, fcecrd=2 IFCE MTS
/
Minimization (imin=1)
Default XMIN minimization with 3D-RISM
&cntrl
imin=1, maxcyc=200,
drms=1le-3, 'RMS force. Can be as low as le-4
ntmin=3, I XMIN
ntpr=5,
ntb=0, !Non-periodic
cut=999., !Calculate all
!solute-solute interactions
irism=1
/
&rism
tolerance=le-11, !'Low tolerance
solvcut=9999, 'No cut—-off for
!solute-solvent interactions
centering=2 !Solvation box centering
'using center—of-geometry
/

Trajectory Post-Processing (imin=5)

Trajectory post-processing with 3D-RISM

&cntrl
ntx=1, ntpr=1, ntwx=1,
imin=5,maxcyc=1, !Single-point energy calculation
'on each frame
ntb=0, !Non-periodic
cut=9999., Calculate all
!'solute-solute interactions
irism=1
/
&rism
tolerance=1le-4, !Saves some time compared to le-5
apply rism_ force=0, !Saves some time. Forces are not used.
npropagate=1 !Saves some time and 4x8xNbox bytes
'of memory compared to npropagate=5.
/

7.6. rism3d.snglpnt

3D-RISM functionality is also available in the command line tools rism3d.snglpnt and rism3d.snglpnt.MPI in-
stalled at compile time. These programs perform single point 3D-RISM calculations on trajectories and individual

136

7.6. rism3d.snglpnt

solute snapshots. No other processing is done to the structures, so unwanted solvent molecules should be removed
before hand. Except for minimization and molecular dynamics, all 3D-RISM features are available. Thermody-
namic data is always output (see Section 7.3.5).

7.6.1. Usage

3D-RISM specific command line keywords generally are generally identical to keyword options in sander. If
run without input, rism3d.snglpnt prints default settings for all parameters.

Unlike sander, three input files for the system are required: a PDB, parameter-topology file, and a restart or
trajectory file. An appropriate PDB file can be created with ambpdb (Section 35.1).

-—-pdb PDB file (Required, input.) PDB file for the solute. In addition, a restart or trajectory file must be
supplied. Coordinates from the PDB are not used.

—-—prmtop prmtop file (Required, input.) Parameter-topology file for the solute.

--rst restart file (Optional, input.) Coordinates for the solute in restart format. Not required if a trajec-
tory file is provided.

-—yltraj trajectory file (Optional, input.) Trajectory for the solute in NetCDF or ASCII format. Not
required if a restart file is provided.

——xvv XV

file (Required, input.) Bulk solvent susceptibility file from 1D-RISM (see section 7.7).
—-—guv GYY root (Optional, output.) Root name for 3D solvent pair distribution files.

——cuv YV root (Optional, output.) Root name for 3D solvent direct correlation files.

—-huv HYY root (Optional, output.) Root name for 3D solvent total correlation files.

——uuv YV root (Optional, output.) Root name for 3D solvent potential [kT] files.

-—asymp asymptotics root (Optional, output.) Root name for 3D real-space long range asymptotics for
total and direct correlation files. This will produce one file for each of C and H for each frame
requested and does not include the solvent site charge. Multiply the distribution by the solvent site
charge to obtain the long-range asymptotics for that site.

-—quv oYY root (Optional, output.) Root name for 3D solvent charge density distribution files. This is the
charge density [e/A] at each grid point with contributions from all solvent types.

-—chgdist charge distribution root (Optional, output.) Root name for 3D solvent charge distri-
bution files. This gives a point charge [e] at each grid point with contributions from all solvent
types.

——exchem (Optional.) Root name for 3D excess chemical potential distribution files.
——solvene (Optional.) Root name for 3D solvation energy distribution files.

-—entropy (Optional.) Root name for 3D solvation entropy distribution files.

——potUV (Optional.) Root name for 3D solute-solvent potential energy distribution files.

—--molReconstruct (Optional.) For any thermodynamic distributions requested, also out the molecular re-
construction (see section 7.1.5).[315]

—--volfmt (Optional.) Format of volumetric data files. May be mrc (default), ccp4, dx or xyzv (see section
7.7).

137

7. Reference Interaction Site Model

—-—closure closure name (Optional.) A whitespace separated list of one or more of KH [284], HNC [297,
326] or PSEn [303] where “n” is a positive integer. If more than one closure is provided, the
3D-RISM solver will use the closures in order to obtain a solution for the last closure in the list
when no previous solutions are available. The solution for the last closure in the list is used for all
output. This can be useful for difficult to converge calculations (see §7.3.4).

—-—periodic periodic potential (Optional.) Use periodic boundaries instead of open boundaries.[287]
Options for calculating the periodic potential are

pme Particle mesh Ewald summation (recommended)

ewald Ewald summation

——noasympcorr (Optional.) Turn off long range asymptotic corrections for thermodynamic output only. Long-
range asymptotics are still used to calculate the solution.

——buffer distance (Optional.) Minimum distance between the solute and the edge of the solvent box. Use
this with ——grdspc. Incompatible with ——ng and —-solvbox. See §7.2.3 for details on how
this affects numerical accuracy and how this interacts with 1 jTolerance, and tolerance.

--solvcut distance (Optional.) Sets Lennard-Jones cutoff distance for periodic calculations. If ’-1° or no
value is specified then the buffer distance is used.

-—grdspc 3D grid spacing (Optional.) Comma separated linear grid spacings for x, y and z dimensions.
Use this with ——buffer. Incompatible with ——ng and ——solvbox.

--ng 3D grid points (Optional.) Comma separated number of grid points for x, y and z dimensions. Use
this with ——solvbox. Incompatible with ——buffer and -—grdspc.

-—solvbox 3D box length (Optional.) Comma separated solvation box side length for x, y and z dimen-
sions. Use this with ——ng. Incompatible with ——buffer and ——grdspc. See §7.2.3 for de-
tails on how this affects numerical accuracy and how this interacts with 1 jTolerance, and
tolerance.

-—tolerance residual target (Optional.) A whitespace separated list of maximum residual values for
solution convergence. When used in combination with a list of closures it is possible to define
different tolerances for each of the closures. This can be useful for difficult to converge calculations
(see §7.3.4). For the sake of efficiency, it is best to use as high a tolerance as possible for all but the
last closure. See §7.2.3 for details on how this affects numerical accuracy and how this interacts
with 1jTolerance, buffer, and solvbox. Three formats of list are possible.

one tolerance All closures but the last use a tolerance of 1. The last tolerance in the list is
used by the last closure. In practice this, is the most efficient.

two tolerances All closures but the last use the first tolerance in the list. The last tolerance
in the list is used by the last closure.

n tolerances Tolerances from the list are assigned to the closure list in order.
--1jTolerance Lennard-Jones accuracy (Optional.) Determines the Lennard-Jones cutoff distance

based on the desired accuracy of the calculation. See §7.2.3 for details on how this affects numer-
ical accuracy and how this interacts with tolerance, buffer, and solvbox. [286]

——asympKSpaceTolerance reciprocal space long range asymptotics accuracy (Optional.)
Determines the reciprocal space long range asymptotics cutoff distance based on the desired ac-
curacy of the calculation. See §7.2.3 for details on how this affects numerical accuracy. [286]
Possible values are

<0 asympKSpaceTolerance=tolerance/10,

0 no cutoff, and

138

7.6. rism3d.snglpnt

>0 given value determines the maximum error in the reciprocal-space long range
asymptotics calculations.

—-—treeDCF flag (Optional.) Use direct sum or the treecode approximation to calculate the direct correlation
function long-range asymptotic correction.[286]

0 Use direct sum.
1 Use treecode approximation.

-—treeTCF flag (Optional.) Use direct sum or the treecode approximation to calculate the total correlation
function long-range asymptotic correction.[286]

0 Use direct sum.
1 Use treecode approximation.

-—treeCoulomb flag (Optional.) Use direct sum or the treecode approximation to calculate the Coulomb
potential energy.[286]

0 Use direct sum.
1 Use treecode approximation.

-—treeDCFMAC acceptance criterion (Optional.) Treecode multipole acceptance criterion for the di-
rect correlation function long-range asymptotic correction.

-—treeTCFMAC acceptance criterion (Optional.) Treecode multipole acceptance criterion for the to-
tal correlation function long-range asymptotic correction.

-—treeCoulombMAC acceptance criterion (Optional.) Treecode multipole acceptance criterion for
the Coulomb potential energy.

-—treeDCFOrder order (Optional.) Treecode Taylor series order for the direct correlation function long-
range asymptotic correction.

——treeTCFOrder order (Optional.) Treecode Taylor series order for the total correlation function long-
range asymptotic correction. Note that the Taylor expansion used does not converge exactly to the
TCF long-range asymptotic correction, so a very high order will not necessarily increase accuracy.

-—treeCoulombOrder order (Optional.) Treecode Taylor series order for the Coulomb potential energy.

-—treeDCFNO leaf size (Optional.) Maximum number of grid points contained within the treecode leaf
clusters for the direct correlation function long-range asymptotic correction. This sets the depth of
the hierarchical octtree.

-—treeTCFNO leaf size (Optional.) Maximum number of grid points contained within the treecode leaf
clusters for the total correlation function long-range asymptotic correction. This sets the depth of
the hierarchical octtree.

——treeCoulombNO leaf size (Optional.) Maximum number of grid points contained within the treecode
leaf clusters for the Coulomb potential energy. This sets the depth of the hierarchical octtree.

--mdiis_del step size (Optional.) MDIIS step size.[291]

--mdiis_nvec # of vectors (Optional.) Number of previous iterations MDIIS uses to predict a new
solution.[291]

-—-mdiis_restart # of vectors (Optional.) If the current residual is mdiis_restart times larger
than the smallest residual in memory, then the MDIIS procedure is restarted using the lowest
residual solution stored in memory. Increasing this number can sometimes help convergence.[291]

139

7. Reference Interaction Site Model

--maxstep step number (Optional.) Maximum number of iterative steps per solution.

-—npropagate # old solutions (Optional.) Number of previous solutions to use in predicting a new
solution.

——polarDecomp (Optional.) Decomposes solvation free energy into polar and non-polar components. Note
that this typically requires 80% more computation time.

—-—entropicDecomp (Optional.) Decomposes solvation free energy into energy and entropy components. Also
performs temperature derivatives of other calculated quantities. Note that this typically requires
80% more computation time and requires a .xvv file version 1.000 or higher (see §7.1.3 and 7.3).

[309]

-—gf (Optional.) Compute the Gaussian fluctuation excess chemical potential functional (see §7.1.2).[304,
305, 309]

——pc+ (Optional.) Compute the PC+/3D-RISM excess chemical potential functional (see §7.2.4).[309,
327]

-—uccoeff a,b[,al,bl] (Optional.) Compute the UC excess chemical potential functional with the pro-
vided coefficients (see §7.2.4). a and b are the coefficients for the original UC functional, though
using the closure excess chemical potential functional. al and b/ are optional and provide tem-
perature dependence to the correction (UCT in [309]).

—-—centering method (Optional.) Select how solute is centered in the solvent box.

-4 Center-of-geometry with grid-point rounding. Center on first step only.

-3 Center-of-mass with grid-point rounding. Center on first step only.

-2 Center-of-geometry. Center on first step only.

-1 Center-of-mass. Center on first step only.

0 No centering. Dangerous.

1 Center-of-mass. Center on every step. Recommended for molecular dynamics.
2 Center-of-geometry. Center on every step. Recommended for minimization.

3 Center-of-mass with grid-point rounding.

4 Center-of-geometry with grid-point rounding.
-—verbose Ilevel (Optional.)

0 No output.
1 Print the number of iterations required to converge.

2 Print convergence details for each iteration.

7.7. RISM File Formats

7.7.1. MDL

Solvent MoDeL (MDL) files use the prmtop specification. Each of the following sections may appear in the file
in any order. The Fortran string format specifications can be different from the recommend values below.

%$VERSION VERSION_STAMP = Vxxxx.yyy DATE = mm:dd:yy hh:mm:ss
The current version of the format is 0001.000. Date should be the date and time the file is created.

$FLAG TITLE
$FORMAT (20a4)

140

7.7. RISM File Formats

Optional description of the file.

$FLAG POINTERS
$FORMAT (10I8)

Defines the lengths of arrays in the file.
NATOM Number of physical atoms in the model.

NSITE Number of unique solvent sites (share common Lennard-Jones parameters and partial charges).

$FLAG ATMNAME
$FORMAT (20a4)

CHARACTER (len=4) (NSITE) Four character name of each solvent site.

$FLAG MASS
%$FORMAT (5e16. 8)

REAL*8 (NSITE) Mass of each solvent site (amu).

$FLAG CHG
%$FORMAT (5e16.8)

REAL*8 (NSITE) Partial charge for each solvent site, 18.2223¢ (V/ kTA).

$FLAG LJEPSILON
%$FORMAT (5e16.8)

REALx8 (NSITE) Lennard-Jones € for each solvent site (kcal/mol).

$FLAG LJSIGMA
$FORMAT (5e16.8)

REAL*8 (NSITE) Lennard-Jones rmin/2 (sometimes called o*/2) for each solvent site (A)

12 6
Tmin,oc + "'min,y Tmin,oc + T'min,y
ULJ: /€ E e A o /=7 .
oy sy ((2r) (2r
Note that this is related to the commonly used o as
o= rmin27l/6.

$FLAG MULTI
$FORMAT (10I8)

INTEGER*4 (NSITE) Multiplicity of each solvent site. This should sum to NATOM.

$FLAG COORD
$FORMAT (5e16.8)

REAL«*8 (3xNATOM) xyz-coordinates of each atom (A).

141

7. Reference Interaction Site Model

7.7.2. XVV

The .xvv file provides all of the bulk-solvent information required for 3D-RISM. This includes information
about the solvent model, thermodynamic state and the necessary correlation functions. .xvv files use the prmtop
specification. Each of the following sections may appear in the file in any order. The format specifications can be
different from the recommend values below.

1D- and 3D-RISM now use version 1.000 of the file format. Differences include

* additional information about solvent, such as mass, number of sites per species, coordinates;
* RISM’s internal system of units is now used;

* temperature derivative, DELHVO_DT and XVV_DT, are included when available (see 7.4.1);
* and SIGV has been replaced by RMIN2V.

All 3D-RISM interfaces still support the original 0.001 version of the format. For detailed information on version
0.001, please see the AmberTools 1.5 manual.

$VERSION VERSION_STAMP = V0001.000 DATE = mm:dd:yy hh:mm:ss
The current version of the format is 0001.000. Date should be the date and time the file is created.

$FLAG POINTERS
$FORMAT (10I8)

Defines the lengths of arrays in the file.

NR Number of 1D grid points in 2" (k).
NV Number of total solvent sites.
NSP Number of solvent species (molecules).

$FLAG THERMO
$FORMAT (1PE24.16)

REAL (8) (6) Temperature [K], dielectric constant, inverse Debye length (k) [10\], compressibility [;\’3], grid
spacing [A], charge smear [A].

$FLAG ATOM_NAME
$FORMAT (20A4)

CHARACTER (len=4) (NSITE) Four character name of each solvent site.

$FLAG MTV
$FORMAT (10I8)

INTEGER (4) (NSITE) Multiplicity of each solvent site.

$FLAG NVSP
$FORMAT (10I8)

INTEGER (4) (NSP) Number of sites for each solvent species.

$FLAG MASS
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Mass of each solvent site (g/mol).

142

7.7. RISM File Formats

$FLAG RHOV
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Number density of each solvent site (A’3).

$FLAG QV
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Partial charge for each solvent site multiplied by the square root of the Coulomb constant,

~18.2223 (VkTA).

$FLAG QSPV
$FORMAT (1P5E16.8)

REAL (8) (NSPECIES) Net charge for each solvent species multiplied by the square root of the Coulomb con-
stant, ~18.2223 (VkTA).

$FLAG EPSV
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Lennard-Jones € for each solvent site (k7).

$FLAG RMIN2V
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Lennard-Jones rmin/2 (¢7/2) for each solvent site (A).

$FLAG DELHVO
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Long range Coulomb correction for each solvent site (V/ kTA).

$FLAG DELHVO_DT
$FORMAT (1P5E16. 8)

REAL (8) (NSITE) (Optional) Temperature derivative long range Coulomb correction for each solvent site (V/ kTA).

$FLAG COORD
%$FORMAT (1P5E16.8)

REAL (8) (3*sum (MTV)) Coordinates of all atoms (not sites) for each solvent species with the dipole moment
aligned with the z-axis (A).

$FLAG XVV
$FORMAT (1P5E16.8)

REAL (8) (NR,NSITE,NSITE) x;;v (k). This array is stored in column major order. That is, the NR index
varies fastest.

$FLAG XVV_DT
$FORMAT (1P5E16.8)

REAL (8) (NR,NSITE,NSITE) (Optional) 87xy" (k). This array is stored in column major order. That is, the
NR index varies fastest.

143

7. Reference Interaction Site Model

7.7.3. Site-site functionals

All *wv files, except .xvv (see §7.7.2), provide the separation dependence of all site-site pairings for a particular
functional and use the same format. The first four lines have a “#” in the first character column, provide a descrip-
tion of the contents of the file and indicate site-site pairs. The first data column is the site-site separation and the
remaining columns provide the value of the functional for the site-site pair at this separation.

The following example is for the direct correlation function (.cvv) for pure water. A standard, ‘two-site’ water
model is used, consisting of oxygen (O) and hydrogen (H1). This gives one solvent species with two atoms.

#RISM1D ATOM—-ATOM INTERACTIONS: DIRECT CORRELATION VS. SEPARATION [A]

#S=SPECIES, A=ATOM

SEPARATION S1A1:S1A1 S1Al1:S1A2 S1A2:S1A2

SEPARATION 0:0 H1l:0 H1:H1
0.00000000E+000 -3.81875841E+002 1.64156197E+002 -9.24562553E+001
2.50000000E-002 —-3.81695327E+002 1.64139031E+002 -9.24384608E+001

7.7.4. Thermodynamics

Thermodynamic output is divided into global, species and site properties sections. Global properties are gen-
erally not decomposable into species or site contributions (e.g., pressure). Species properties are the values for
individual molecular species, for example, the excess chemical potential of a single molecule. Some of these
properties, such as the partial molar volume, may not be decomposible into individual sites. Site properties are
contributions from individual sites. Values for sites from the same species will sum to give the total value for the
species.

The file format is white-space delimited with the first three columns giving a description, variable name and
units of the property calculated. The remaining columns contain the calculated values for the system, species or
site. Descriptive lines are indicated with a leading “#”.

The following example is for a standard, ‘two-site’ water model is used, consisting of oxygen (O) and
hydrogen (H1), at standard temperature and density. In this calculation, energy/entropy free energy
decomposition is also performed. L.e., EXCHEMsp = ESOLVsp — TSsp.

#Global properties

#Description Variable Units Value

Compressibility xi [10e-4/MPa] 4.73552130E+000

Pressure_ (Virial) Pvir [MPa] 2.51627507E+003
Excess_free_energy FE [kcal/mol] -1.03698038E+003

#Species properties

#Description Variable Units SPC

Excess_chemical potential EXCHEMsp [kcal/mol] -2.79190339E+000

Solvation_energy ESOLVsp [kcal/mol] -1.16421825E+001
-Temperaturexsolvation_entropy -TSsp [kcal/mol] 8.85027911E+000

Partial molar volume PMV [a~-3] 3.00300236E+001

#Site properties

#Description Variable Units (o) H1
Excess_chemical_potential EXCHEMv [kcal/mol] -6.47897321E+000 3.68706981E+000
Solvation_energy ESOLVv [kcal/mol] -1.19565867E+001 3.14404192E-001
-Temperaturexsolvation_entropy -TSv [kcal/mol] 5.47761350E+000 3.37266562E+000

7.7.5. Total excess values

.n00 and .q00 files provide the total excess coordination number and charge about each solvent site. The total
excess of site y around site & is

nfxx;Ot = p'y\/o hay (l’) d}’,

while the total excess charge is
extot __ extot

day = 49yay -

144

7.7. RISM File Formats

These values are presented in their respective files as ngje X ngje arrays. Any asymmetry in these arrays is due to
numerical error. .q00 files additionally provided the total excess charge from all sites.

The following example gives the total excess charge for a standard, ‘two-site’ water model is used, consisting
of oxygen (O) and hydrogen (H1), at standard temperature and density.

#Total excess coordinated charge [e] of column site about row site
(0] H1 Total charge

(o] 7.92607232E-001 -7.92607230E-001 1.67181313E-009

H1l 7.92607231E-001 -7.92607229E-001 2.44386922E-009

7.7.6. MRC and CCP4 volumetric data

Both MRC and CCP4 file formats use the MRC 2014 format (https://www.ccpem.ac.uk/mrc_format/
mrc2014.php). This is a binary format that is much faster to read and write than DX and XYZV formats and
requires approximately one quarter of the disk space. MRC is a newer format that is compatible with CCP4 and
provides additional information, such as the grid origin coordinate, necessary to align the volumetric data with the
solute molecular coordinates. Some CCP4 readers may ignore this additional data and MRC is recommended.

7.7.7. DX volumetric data

By default, 3D correlation functions from 3D-RISM calculations use the ASCII version of the Data Explorer
(DX) file format for volumetric data on regular grids as defined in the DX user manual: http://opendx.
informatics. jax.org/docs/html/pages/usrgu068.htm#HDREDF.

Header

object 1 class gridpositions counts Nx Ny Nz

Nx INTEGER*4. Number of grid points in the x dimension.
Ny INTEGER*4. Number of grid points in the y dimension.
Nz INTEGER*4. Number of grid points in the z dimension.

origin Ox Oy Oz

0x REAL*8. x coordinate of grid origin in Cartesian space.
Oy REAL*8. y coordinate of grid origin in Cartesian space.
Oz REAL*8. z coordinate of grid origin in Cartesian space.

delta dx 0 O
delta 0 dy O
delta 0 0 dz

dx REAL*8. Linear grid size between in the x dimension.
dy REAL*8. Linear grid size between in the y dimension.
dz REAL*8. Linear grid size between in the z dimension.

object 2 class gridconnections counts Nx Ny Nz
object 3 class array type double rank 0 items N data follows

N INTEGER*4. N = Nx X Ny X Nz.

145

https://www.ccpem.ac.uk/mrc_format/mrc2014.php
https://www.ccpem.ac.uk/mrc_format/mrc2014.php
http://opendx.informatics.jax.org/docs/html/pages/usrgu068.htm#HDREDF
http://opendx.informatics.jax.org/docs/html/pages/usrgu068.htm#HDREDF

7. Reference Interaction Site Model

Data
data(i, j, k) data(i, j,k+1) data(i, j, k+2)

data (i, j, k) REAL#*8. Three data values per line with the last (z) index varying fastest for a total of N values.

Footer

object "Untitled" call field

7.7.8. XYZV volumetric data

An alternate format for volumetric data is the simple ASCII x-y-z-value (XYZV) format. The x-, y- and
z-coordinates each grid point is written on a line followed by the value of the grid point. There is no header or
footer. For example,

-7.10789855E+000 -1.12570084E+001 -1.61284113E+001 1.35771922E-006
-2.10789855E+000 -1.12570084E+001 -1.61284113E+001 -5.32279347E-006
2.89210145E+000 -1.12570084E+001 -1.61284113E+001 -1.58802759E-005

146

8. sgm: Semi-empirical quantum chemistry

AmberTools contains its own quantum chemistry program, called sgm. This is code extracted from the QM/MM
portions of sander, but is limited to “pure QM” calculations. A principal current use is as a replacement for
MOPAC for deriving AM1-bcc charges, but the code is much more general than that. Presently, it is limited to
single point calculations and energy minimizations (geometry optimizations) for closed-shell systems. It supports
a wide variety of semi-empirical Hamiltonians, including many recent ones. An external electric field generated
by a set of point charges can be included for single point calculations. Our plan is to add capabilities to subsequent
versions. The major contributors are as follows:

* The original semi-empirical support was written by Ross Walker, Mike Crowley, and Dave Case,[329] based
on public-domain MOPAC codes of J.J.P. Stewart.

* DFTB2 (SCC-DFTB) support was written by Gustavo Seabra, Ross Walker and Adrian Roitberg,[330] and
is based on earlier work of Marcus Elstner.[331, 332]

* Support for diagonal third-order corrections to SCC-DFTB was written by Gustavo Seabra and Josh Mcclel-
lan.

* DFTB3 was added by Andreas Goetz.
* Various SCF convergence schemes were added by Tim Giese and Darrin York.

* The PM6 Hamiltonian was added by Andreas Goetz and dispersion and hydrogen bond corrections were
added by Andreas Goetz and Kyoyeon Park.

* The extension for MNDO type Hamiltonians to support d orbitals was written by Tai-Sung Lee, Darrin York
and Andreas Goetz.

¢ The charge-dependent exchange-dispersion corrections of vdW interactions[333] was contributed by Tai-
Sung Lee, Tim Giese, and Darrin York.

* Support for reading user-defined parameters for NDDO methods was added by Tai-Sung Lee and Darrin
York.

The DFTB/DFTB2 code was originally based on the DFT/DYLAX code by Marcus Elstner et al., but has since
been extensively re-written and optimized. The DFTB3 implementation is an extension of this code.

8.1. Available Hamiltonians

Available MNDO-type semi-empirical Hamiltonians are PM3,[334] AM1,[335] RM1,[336] MNDO,[337]
PDDG/PM3,[338] PDDG/MNDO,[338] PM3CARB1,[339], PM3-MAIS[340, 341], MNDO/d[342-344], AM1/d
(Mg from AM1/d[345] and H, O, and P from AM1/d-PhoT[346]) and PM6[347].

Also available is the density functional theory-based tight-binding (DFTB) Hamiltonian[330, 348, 349] and its
self-consistent-charge version with Taylor expansion up to second order (SCC-DFTB or DFTB2)[331] and third-
order (DFTB3)[350]. If you use the mio-1-1 parameters for DFTB2, you can add an empirical correction for
dispersion effects[351] and calculate CM3 charges[352] (both only for elements H, C, N, O, S, P). Diagonal third-
order corrections are available for DFTB2[353] with mio-1-1 parameters but it is recommended to perform full
DFTB3 simulations instead. Neither dispersion corrections nor halogen corrections are implemented for DFTB3.

The elements supported by each QM method are:

147

8. sqm: Semi-empirical quantum chemistry

« MNDO: H, Li, Be, B, C,N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Cd, Sn, I, Hg, Pb

* MNDO/d: H, Li, Be, B, C, N, O, F, Na, Mg, Al Si, P, S, CI, Zn, Ge, Br, Sn, I, Hg, Pb

*« AMI: H,C,N,O,F, AL Si, P, S, Cl, Zn, Ge, Br, I, Hg

* AM1/d: H, C, N, O, F, Mg, Al Si, P, S, Cl, Zn, Ge, Br, I, Hg

« PM3: H, Be, C, N, O, F, Mg, AL, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te, I, Hg, T, Pb, Bi
« PDDG/PM3: H,C,N, O, F, Si, P, S, CI, Br, I

« PDDG/MNDO: H,C, N, O, F, Cl, Br, I

* RMI: H,C,N,O, P, S,F, C], Br, I

* PM3CARBI: H,C, O

« PM3-MAIS: H, O, C1

* PM6: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La,
Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi

* DFTB/DFTB2/DFTB3: (Any atoms for which parameters are available from www.dftb.org)

The PM6 implementation has not been extensively tested for all available elements. Please check your results
carefully, possibly by comparison to other codes that implement PM6, if transition metal elements are present.
SCF convergence may be more difficult to achieve for transition metal elements with partially filled valence shells.

If the PM6 Hamiltonian is used in a QM/MM simulation with sander using electrostatic embedding (see Section
10) or if an electric field of external point charges is used, then the electrostatic interactions between QM and MM
atoms are modeled using the MNDO type core repulsion function for interactions between QM and MM atom:s.
Parameters for the exponents & of the QM atoms are taken from PM3 (a default value of five is used for the
exponents ¢ of the MM atoms as is the case for MNDO, AM1 and PM3). Since PM3 does not have parameters for
all elements that are supported by PM6, the missing exponents were defined in an ad hoc manner (see the source
code in SAMBERHOME/AmberToosl/src/sqm/qm2_parameters.F90, variable alp_pm6). The magnitude of the
coefficients « is probably not critical for the accuracy of QM/MM calculations but this should be tested on a case
by case basis. This does not affect QM calculations with sgm.

8.1.1. DFTB parameter files

In order to use DFTB2 or DFTB3 (gm_theory=DFTB2 or DFTB3) a set of integral parameter files is required.
The mio-1-1 parameter files for DFTB2 and 30b-3-1 parameter files are distributed with Amber under a Creative
Commons Attribution-ShareAlike 4.0 International License, see http://creativecommons.org/licenses/by-sa/4.0/.
The parameters were obtained from the website www.dftb.org on February 22, 2017. You may want to check if
there are any updates to the parameters. If you perform DFTB simulations, in addition to Amber please cite the
publications describing the QM/MM and DFTB implementations as well as the following references for the DFTB
parameters:

When using DFTB2 with mio-1-1 and following elements:

* O, N, C, H: M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G.
Seifert, Phys. Rev. B 58 (1998) 7260.

¢ S: T. A. Niehaus, M. Elstner, Th. Fruanheim, S. Suhai, J. Molec. Struct. (THEOCHEM) 541 (2001) 185.
e P: M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 7 (2011) 931-948.

When using DFTB3 with 30b-3-1 and following elements:

148

8.2. Dispersion and hydrogen bond correction

O, N, C, H: M. Gaus, A. Goez, M. Elstner, J. Chem. Theory Comput. 9 (2013) 338-354.

P, S: M. Gaus, X. Lu, M. Elstner, Q. Cui, J. Chem. Theory Comput. 10 (2014) 1518-1537.
* Mg, Zn: X. Lu, M. Gaus, M. Elstner, Q. Cui, J. Phys. Chem. B 119 (2015) 1062-1082.

* Na, F K, Ca, CI, Br, I: M. Kubillus, T. Kubar, M. Gaus, J. Rezac, M. Esltner, J. Chem. Theory Comput. 11
(2015) 332-342.

Additional parameter files can be obtained from the website www.dftb.org. By default it is assumed that DFTB2
uses the mio-1-1 parameter set and DFTB3 the 30b-3-1 parameter set and that the corresponding files with exten-
sion .skf reside in the directories SAMBERHOME/dat/slko/mio-1-1 and SAMBERHOME/dat/slko/30ob-3-1. If you
want to use other parameter sets and/or put the parameter files in other directories then you have to specify the
location in the input file (keyword dftb_slko_path, see section 8.3 for details).

Following parameter files for use with DFTB2 and the mio-1-1 parameter set are also distributed with Amber-
Tools: Dispersion parameters for H, C, N, O, P and S are available in the file SAMBERHOME/dat/slko/mio-1-
1/DISPERSION.INP_ONCHSP, CM3 parameters for the same atoms are in the file SAMBERHOME/dat/slko/mio-
1-1/CM3_PARAMETERS.DAT file, and two parametrizations for diagonal third-order SCC-DFTB terms (SCC-
DFTB-PA and SCC-DFTB-PR) are in the files DFTB_3RD_ORDER_PA.DAT and DFTB_3RD_ORDER_PR.DAT,
both located in the same directory.

8.2. Dispersion and hydrogen bond correction

An empirical dispersion and hydrogen bonding correction is implemented for the MNDO type Hamiltonians
AMI1 and PM6[354]. The empirical dispersion correction follows the formalism for DFT-D[355] and consists of a
physically sound ~° term that is damped at short distances to avoid the short-range repulsion which can be written
as

Egis = _56Zfdamp(rijzR?j)C6,ijri;6; (8.1)
ij

where 7;; is the distance between two atoms i and j, R?j is the equilibrium van der Waals (vdW) separation
derived from the atomic vdW radii, Cg ;; the dispersion coefficient, and s¢ a general scaling factor. The damping

function is given as
-1
l’,'/'
l+exp| —a 5 —1 . (8.2)
sRRij

Bondi vdW radii[356] are used and for a pair of unlike atoms we have

fdamp(riij?j) =

03, po3
o _ Ki TR (8.3)
t 02 02" :
R +Kj;
For the Cg¢ coefficients the following equation is used,
C2,C2 NepriNepr)3
Cﬁ,ij —9 (6,ii-6,jjtVeffii eff-,]) (84)

(Co,iNegs)1 + (Co jjNepr)P

where the Slater-Kirkwood effective number of electrons N,y ; and the Cg coefficients can easily be found in the
literature[355].

An empirical hydrogen bonding correction[354] that is transferable among different semiempirical Hamiltonians
and has been parametrized for use with the dispersion correction described above is also available. This correction
does not make the assumption of a specific acceptor/hydrogen/donor binding situation. Instead it considers the
hydrogen bond as a charge-independent atom- atom term between two atoms capable of serving as an acceptor
or donor (for example, O, N) and weights this by a function that accounts for the steric arrangement of the two

149

8. sqm: Semi-empirical quantum chemistry

atoms and the favorable positioning of a hydrogen atom inbetween. A damping function corrects for long- and

short-range behavior,

Feeom = c05(64)* cos(¢4)? cos(yu)° cos(@p)° cos (@) cos(Wa)* foona:

fdump = (

Cas

ExH_pona = rngeomfdampv

f bond = 1

1

AB

1

 14exp[—60(rxs/1.2—1)]

1

1+ exp[—100(rap/2.4 — 1)]) (]

Cap =

2

"~ 1+exp[—10(ra/7.0—1)]

).

(8.5)

(8.6)

8.7

(8.8)

(8.9

Here, Ca and Cg are the atomic hydrogen bonding correction parameters and the (torsion) angles in the function
fgeom are defined similarly to an earlier hydrogen bond correction[357].

The hydrogen bond correction can be used both for single point energy calculations or geometry optimizations
with SQM and for molecular dynamics simulations with SANDER. However, we do not recommend the use for
molecular dynamics at present since cutoffs needed to be implemented for the calculation of fy.n, of equation
(8.6). This and some other conditional evaluations give rise to discontinuities in the potential energy surface and
thus make this method unattractive for MD simulations.

8.3. Usage

The sqm program uses the following simple command line:

sgm [-O] —-i <input-file> -o <output-file>

mdin is the default input-file name, and mdout is the default output-file name.As in other Amber programs, the
“-O” flag allows the program to over-write the output file.

An example input file for running a simple minimization is shown here:

Run semi-empirical minimization

&gmmm
gm_theory='AM1",
/

6 (ofe] -1.
6 Cp1l -1.
6 CDh2 -2.
6 CEl -0.
6 cé6 -1.
6 Cz -0.
1 HE2 -1.
16 s15 -2.
1 H19 -3.
1 H29 -0.
1 H30 0.
1 H31 -0.
1 H32 -2.

gmcharge=0,

9590
2490
0710
6460
4720
7590
5580
7820
5410
7870
3730
0920
3790

OwWMOOODMDNMNDRLROOO

.1020
.6020
.8650
.8630
.1290
. 6270
.7190
.3650
.9790
.0430
.0450
.5780
.9160

Oo0ooowwdMODMOH OO

.7950
.3030
.9630
.2340
.0310
.9340
.9310
.0600
.2740
.9380
.7840
.7810
.9010

The &gmmm namelist contains variables that allow you to control the options used. Following that is one line
per atom, giving the atomic number, atom name, and Cartesian coordinates (free format). The variables in the

&gmmm namelist are these:

gm_theory Level of theory to use for the QM region of the simulation (Hamiltonian). Default is to use the
semi-empirical Hamiltonian PM3. Options are AM1, RM1, MNDO, PM3-PDDG, MNDO-PDDG,

150

8.3. Usage

PM3-CARB1, MNDO/d (same as MNDOD), AM1/d (same as AM1D), PM6, DFTB2 (same as
DFTB), and DFTB3. The dispersion correction can be switched on for AM1 and PM6 by choosing
AMI1-D* and PM6-D, respectively. The dispersion and hydrogen bond correction will be applied
for AM1-DH+ and PM6-DH+.

dftb_slko_path Pathtothe DFTB Slater-Koster parameter files. Defaults to ’$AMBERHOME/dat/slko/mio-
1-1/° for DFTB2 and ’$AMBERHOME/dat/slko/30b-3-1/" for DFTB3. You can specify a different
directory here, which is assumed to be a subdirectory of ’$AMBERHOME/dat/slko/” unless you
specify an absolute path.

dftb_disper Flag turning on (1) or off (0) the use of a dispersion correction to the DFTB2 energy (only for
mio-1-1 parameters). Requires gm_theory=DFTB2. 1t is assumed that you have the file DIS-
PERSION.INP_ONCHSP in your SAMBERHOME/dat/slko/mio-1-1 directory. This file must be
downloaded from the website www.dftb.org, as described in the beginning of this chapter. Only
available for elements H, C, O, N, P, S. (Default = 0)

dftb_3rd_order Third order diagonal corrections to DFTB2 with mio-1-1 parameters. Default="" (the empty
string which means no third order correction).

=’PA’ Use the SCC-DFTB-PA parametrization, which was developed for proton affinities. The
parameters will be read from the SAMBERHOME/dat/slko/DFTB_3RD_ORDER_PA.DAT
file.

=’PR’ Use the SCC-DFTB-PR parametrization, which was developed for phosphate hy-
drolysis reactions. The parameters will be read from the $AMBERHOME/dat/s-
lko/DFTB_3RD_ORDER_PR.DAT file.

=’READ’ Parameters will be read from the mdin file, in a separate “dftb_3rd_order” namelist,
which must have the same format as the files above.

=filename’ Parameters will be read from the file specified by filename, in the “dftb_3rd_order”

namelist, which must have the same format as the files above.

dftb_chg Flag to choose the type of charges to report when doing a DFTB calculation.

=0 (default) - Print Mulliken charges.

=2 Print CM3 charges. Only available for DFTB2 with mio-1-1 parameters for elements H, C,
N, O, S and P.

dftb_telec Electronic temperature, in K, used to accelerate SCC convergence in DFTB calculations. The elec-
tronic temperature affects the Fermi distribution promoting some HOMO/LUMO mixing, which
can accelerate the convergence in difficult cases. In most cases, a low felec (around 100K) is
enough. Should be used only when necessary, and the results checked carefully. Default: 0.0K

dftb_maxiter Maximum number of SCC iterations before resetting Broyden in DFTB calculations. (default:
70)

gmcharge Charge on the QM system in electron units (must be an integer). (Default = 0)

spin Multiplicity of the QM system. Currently only singlet calculations are possible and so the default
value of 1 is the only available option. Note that this option is ignored by DFTB/SCC-DFTB,
which allows only ground state calculations. In this case, the spin state will be calculated from the
number of electrons and orbital occupancy.

gmgmdx Flag for whether to use analytical or numerical derivatives of the semiempirical electron repulsion
integrals. The default (and recommended) option is to use ANALYTICAL QM-QM derivatives.

=1 (default) - Use analytical derivatives for QM-QM forces.

151

8. sqm: Semi-empirical quantum chemistry

=2 Use numerical derivatives for QM-QM forces. Note: the numerical derivative code has not
been optimised as aggressively as the analytical code and as such is significantly slower.
Numerical derivatives are intended mainly for testing purposes.

verbosity Controls the verbosity of QM/MM related output. Warning: Values of 2 or higher will produce a

lot of output.

=0 (default) - only minimal information is printed - Initial QM geometry and link atom positions
as well as the SCF energy at every ntpr steps.

=1 Print SCF energy at every step to many more significant figures than usual. Also print the
number of SCF cycles needed on each step.

=2 As 1 and also print info about memory reallocations, number of pairs per QM atom, QM core
- QM core energy, QM core - MM atom energy, and total energy.

=3 As 2 and also print SCF convergence information at every step.

=4 As 3 and also print forces on the QM atoms due to the SCF calculation and the coordinates of
the link atoms at every step.

=5 As 4 and also print all of the info in kJ/mol as well as kcal/mol.

tight_p_conv Controls the tightness of the convergence criteria on the density matrix in the SCF.

scfconv

=0 (default) - loose convergence on the density matrix (or Mulliken charges, in case of a SCC-
DFTB calculation). SCF will converge if the energy is converged to within scfconv and the
largest change in the density matrix is within 0.05*sqrt(scfconv).

=1 Tight convergence on density (or Mulliken charges, in case of a SCC-DFTB calculation).
Use same convergence (scfconv) for both energy and density (charges) in SCF. Note: in the
SCC-DFTB case, this option can lead to instabilities.

Controls the convergence criteria for the SCF calculation, in kcal/mol. In order to conserve energy
in a dynamics simulation with no thermostat it is often necessary to use a convergence criterion
of 1.0d-9 or tighter. Note, the tighter the convergence the longer the calculation will take. Values
tighter than 1.0d-11 are not recommended as these can lead to oscillations in the SCF, due to
limitations in machine precision, that can lead to convergence failures. Default is 1.0d-8 kcal/mol.
Minimum usable value is 1.0d-14.

pseudo_diag Controls the use of ’fast’ pseudo diagonalisations in the SCF routine. By default the code will

attempt to do pseudo diagonalisations whenever possible. However, if you experience convergence
problems then turning this option off may help. Not available for DFTB/SCC-DFTB.

=0 Always do full diagonalisation.

=1 Do pseudo diagonalisations when possible (default).

pseudo_diag_criteria Float controlling criteria used to determine if a pseudo diagonalisation can be done.

If the difference in the largest density matrix element between two SCF iterations is less than this
criteria then a pseudo diagonalisation can be done. This is really a tuning parameter designed for
expert use only. Most users should have no cause to adjust this parameter. (Not applicable to
DFTB/SCC-DFTB calculations.) Default = 0.05

diag_routine Controls which diagonalization routine will be used during the SCF procedure. This is an ad-

152

vanced option to fine-tune performance which has negligible effect on energies (and generally little
effect on geometries in the case of SQM energy minimizations). The speed of each diagonalizer is
a function of the number and type of QM atoms as well as the LAPACK library that the program
was linked to. As such there is not always an obvious choice to obtain the best performance. The
simplest option is to set diag_routine = 0 in which case the program will test each diagonalizer in
turn, including the pseudo diagonalizer, and select the one that gives optimum performance. As of
AmberTools 15 diag_routine = 0 is the default for both SQM and QMMM in Sander. Not available
for DFTB/SCC-DFTB.

8.3. Usage

=0 Automatically select the fastest routine (default).
=1 Use internal diagonalization routine.

=2 Use lapack dspev.

=3 Use lapack dspevd.

=4 Use lapack dspevx.

=5 Use lapack dsyev.

=6 Use lapack dsyevd.

=7 Use lapack dsyevr.

printcharges =0 Don’t print any info about QM atom charges to the output file (default)

=1 Print Mulliken QM atom charges to output file every ntpr steps.

print_eigenvalues Controls printing of MO eigenvalues.

axd

=0 Do not print MO eigenvalues

=1 Print MO eigenvalues at the end of a single point calculation or geometry optimization (de-
fault)

=2 Print MO eigenvalues at the end of every SCF cycle (only NDDO methods, not DFTB)
= 3 Print MO eigenvalues during each step of the SCF cycle (only NDDO methods, not DFTB)

Flag to turn on (=.true.) or off (=.false., default) the charge-dependent exchange-dispersion cor-
rections of vdW interactions[333].

parameter_file = 'PARAM.FILE’ Read user-defined parameters from the file 'PARAM.FILE’. The first

three space-separated entries (case insensitive) of each line will be interpreted as a user-
modified parameter in the sequence of parameter name, element name, and value. For ex-
ample, a line contains “USS Cl1 -111.6139480D0 “ will cause the USS parameter of the Cl
element changed to -111.6139480. A line beginning with “END” will stop the reading. This
function currently only works for MNDO, AM1, PM3, MNDO/d, and AM1/d. Also, when
new nuclear core-core parameters (FN, in PM3, AM1, and AM1/d) are re-defined, the num-
ber of FNN parameter sets (NUM_FN) also needs to be defined. For example, if FNn3 (n =
1, 2, or 3) is defined, then NUM_FN needs to be set to 3 or 4.

peptide_corr =0 Don’t apply MM correction to peptide linkages. (default)

itrmax

maxcyc

ntpr

grms_tol

= 1 Apply a MM correction to peptide linkages. This correction is of the form Es.r = Ejcr +
hiype (irype) sin® ¢, where ¢ is the dihedral angle of the H-N-C-O linkage and htype is a con-
stant dependent on the Hamiltonian used. (Recommended, except for DFTB/SCC-DFTB.)

Integer specifying the maximum number of SCF iterations to perform before assuming that con-
vergence has failed. Default is 1000. Typically higher values will not do much good since if the
SCF hasn’t converged after 1000 steps it is unlikely to. If the convergence criteria have not been
met after itrmax steps the SCF will stop and the minimisation will proceed with the gradient at
itrmax. Hence if you have a system which does not converge well you can set itrmax smaller so
less time is wasted before assuming the system won’t converge. In this way you may be able to get
out of a bad geometry quite quickly. Once in a better geometry SCF convergence should improve.

Maximum number of minimization cycles to allow, using the xmin minimizer with the TNCG
method. Default is 9999. Single point calculations can be done with maxcyc = 0.

Print the progress of the minimization every ntpr steps; default is 10.

Terminate minimization when the gradient falls below this value; default is 0.02

153

8. sqm: Semi-empirical quantum chemistry

ndiis_attempts Controls the number of iterations that DIIS (direct inversion of the iterative subspace) ex-
trapolations will be attempted. Not available for DFTB/SCC-DFTB. The SCF does not even begin
to exhaust its attempts at using DIIS extrapolations until the end of iteration 100. Therefore, for
example, if ndiis_attempts=50, then DIIS extrapolations would be performed at end of iterations
100 to 150. The purpose of not performing DIIS extrapolations before iteration 100 is because the
existing code base performs quite well for most molecules; however, if convergence is not met af-
ter 100 iterations, then it is presumed that further iterations will not yield SCF convergence without
doing something different, i.e., DIIS. Thus, the implementation of DIIS in SQM is a mechanism
to try and force SCF convergence for molecules that are otherwise difficult to converge. Default O.
Maximum 1000. Minimum 0. Note that DIIS will automatically turn itself on for 100 attempts at
the end of iteration 800 even if you did not explicitly set ndiis_attempts to a nonzero value. This
is done as a final effort to achieve convergence.

ndiis_matrices Controls the number of matrices used in the DIIS extrapolation. Including only one matrix
is the same as not performing an extrapolation. Including an excessive number of matrices may
require a large amount of memory. Not available for DFTB/SCC-DFTB. Default 6. Minimum 1.
Maximum 20.

vshift Controls level shifting (only NDDO methods, not DFTB). Virtual orbitals can be shifted up by
vshift (in eV) to improve SCF convergence in cases with small HOMO/LUMO gap. Default 0.0
(no level shift).

errconv SCF tolerance on the maximum absolute value of the error matrix, i.e., the commutator of the
Fock matrix with the density matrix. The value has units of hartree. The default value of errconv
is sufficiently large to effectively remove this tolerance from the SCF convergence criteria. Not
available for DFTB/SCC-DFTB. Default 1.d-1. Minimum 1.d-16. Maximum 1.dO.

gmmm_int When running QM calculations in the sqm program, an electric field of external point charges can
be added. In this way, the electrostatic effect outside of the QM region can be modeled, making the
calculation a simplified QM/MM calculation without QM/MM vdW’s contribution. Like QM/MM
calculations (see Section 10), the method to couple QM and MM electrostatic interactions for
external charges and semiempirical Hamiltonians can be specified via the gmmm_int namelist
variable.

The current implementation limits use of external charges to only single point energy calculations.
To run such a calculation, an additional field, which begins with #EXCHARGES and ends with
#END, is required to specify the external point charges in the input. Each external point charge
must include atomic number, atom name, X, Y, Z coordinates and the charge in units of the electron
charge. An example input looks like:

single point energy calculation (adenine), with external charges (thymine)

&gmmm

gm_theory = 'PM3’,

gmcharge = 0,

maxcyc = 0,

gnmm_int = 1,

/

7 N 1.0716177 -0.0765366 1.9391390
1 H 0.0586915 -0.0423765 2.0039181
1 H 1.6443796 -0.0347395 2.7619159
6 C 1.6739638 -0.0357766 0.7424316
7 N 0.9350155 -0.0279801 -0.3788916
6 C 1.5490760 0.0012569 -1.5808009
1 H 0.8794435 0.0050260 -2.4315709

154

OO JdOOOHRdRFROOAHRRFEFROAEROIdRONNOO N
mZEmaoza0a02

onNnEmzZzonNmmzZmaoaoammimA

I+
=
2
o

oL WWDN

5.
EXCHARGESwill be

.8531510
.5646109
.0747955
.0885824
.1829921
.1882591
.9294871
6035368

.7106131
.4267056
.4439282
.7883971
.9917387
.6136833
.6909220
.9211729
.4017172
.5395897
.9416783
.9256484
.8838255
.5361367
.8674730

|
O O0OO0OO0OO0OO0OOoOOo

.0258031
.0195446
.0094480
.0054429
.0253971
.0375542
.0412404
.0648755

.0413373
.9186178
.8302573
.0505530
.0219348
.0169051
.0269347
.0009646
.0036078
.0149474
.0291878
.0110593
.0216168
.0074651
.0112093

.8409596
.7059872
.5994562
.5289786
.7872176
.1738824
.5567274
.3036811

.1738637
.7530256
.7695655
.0247280
.8663338
.3336520
.4227183
.5163659
.4004924
.5962357
.6573783
.3638948
.3784269
.8766724
.9120833

.03140
.06002
.05964
.03694
.25383
.03789
.16330
.47122
.35466
.80253
.63850
.58423
.35404
.71625
.60609

8.3. Usage

155

9. QUICK: ab initio quantum chemistry

AmberTools now distributes the QUICK (QUantum Interaction Computational Kernel) ab initio quantum chem-
istry program.[358-364] QUICK is a GPU enabled ab initio and density functional theory software capable of
performing electronic structure calculations on general organic/biomolecular systems. QUICK is capable of per-
forming efficient Hartree-Fock (HF) and density functional theory (DFT) energy and gradient calculations. The
standalone version of QUICK is available in four different types: serial, MPI parallel, CUDA serial, and CUDA
MPI parallel; giving rise to four respective executables: quick, quick. MPI, quick.cuda, and quick.cuda.MPI.

QUICK is also available as the QM engine for QM/MM simulations with SANDER. Furthermore, the func-
tionalities of the GPU- and multi-GPU-accelerated versions of QUICK can be accessed directly from SANDER
executables called sander.quick.cuda and sander.quick.cuda.MPI; these executables are identical to sander and
sanderMPI in all SANDER functionalities, except they are capable of performing efficient QM/MM calculations
with the QUICK library through an API. The serial and parallel functionalities of QUICK can be accessed from the
sander and sander.MPI executables. More information about the QM/MM functionalities is provided in section
10.3.

If you use QUICK in your work, please cite the following reference:

e Manathunga, M.; O’Hearn, K. A.; Shajan, A.; Smith, J.; Miao, Y.; He, X.; Ayers, K; Brothers, E.; Gotz, A.
W.; Merz, K. M. QUICK-24.03 University of California San Diego, CA and Michigan State University, East
Lansing, MI, 2024.

If you perform DFT calculations please also cite:

e Manathunga, M.; Miao, Y.; Mu, D.; Gotz, A. W.; Merz, K. M. Parallel Implementation of Density Functional
Theory Methods in the Quantum Interaction Computational Kernel Program. J. Chem. Theory Comput. 16,
4315-4326 (2020). DOTI: 10.1021/acs.jctc.0c00290

If you use the GPU accelerated version of QUICK please also cite:

e Manathunga, M.; Aktulga, H. M.; Gotz, A. W.; Merz, K. M. Quantum Mechanics/Molecular Mechanics
Simulations on NVIDIA and AMD Graphics Processing Units. J. Chem. Inf. Model. 63, 711-717 (2023).
DOI: 10.1021/acs.jcim.2c01505

e Manathunga, M.; Jin, C.; Cruzeiro, V. W. D.; Miao, Y.; Mu, D.; Arumugam, K.; Keipert, K.; Aktulga,
H. M.; Merz, K. M., Jr.; Gotz, A. W. Harnessing the Power of Multi-GPU Acceleration into the Quan-
tum Interaction Computational Kernel Program. J. Chem. Theory Comput. 17, 3955-3966 (2021). DOL:
10.1021/acs.jctc.1c00145

* Miao, Y.; Merz, K. M., Jr. Acceleration of High Angular Momentum Electron Repulsion Integrals and
Integral Derivatives on Graphics Processing Units. J. Chem. Theory Comput. 11, 1449-1462 (2015). DOL:
10.1021/ct500984t

If you perform geometry optimizations please also cite:

e Shajan, A.; Manathunga, M.; Goétz, A.W.; Merz, K.M. Geometry optimization: A comparison of dif-
ferent open-source geometry optimizers. J. Chem. Theory Comput. 19, 7533-7541 (2023). DOL:
10.1021/acs.jctc.3c00188

More details about QUICK can be found in the QUICK user manual, at the following link: https://quick-
docs.readthedocs.io/en/24.3.0 . This also contains recommended citations for third party software used in QUICK.

156

https://quick-docs.readthedocs.io/en/24.3.0
https://quick-docs.readthedocs.io/en/24.3.0

9.1. Features and limitations

9.1. Features and limitations

The current version of QUICK, 24.03, shipped with AmberTools contains the following features and limitations:
Features:

* Hartree-Fock energy calculations

* Density functional theory calculations with dispersion corrections (LDA, GGA and Hybrid-GGA functionals
available)

* Grimme type dispersion corrections

* Restricted closed-shell and unrestricted open-shell wavefunctions

* Gradient and geometry optimization calculations

* Mulliken charge analysis

» Exports Molden format for visualization of geometry and orbital data

* Wide range of popular Gaussian basis sets included

* Supports QM/MM calculations with Amber

* Message Passing Interface (MPI) distributed parallelization for CPU platforms

* Massively parallel, single GPU implementation via CUDA and HIP for Nvidia and AMD GPUs
¢ Distributed, multi-GPU support via MPI+CUDA/MPI+HIP, also across multiple compute nodes

Limitations:

» Supports energy/gradient calculations with basis functions up to d (f function support available on CUDA
versions)

* GPU f function code is not highly optimized, requires large amount of RAM (may fail on consumer GPUs)
* No open shell gradients with f functions on GPUs

* Supports only Cartesian basis functions (no spherical harmonics)

« Effective core potentials (ECPs) are not supported

* DFT calculations are performed exclusively using SG1 grid system

* No meta-GGA nor range-separated hybrid functionals

o HIP/MPI+HIP support disabled for this release due to GPU code rewrites (f basis function support), please
use AmberTools 2023 / QUICK version 23.08b for HIP support

9.2. Installation

QUICK is installed by default, including the standalone executables and the sander executables with corre-
sponding features for QM/MM simulations. Support for f functions is disabled by default and can be enabled by
setting the flag ~-DENABLEF=TRUE when invoking cmake. Please note that the two-electron repulsion integral
(ERI) code is very complex. As a consequence the compilation of the CUDA/HIP code for GPUs can take a long
time. It will take several minutes for a single GPU architecture (several hours if ERI f-function support is enabled).
By default, the Amber build system generates executables that work for all Nvidia GPU architectures that are sup-
ported by the available CUDA Toolkit. As a consequence the build can take very long, upwards of half an hour (or
severl hours if f functions are enabled) - be patient, the compiler is working hard to generate lightning fast code
for HF and DFT calculations! In the case of the HIP version, the code will be compiled for gfx908 architecture
(MI100 GPU) by default.

Amber installation instructions can be found at section 2.1.

157

9. QUICK: ab initio quantum chemistry

9.3. Usage

Examples of QUICK input files can be found at: SAMBERHOME/AmberTools/src/quick/test.
Here is an example of a gradient calculation for a single water molecule at the B3LYP/cc-pVDZ level of theory:

B3LYP BASIS=cc—-pVDZ CHARGE=0 MULT=1 GRADIENT

(o] -0.06756756 -0.31531531 0.00000000
H 0.89243244 -0.31531531 0.00000000
H -0.38802215 0.58962052 0.00000000

Before running QUICK, users must source SAMBERHOME/amber.sh (or SAMBERHOME/amber.csh, depend-
ing on your enviroment).

Assuming the input file above is called water.in, in order to run the calculation with the serial version of
QUICK:

quick water.in
Or to run with the CUDA parallel version of QUICK with 2 GPUs:
mpirun -np 2 quick.cuda.MPI water.in

HIP parallel version can be run in the same way except the executable name will be quick.hip. MPI. In all cases, an
output file called water.out will be generated. If you use multiple GPUs, please make sure to use one MPI process
per GPU.

More information on how to perform calculations can be found in the QUICK user manual, at following URL:
link: https://quick-docs.readthedocs.io/en/24.3.0/user-manual.html .

158

https://quick-docs.readthedocs.io/en/24.3.0/user-manual.html

10. QM/MM calculations

Sander supports the option of describing part of the system quantum mechanically in an approach known as a
hybrid (or coupled potential) QM/MM simulation. There are three basic ways in which QM/MM simulations are
enabled in sander:

1. Semi-empirical neglect of diatomic overlap (NDDO)-type and density functional tight binding (DFTB)
Hamiltonians are supported natively by sander via the sqm software library. The basic documentation
(e.g. what Hamiltonians are implemented, description of the input parameters) can be found in Chapter 8.
In section 10.1below we limit our description to those features that are unique to the QM/MM interface
implemented in sander.

2. More advanced Hamiltonians based on ab initio wave function theory (WFT) and density functional theory
(DFT) are supported via an interface to external QM software packages the use of which is described in
section 10.2.

3. Seamless ab initio QM/MM simulations with Hartree-Fock (HF) and density functional theory (DFT) meth-
ods are possible via the GPU enabled QM code QUICK, which is distributed with AmberTools. QUICK can
be used either as QM program external to sander or via the QUICK library linked to sander (recommended).
Details about QUICK are in chapter 9 and QM/MM simulations via sander and QUICK are described in sec-
tion 10.3 below.

4. ab initio QM/MM simulations are also available using the GPU-accelerated TeraChem code as the QM
engine. TeraChem supports HF, DFT, and post-Hartree-Fock calculations such as CI and CASSCE, including
at the excited states. Details about running QM/MM simulations with TeraChem are provided at section 10.4.

The built-in semi-empirical QM/MM support was written by Ross Walker and Mike Crowley, [329] based origi-
nally on public-domain MOPAC codes of J.J.P. Stewart. The QM/MM generalized Born implementation uses the
model described by Pellegrini and Field[365] while regular QM/MM Ewald support is based on the work of Nam et
al.[366] with QM/MM PME support based on the work of Walker et al.[329]. SCC-DFTB support was written by
Gustavo Seabra, Ross Walker and Adrian Roitberg,[330] and is based on earlier work of Marcus Elstner.[331, 332]
The extension for DFTB3 was written by Andreas Goetz. The interface to external QM packages [367]was orig-
inally developed by Andreas Goetz but many others have contributed in the meantime. Vinicius Cruzeiro has
coupled Amber to QUICK [368]via the API that was developed by Madushanka Manathunga. Vinicius Cruzeiro
implemented a faster QM/MM interface with TeraChem using TCPB-cpp (see section 10.4).

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

When running a QM/MM simulation in sander the system is partitioned into two regions, a QM region consisting
of the atoms defined by either the gmmask or igmatoms keyword, and a MM region consisting of all the atoms that
are not part of the QM region. For a typical protein simulation in explicit solvent the number of MM atoms will
be much greater than the number of QM atoms. Either region can contain zero atoms, giving either a pure QM
simulation or a standard classical simulation. For periodic simulations, the quantum region must be compact, so
that the extent (or diameter) of the QM region (in any direction) plus twice the QM/MM cutoff must be less than
the box size. Hence, you can define an "active site" to be the QM region, but in most cases could not ask that
all cysteine residues (for example) be quantum objects. The restrictions are looser for non-periodic (gas-phase
or generalized Born) simulations, but the codes are written and tested for the case of a single, compact quantum
region.

159

10. QM/MM calculations

The partitioned system is characterized by an effective Hamiltonian which operates on the system’s wavefunc-
tion ¥, which is dependent on the position of the MM and QM nuclei, to yield the system energy E,y:

Hepp¥ (xe,xomXmm) = Eerr(Xom, Xpm)Y (Xes Xoms Xmm) (10.1)

The effective Hamiltonian consists of three components - one for the QM region, one for the MM region and a
term that describes the interaction of the QM and MM regions, implying that likewise the energy of the system can
be divided into three components. If the total energy of the system is re-written as the expectation value of H, ¢
then the MM term can be removed from the integral since it is independent of the position of the electrons:

Eorr = (¥|Hom + Hopmm W) + Evim (10.2)

In the QM/MM implementation in sander, Ep is calculated classically from the MM atom positions using
the Amber or CHARMM force field equation and parameters, whereas Hpy is evaluated using the chosen QM
method.

The interaction term Hgyy /1y is more complicated. By default, sander uses an electrostatic embedding scheme
(also referred to as additive scheme) in which the interaction of the MM point charges with the electrons of the
QM system as well as the interaction between the MM point charges and the QM nuclei (atomic cores for semi-
empirical methods) is explicitly taken into account. In other words, the MM region polarizes the QM electron
density. For the case where there are no covalent bonds between the atoms of the QM and MM regions the
interaction Hamiltonian is thus the sum of an electrostatic term and a Lennard-Jones (VDW) term and can be
written as

Hoyymm = Y. Y, | Omhetectron (Xe,Xpanr) — QmZgheore (Xom, Xaar) + <r]Az - j)] (10.3)
q m qm qm
where the subscripts e, m and g refer to the electrons, the MM nuclei and the QM nuclei respectively. Here Q,, is
the charge on MM atom m, Z, is the core charge (nucleus minus core electrons) on QM atom g, 4y, is the distance
between atoms ¢ and m, and A and B are Lennard-Jones interaction parameters. For systems that have covalent
bonds between the QM and MM regions, the situation is more complicated, as discussed later.
A more approximate form of the interaction term Hyyy /1 1s referred to as mechanical embedding (or subtractive
QM/MM scheme). In this case the interactions between the QM and the MM region are obtained within the same
classical approximation that is used for the MM region, that is

Hovmm =YY, [Q;”Qq+ (rlAzrﬁBﬂ (10.4)
qg m qm gm gm

where Q, is the classical MM point charge assigned to an atom in the QM region. Mechanical embedding is useful

to impose steric constraints on the embedded QM system, however, the electron density is not polarized by the

MM environment. An additional complication of this approach is that the point charges that are assigned to the

atoms in the QM region have to represent the electrostatic potential of the QM region during the whole course of

a QM/MM simulation.

If one evaluates the expectation values in Eq. 10.2 over a single determinant built from molecular orbitals

9 =Y cij; (10.5)
J

where the ¢;; are molecular orbital coefficients and the); are atomic basis functions, the total energy depends upon
the ¢;; and on the positions xsys and xgy of the atoms. The energy is obtained by setting dE, s /dc;; to zero which
leads to a self-consistent (SCF) procedure to determine the ¢;;, (with a modified Fock matrix that contains the
electric field arising from the MM charges in the case of electrostatic embedding). Once the energy is known, the
forces on the atoms can be obtained by taking the derivative of the energy expression with respect to the positions
of the QM and MM atoms.

The main subtlety that arises in the case of electrostatic embedding is that, for a periodic system, there are
formally an infinite number of QM/MM interactions; even for a non-periodic system, the (finite) number of such

160

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

interactions may be prohibitively large. These problems are addressed in a manner analogous to that used for pure
MM systems: a PME approach is used for periodic systems, and a (large) cutoff may be invoked for non-periodic
systems. Some details are discussed below.

10.1.1. The QM/MM interface and link atoms

The sections above dealt with situations where there are no covalent bonds between the QM and MM regions. In
many protein simulations, however, it is necessary to have the QM/MM boundary cut covalent bonds, and a number
of additional approximations have to be made. There are a variety of approaches to this problem, including hybrid
orbitals, capping potentials, and explicit link atoms. The last option is the method available in sander.

There are a number of ways to implement a link atom approach that deal with the way the link atom is positioned,
the way the forces on the link atom are propagated, and the way non-bonding interactions around the link atom are
treated. Each time an energy or gradient calculation is to be done, the link atom coordinates are re-generated from
the current coordinates of the QM and MM atoms making up the QM-MM covalent pair. The link atom is placed
along the bond vector joining the QM and MM atom, at a distance d; gy from the QM atom. By default d; g is
set to the equilibrium distance of a methyl C-H atom pair (1.09 A) but this can be set in the input file. The default
link atom type is hydrogen, but this can also be specified as an input.

Since the link atom position is a function of the coordinates of the "real" atoms, it does not introduce any new
degrees of freedom into the system. The chain rule is used to re-write forces on the link atom itself in terms
of forces on the two real atoms that define its position. This is analogous to the way in which "extra points" or
"lone-pairs" are handled in MM force fields.

The remaining details of how the QM-MM boundary is treated are as follows: for the interactions surrounding
the link atom, the MM bond term between the QM and MM atoms is calculated classically using the classical
force field parameters, as are any angle or dihedral terms that include at least one MM atom. The Lennard-Jones
interactions between QM-MM atom pairs are calculated in the same way as described in the section above with
exclusion of 1-2 and 1-3 interactions and scaling of 1-4 interactions. What remains is to specify the electrostatic
interactions between QM and MM atoms around the region of the link atom.

A number of different schemes have been proposed for handling link-atom electrostatics. Many of these have
been tested or calibrated on (small) gas-phase systems, but such testing can neglect some considerations that are
very important for more extended, condensed-phase simulations. In choosing our scheme, we wanted to ensure
that the total charge of the system is rigorously conserved (at the correct value) during an MD simulation. Further,
we strove to have the Mulliken charge on the link atom (and the polarity of its bond to the nearest QM atom)
adopt reasonable values and to exhibit only small fluctuations during MD simulations. Link atoms interact with
the MM field in exactly the same way as regular QM atoms. That is they interact with the electrostatic field due
to all the MM atoms that are within the cutoff, with the exception of the MM link pair atoms (MM atoms that are
bound directly to QM atoms). VDW interactions are not calculated for link atoms. These are calculated between
all real QM atoms and all MM atoms, including the MM link pair atoms. For Generalized Born simulations the
effective Born radii for the link atoms are calculated using the intrinsic radii for the MM link pair atoms that they
are replacing.

In the case of electrostatic embedding the atoms that make up the QM region (including the MM link pair
atom) have their charges from the prmtop file essentially replaced with Mulliken charges. Hence it is important to
consider the issue of charge conservation. The QM region (including the link atoms) by definition must have an
integer charge. This is defined by the &qmmm namelist variable gmcharge. If the MM atoms (including the MM
link pair atoms) that make up the QM region have prmtop charges that sum to the value of gmcharge then there is
no problem. If not, there are two options for dealing with this charge, defined by the namelist variable adjust_g. A
value of 1 will distribute the difference in charge equally between the nearest nlink MM atoms to the MM link pair
atoms. A value of 2 will distribute this charge equally over all of the MM atoms in the simulation (excluding MM
link pair atoms).

10.1.2. A reformulated QM/MM interface for PM3

In the current version of Amber, a reformulated QM-MM core-charge potential (denoted as PM3/MM*) has
been implemented. This reformulated potential scales the interaction between a QM core and a MM charge for the

161

10. QM/MM calculations
purpose of better description of the geometry and energy at the QM-MM interface:[369]

Eﬁ&e/MM = ZaGm (SaSasSmSm) [1 + |Zm . (—e’fla'Rwﬂ +ef§"RW")} (10.6)
m

where Z, is the effective core charge of QM atom a, g, is the partial charge on MM atom m, s, is an s orbital
on the QM atom, s, is a notional s orbital on the MM atom, R, is the QM-MM interatomic distance, and f}'
and f3 are exponential scale factors which depend on the QM atom only. Optimal values for fi' and f3' were
determined based on the PM3 Hamiltonian, and are available for H, C, N and O atoms (so the QM region is
limited to these four atoms; but the MM region is not restricted). Application of this reformulated potential shows
improved prediction of geometry and interaction energy at the QM-MM interface for hydrogen bonded small
molecule complexes typical of biomolecular interactions, without significantly impacting the modeling of other
interaction types, such as dispersion dominant complexes.[369] In a QM/MM calculation, giving gmmm_int=3
along with gm_theory=PM?3 will invoke this potential.

Based on PM3/MM*, further developments to the semi-empirical QM/MM coupling method have been intro-
duced — PM3/MMX2 (gmmm_int=4 and gm_theory=PM3) — which shares the same QM core-MM charge equation
with the PM3/MM* model. In addition, a QM parameter, Py, is introduced to each type of QM atoms in order
to "fine-tune" the QM electron-MM charge interaction (Eq. 10.7). Although p,,,, is a parameter for QM atom, the
subscript mm emphasizes that it is a MM-related property (eqn 3.xx). Parameters are currently available for H, C,
N, O and S QM atoms (manuscript in preparation).

Egjt)/;;jr\an = _CIm(.uavaasmsm) = ZZ [M[(jlkM[er] (10.7)
Ly U

where

2la _12
} / (10.8)

[Mlaale k] 21,[4,-[,,, Z Z [pl +pmm)

10.1.3. Generalized Born implicit solvent

The implementation of Generalized Born (GB) for QM/MM calculations is based on the method described by
Pellegrini and Field.[365] Here, the total energy is taken to be E, sy from Eq. 10.2 plus E,, from Eq. 4.2. In Egy,,
charges on the QM atoms are taken to be the Mulliken charges determined from the quantum calculation; hence
these charges depend upon the molecular orbital coefficients c;; as well as the positions of the atoms.

As with conventional QM/MM simulations, one then solves for the c;; by setting dE,r/dc;; = 0. This leads
to a set of SCF equations with a Fock matrix modified not only by the presence of MM atoms (as in "ordinary"
QM/MM simulations), but also modified by the presence of the GB polarization terms. Once self-consistency is
achieved, the resulting Mulliken charges can be used in the ordinary way to compute the GB contribution to the
total energy and forces on the atoms.

10.1.4. Ewald and PME

The support for long range electrostatics in QM/MM calculations using electrostatic embedding is based on a
modification of the Nam, Gao and York Ewald method for QM/MM calculations.[366] This approach works in a
similar fashion to GB in that Mulliken charges are used to represent long range interactions. Within the cutoff,
interactions between QM and MM atoms are calculated using a full multipole treatment. Outside of the cutoff the
interaction is based on pairwise point charge interactions. For semiempirical NDDO-type methods this leads to a
slight discontinuity at the QM/MM cutoff boundary and thus a small energy drift during QM/MM MD simulations
in the NVE ensemble. This energy drift can be avoided by using a switching function at the cutoff (see below).

The implementation in Ref [366] uses an Ewald sum for both QM/QM and QM/MM electrostatic interactions.
This can be expensive for large MM regions, and thus sander uses a modification of this method by Walker and
Crowley[329] that uses a PME model (rather than an Ewald sum) for QM/MM interactions. This is controlled by
the gm_pme variable discussed below.

162

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

When running QM/MM Ewald or PME simulations in sander, if QM multipoles are involved in QM-MM
interactions (NDDO methods), a discontinuity in the QM-MM electrostatic potential occurs at the cutoff distance
due to the sudden change in the potential function (the difference between Eqgs. 10.9 and 10.10) , thus resulting in
energy conservation problems in the simulation.

E&;ﬁ;{df = —gm(UaVa,SmSm) + Zaqm (SaSa, SmSm) (1 + scale) (10.9)

Er>cutoff _4m (Za B Zc,u,u)

ot = - (10.10)

This problem can be avoided by applying a switching function to smoothly connect the two different potentials.
The QM/MM electrostatic potential using a switching function can thus be written as:

The switching function can be turned on or off via the &gmmm namelist variable gmmm_switch, for details see
section 10.1.6 below.

10.1.5. Hints for running successful QM/MM calculations
Required Parameters and Prmtop Creation

QM/MM calculations without link atoms require mass, charges, van der Waals and GB radii in the prmtop
file. All bonds, angles, and dihedrals parameters involving QM atoms are neglected. In the case of electrostatic
embedding the charges are also neglected. (Note that when SHAKE is applied to the QM reg, the bonds are
constrained to the ideal MM values, even when these are part of a QM region; hence, for this case, it is important
to have correct bond parameters in the QM region.) The simplest general prescription for setting things up is to
use antechamber and LEaP to create a reference force field, since "placeholders" are required in the prmtop file
even for things that will be neglected. This also allows you to run comparison simulations between pure MM and
QM/MM simulations, which can be helpful if problems are encountered in the QM/MM calculations.

The use of antechamber to construct a pure MM reference system is even more useful when there are link atoms,
since here MM parameters for bonds, angles and dihedrals that cross the QM/MM boundary are also needed.

Choosing the QM region

There are no good universal rules here. Generally, one might want to have as large a QM region as possible,
but having more than 80-100 atoms in the QM region will lead to simulations that are very expensive. One should
also remember that for many features of conformational analysis, a good MM force field may be better than a
semiempirical or DFTB quantum description. In choosing the QM/MM boundary, it is better to cut non-polar
bonds (such as C-C single bonds) than to cut unsaturated or polar bonds. Link atoms are not placed between bonds
to hydrogen. Thus cutting across a C-H bond will NOT give you a link atom across that bond. (This is not currently
tested for in the code and so it is up to the user to avoid such a situation.) Furthermore, link atoms are restricted
to one per MM link pair atom. This is tested for during the detection of link atoms and an error is generated if
this requirement is violated. This would seem to be a sensible policy otherwise you could have two link atoms too
close together. See the comments in gm_link_atoms.f for a more in-depth discussion of this limitation.

Choice of electrostatic cutoff

The implementation of the non-bonded cut off in QM/MM simulations is slightly different than in regular MM
simulations. The cut off between MM-MM atoms is still handled in a pairwise fashion. However, for QM atoms
any MM atom that is within gmcut of ANY QM atom is included in the interaction list for all QM atoms. This
means that the value of gmcut essentially specifies a shell around the QM region rather than a spherical shell
around each individual QM atom. Ideally the cut off should be large enough that the energy as a function of the
cutoff has converged. For non-periodic, generalized Born simulations, a cutoff of 15 to 20 A seems sufficient in
some tests. (Remember that long-range electrostatic interactions are reduced by a factor of 80 from their gas-phase

163

10. QM/MM calculations

counterparts, and by more if a nonzero salt concentration is used.) For periodic simulations, the cutoff only serves
to divide the interactions between "direct”" and "reciprocal” parts; as with pure MM calculations, a cutoff of 8 or 9
A is sufficient here.

Parallel simulations

The built-in QM/MM implementation currently supports execution in parallel via the message passing interface
(MPI), however, the implementation is not fully parallel. At present all parts of the QM simulation are parallel
except the density matrix build and the matrix diagonalisation. For small QM systems these two operations do
not take a large percentage of time and so acceptable scaling can be seen to around 8 CPU cores (depending on
type of CPU and/or interconnect speed between compute nodes). For large QM systems the matrix diagonalisation
time will dominate and so the scaling will not be as good. In this case it may be beneficial to choose a LAPACK
diagonalization routine in combination with a threaded library such as the Intel Math Kernel Library (MKL). For
details on how to choose the diagonalization routine see Section 8.3. The number of threads to be used for the
diagonalization is set via an environment variable of the operating system (typically OMP_NUM_THREADS).

10.1.6. General QM/MM &gmmm Namelist Variables

An example input file for running a simple QM/MM MD simulation is shown here:

&cntrl

imin=0, nstlim=10000, ! Perform MD for 10,000 steps
dt=0.002, ! 2 fs time step

ntt=1, tempi=0.1, temp0=300.0, ! Berendsen temperature control
ntb=1, ! Constant volume periodic boundaries
ntf=2, ntc=2, ! Shake hydrogen atoms

cut=8.0, ! 8 angstrom classical non-bond cut off
ifgnt=1 ! Switch on QM/MM coupled potential

/

&gmmm

gmmask="':753", ! Residue 753 should be treated using OM
gmcharge=-2, ! Charge on QM region is -2

gm_theory='PM3', ! Use the PM3 semi-empirical Hamiltonian

gmcut=8.0 ! Use 8 angstrom cut off for QM region

/

The &gmmm namelist contains variables that allow you to control the options used for a QM/MM simulation. This
namelist must be present when running QM/MM simulations and at the very least must contain either the igmatoms
or gmmask variable which define the region to be treated quantum mechanically. If ifgnt is set to zero then the
contents of this namelist are ignored.

For the QM region definition specify one of either igmatoms or gmmask. Link atoms will be added automatically
along bonds (as defined in the prmtop file) that cross the QM/MM boundary.

igmatoms comma-separated integer list containing the atom numbers (from the prmtop file) of the atoms to
be treated quantum mechanically.

gmmask Mask specifying the quantum atoms. E.g. :1-2, = residues 1 and 2. See mask documentation for
more info.
gmcut Specifies the size of the electrostatic cutoff in Angstroms for QM/MM electrostatic interactions.

By default this is the same as the value of cut chosen for the classical region, and the default
generally does not need to be changed. Any classical atom that is within gmcut of any QM atom
is included in the pair list. For PME calculations, this parameter just affects the division of forces
between direct and reciprocal space. Note: this option only effects the electrostatic interactions
between the QM and MM regions. Within the QM region all QM atoms see all other QM atoms

164

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

regardless of their separation. QM-MM van der Waals interactions are handled classically, using
the cutoff value specified by cut.

gm_ewald This option specifies how long range electrostatics for the QM region should be treated.

=0 Use a real-space cutoff for QM-QM and QM-MM long range interactions. In this situation
QM atoms do not see their images and QM-MM interactions are truncated at the cutoff. This
is the default for non-periodic simulations.

=1 (default) Use PME or an Ewald sum to calculate long range QM-QM and QM-MM electro-
static interactions. This is the default when running QM/MM with periodic boundaries and
PME.

=2 This option is similar to option 1 but instead of varying the charges on the QM images as the
central QM region changes the QM image charges are fixed at the Mulliken charges obtained
from the previous MD step. This approach offers a speed improvement over gm_ewald=1,
since the SCF typically converges in fewer steps, with only a minor loss of accuracy in the
long range electrostatics. This option has not been extensively tested, although it becomes
increasingly accurate as the box size gets larger.

kmaxgx, y, z Specifies the maximum number of kspace vectors to use in the X, y and z dimensions respectively
when doing an Ewald sum for QM-MM and QM-QM interactions. Higher values give greater
accuracy in the long range electrostatics but at the expense of calculation speed. The default value
of 8 should be optimal for most systems.

ksqmaxq Specifies the maximum number of K squared values for the spherical cut off in reciprocal space
when doing a QM-MM Ewald sum. The default value of 100 should be optimal for most systems.

gm_pme Specifies whether a PME approach or regular Ewald approach should be used for calculating the
long range QM-QM and QM-MM electrostatic interactions.

=0 Use aregular Ewald approach for calculating QM-MM and QM-QM long range electrostatics.
Note this option is often much slower than a pme approach and typically requires very large
amounts of memory. It is recommended only for testing purposes.

=1 (default) Use a QM compatible PME approach to calculate the long range QM-MM elec-
trostatic energies and forces and the long range QM-QM forces. The long range QM-QM
energies are calculated using a regular Ewald approach.

gmmm_switch Specifies whether a switching function shall be used at the cutoff for long range electrostatics
(applies only to NDDO methods). The lower and higher boundaries of the switching function are
user definable, see r_switch_lo and r_switch_hi.

=0 (default). Do not use a switching function. This leads to slight discontinuities in the potential
at the cut off and thus an energy drift in NVE simulations.

=1 Use a switching function. See also variables r_switch_hi and r_switch_lo.

r_switch_hi Specifies the upper boundary of the switching function in A (see gmmm_switch). Defaults to
gmcut.

r_switch_lo Specifies lower boundary of the switching function in A (see gmmm_switch). Defaults to
r_switch_hi - 2.

gqmgb Specifies how the QM region should be treated with generalized Born.

=2 (default) As described above, the electrostatic and "polarization" fields from the MM charges
and the exterior dielectric (respectively) are included in the Fock matrix for the QM Hamil-
tonian.

165

10. QM/MM calculations

gm_theory

gmmm_int

amshake

= 3 This is intended as a debugging option and should only be used for single point calculations.
With this option the GB energy is calculated using the Mulliken charges as with option 2
above but the fock matrix is NOT modified by the GB field. This allows one to calculate what
the GB energy would be for a given structure using the gas phase quantum charges. When
combined with a simulation using gmgb=2, this allows the strain energy from solvation to
be calculated.

Level of theory to use for the QM region of the simulation. (Hamiltonian). Default is to use the
semi-empirical hamiltonian PM3. See the Section 8.3 for details.

Controls the way in which QM/MM interactions are handled in the direct space QMMM sum. This
controls only the electrostatic interactions. VDW interactions are always calculated classically
using the standard 6-12 potential. Note: with the exception of gmmm_int=0 DFTB calculations
(qm_theory=DFTB) always use a simple Mulliken charge - resp charge interaction and the value
of gmmm_int has no influence.

= 0 This turns off all electrostatic interaction between QM and MM atoms in the direct space sum.
Note QM-MM VDW interactions will still be calculated classically.

=1 (default) QM-MM interactions in direct space are calculated in the same way for all of the
various semi-empirical hamiltonians. The interaction is calculated in an analogous way to
the the core-core interaction between QM atoms. The MM resp charges are included in the
one electron hamiltonian so that QMcore-MMResp and QMelectron-MMResp interactions
are calculated.

=2 This is the same as for 1 above except that when AM1, PM3 or Hamiltonians derived from
these are in use the extra Gaussian terms that are introduced in these methods to improve
the core-core repulsion term in QM-QM interactions are also included for the QM-MM in-
teractions. This is the equivalent to the QM-MM interaction method used in CHARMM and
DYNAMO. It tends to slightly reduce the repulsion between QM and MM atoms at small
distances. For distances above approximately 3.5 angstroms it makes almost no difference.

= 3 Using this along with gm_theory=PM3 invokes a reformulated QM core-MM charge potential
at the QM-MM interface (Eq. 10.6). Current parametrization limits the QM region to H, C,
N and O atoms only; MM region is not restricted.[369]

=4 Currently not in use.

=5 Mechanical embedding: The electrostatic interaction between QM and MM atoms is treated
on the same level as within the MM region using the classical force field point charges also for
the QM atoms. The electronic Hamiltonian does not contain the field generated by the MM
region point charges and thus the electron density is not polarized by the MM environment.
Does not work with GB. Not extensively tested in presence of link atoms.

Controls whether SHAKE is applied to QM atoms. Using SHAKE on the QM region will allow
you to use larger time steps such as 2 fs with NTC=2. If, however, you expect bonds involving
hydrogen to be broken during a simulation you should not SHAKE for the QM region. WARN-
ING: the SHAKE routine uses the equilibrium bond lengths as specified in the prmtop file to reset
the atom positions. Thus while bond force constants and equilibrium distances are not used in the
energy calculation for QM atoms the equilibrium bond length is still required if QM SHAKE is
on.

=0 Do not shake QM H atoms.
=1 Shake QM H atoms if SHAKE is turned on (NTC>1) (default).

printdipole Controls whether the dipole moment shall be printed every ntpr steps.

166

=0 Do not print the dipole moment (default).
=1 Print the dipole moment of the QM region.

writepdb

vsolv

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

= 2 Print the total dipole moment of the QM and MM region.

=0 Do not write a PDB file of the selected QM region. (default).

=1 Write a PDB file of the QM region. This option is designed to act as an aid to the user to
allow easy checking of what atoms were included in the QM region. When this option is set
a crude PDB file of the atoms in the QM region will be written on the very first step to the
file gmmm_region.pdb.

Controls whether solvent molecules shall be included into the QM region (requires settings in the
&vsoly namelist; see also section 10.8 on adaptive solvent QM/MM simulations, in particular the
namelist information in section 10.8.2.2).

=0 Do not include solvent molecules into the QM region (default).
=1 Include solvent molecules via simple solvent switching (requires &vsolv namelist).

=2 Adaptive solvent QM/MM with fixed number of solvent molecules in A and T regions (re-
quires &vsolv and &adgmmm namelists).

=3 Adaptive solvent QM/MM with fixed size of A and T regions (requires &vsolv and &adgmmm
namelists).

In addition to the above parameters, the following variables may be set, as described in Section 8.3:

qm_theory, dftb_disper, dftb_3rd_order , dftb_chg , dftb_telec , dftb_maxiter , qmcharge, spin, qmgmdx, ver-
bosity, tight_p_conv, scfconv, pseudo_diag, pseudo_diag_criteria, diag_routine, printcharges, qxd, parameter_file,
peptide_corr, and itrmax.

10.1.7. Link Atom Specific QM/MM &gmmm Namelist Variables

The following options go in the &gmmm namelist and control the link atom behaviour.

1nk_dis

1nk_method

Distance in A from the QM atom to its link atom. Currently all link atoms must be placed at the
same distance. A negative value of Ink_dis specifies that the link atom should be placed directly
on top of the MM link pair atom. In this case the distance of the link atom from the QM region
changes as a function of time and the actual value of Ink_dis is ignored. Additionally this means
that not all link atoms will be placed at the same distance. Negative values of Ink_dis will work
with regular link atoms, such as hydrogen, but are really intended for use with pseudo atom /
capping approaches. Default = 1.09A.

This defines how classical valence terms that cross the QM/MM boundary are dealt with.

=1 (Default) in this case any bond, angle or dihedral that involves at least one MM atom, including
the MM link pair atom is included. This means the following (where QM = QM atom, MM
= MM atom, MML = MM link pair atom.):

Bonds = MM-MM, MM-MML, MML-QM
Angles = MM-MM-MM, MM-MM-MML, MM-MML-QM, MML-QM-QM

Dihedrals = MM-MM-MM-MM, MM-MM-MM-MML, MM-MM-MM-MML-QM, MM-
MML-QM-QM, MML-QM-QM-QM
=2 Only include valence terms that include a full MM atom, that is, count the MM link pair atom
as effectively being a QM atom. This option is designed to be used in conjunction with a
pseudo atom / capping type approach where the link atom is parameterized specifically to
behave like a uni-valent version of the MM atom it replaces. This option gives the following
interactions:

Bonds = MM-MM, MM-MML
Angles = MM-MM-MM, MM-MM-MML, MM-MML-QM

167

10. QM/MM calculations

Dihedrals = MM-MM-MM-MM, MM-MM-MM-MML, MM-MM-MML-QM, MM-
MML-QM-QM

Ink_atomic_no The atomic number of the link atoms. This selects what element the link atoms are to be.
Default = 1 (Hydrogen). Note this must be an integer and an atomic number supported by the
chosen QM theory.

adjust_g This controls how charge is conserved during a QMMM calculation involving link atoms. When
the QM region is defined the QM atoms and any MM atoms involved in link bonds have their
RESP charges zeroed. If the sum of these RESP charges does not exactly match the value of
gmcharge then the total charge of the system will not be correct.

=0 No adjustment of the charge is done.

=1 The charge correction is applied to the nearest nlink MM atoms to MM atoms that form link
pairs. Typically this will be any MM atom that is bonded to a MM link pair atom (a MM
atom that is part of a QM-MM bond). This results in the total charge of QM+QMIlink+MM
equaling the original total system charge from the prmtop file. Requires natom-nquant-nlink
>= nlink and nlink>0.

=2 (default) - This option is similar to option 1 but instead the correction is divided among all
MM atoms (except for those adjacent to link atoms). As with option 1 this ensures that the
total charge of the QM/MM system is the same as that in the prmrop file. Requires natom-
nquant-nlink >= nlink.

10.1.8. Charge-dependent exchange-dispersion corrections of vdW interactions

The sgm program provides a new charge-dependent energy model consisting of van der Waals (vdW) and polar-
ization interactions between the quantum mechanical (QM) and molecular mechanical (MM) regions in a combined
QM/MM calculation. vdW interactions are commonly treated using empirical Lennard-Jones (L-J) potentials,
whose parameters are often chosen based on the QM atom type (e.g., based on hybridization or specific covalent
bonding environment). This strategy for determination of QM/MM nonbonding interactions becomes tedious to
parametrize and lacks robust transferability. Problems occur in the study of chemical reactions where the "atom
type" is a complex function of the reaction coordinate. This is particularly problematic for reactions, where atoms
or localized functional groups undergo changes in charge state and hybridization.

In sgm, this charge-dependent energy model was implemented based on a scaled overlap model for repulsive
exchange and attractive dispersion interactions that is a function of atomic charge. The model is chemically
significant since it properly correlates atomic size, softness, polarizability, and dispersion terms with minimal
one-body parameters that are functions of the atomic charge[333].

This “Charge-dependent exchange-dispersion corrections of vdW interactions” can be invoked by the
“gxd=.true.” switch in the &gmmm namelist. Note that this model currently does not have any effect on pure
quantum calculations through sgm, the qxd correction is only added to QM/MM interactions in sander. The de-
fault values of qxd parameters are set to reproduce the regular L-J interactions of typical atom types (HC for H,
C* for C, N for N, OW for O, and parameters for F and Cl are optimized[333]) when the charge dependence
parameters are zero. There are eight qxd parameters (symbols used in the reference[333] are indicated in the
parentheses): qxd_s (s), qxd_z0 (£(0)), gxd_zq ({,), gxd_dO (et;), gxd_dq (3 x B), qxd_q0 (@), gxd_qq (3 x B),
and qxd_neff (N, (0)). All parameters can be modified through external user-defined parameter files (see the
usage of “parameter_file’ in Section 8.3).

10.2. Interface for ab initio and DFT methods

In addition to the built-in semi-empirical methods sander also supports QM/MM simulations with ab initio wave
function theory (WFT) and density functional theory (DFT) potentials via an interface to external QM software
packages[367]. The implementation makes use of the existing QM/MM infrastructure that has been developed

168

10.2. Interface for ab initio and DFT methods

earlier for the semi-empirical methods. Thus, much of AMBER’s previous QM/MM functionality such as the user-
friendly link atom approach are available and the implementation remains simple and transparent to use without
any significant additional steps in the simulation setup as compared to semi-empirical QM/MM simulations. At
present the interface supports several well-known and widely used QM software packages. Mechanical embedding
is available for

* ADF (Amsterdam Density Functional) [370, 371]
* GAMESS-US [372, 373]
* NWChem [374]

Mechanical and electrostatic embedding is available for
e Gaussian [375]
e Orca [376]
* Q-Chem[377][377]

e TeraChem [378]

QUICK [358-364]

MRCC [379, 380]

Fireball [381]

While ADF, Gaussian, Q-Chem and TeraChem are commercial programs, GAMESS-US, NWChem, Orca,
QUICK, MRCC and Fireball are available at no cost for academic research. TeraChem has a demo version freely
available at http://www.petachem.com. In this version, each QM calculation can be ran up to 15 minutes using up
to 2 GPUs; it supports QM/MM simulations with AMBER (see section 10.4). QUICK is available as standalone
QM package but also distributed with AmberTools (see chapter 9). The QUICK library can be linked against
sander and we recommend using this API based version over the file based interface (FBI), for details see section
10.3. Fireball, which implements a density functional theory-based tight binding approach, requires compilation of
sander with special flags, see the section on Fireball below for details. The interface has been written in a modular
fashion and is easily extensible to support other QM software packages. It is our intention to keep adding support
for other software packages. If you are interested in interfacing a specific program, please do not hesitate to contact
us.

The interface was developed by Andreas Goetz (SDSC, UCSD) with help of Matthew Clark (SDSC) and support
by Ross Walker (SDSC, UCSD). Thanks are due to Christine Isborn and Todd Martinez (Stanford University) for
modifications to the TeraChem code to support this interface, to Mark Williamson (University of Cambridge) for
an initial version of the module that supports NWChem, Bence Hégely for contributing code that supports MRCC,
and Jesus Mendieta and José Ortega Mateo for contributing code that supports Fireball. If you make use of this
interface, please cite the following work:

* A. W. Gotz, M. A. Clark, R. C. Walker, An extensible interface for QM/MM molecular dynamics simulations
with AMBER, J. Comput. Chem. 35, 95-108 (2014), DOI: 10.1002/jcc.23444

If you are doing QM/MM simulations with QUICK, please cite in addition the following work:

* V. W. D. Cruzeiro, M. Manathunga, K. M. Merz, A. Gotz, Open-Source Multi-GPU-Accelerated
OM/MM Simulations with AMBER and QUICK. J. Chem. Inf. Model. 61, 2019 (2021), DOI:
10.1021/acs.jcim.1c00169

e Manathunga, M.; Aktulga, H. M.; Gotz, A. W.; Merz, K. M. Quantum Mechanics/Molecular Mechanics
Simulations on NVIDIA and AMD Graphics Processing Units. J. Chem. Inf. Model. 63, 711-717 (2023),
DOI: 10.1021/acs.jcim.2c01505

169

10. QM/MM calculations

If you are using the client/server interface with TeraChem (using TCPB-cpp, see section 10.4), the recommended
interface, please cite in addition the following work:

* V. W. D. Cruzeiro, Y. Wang, E. Pieri, E. G. Hohenstein, T. J. Martinez, TeraChem protocol buffers (TCPB):
Accelerating QM and QM/MM simulations with a client—server model, J. Chem. Phys. 158, 044801 (2023),
DOI: 10.1063/5.0130886

If you are using the file-based interface with TeraChem, please cite in addition the following work:

e C. M. Isborn, A. W. Gotz, M. A. Clark, R. C. Walker, T. J. Martinez, Electronic Absorption Spectra from
MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of
Photoactive Yellow Protein, J. Chem. Theory Comput. 8, 5092-5106 (2012), DOI: 10.1021/ct3006826

If you are using the interface with the MRCC code, please cite in addition the following work:

» B. Hégely, F. Bogar, G. G. Ferenczy, M. Kallay, A QM/MM program for calculations with frozen localized
orbitals based on the Huzinaga equation, Theoret. Chem. Acc. 134, 132 (2015), DOI: 10.1007/978-3-662-
49825-5_16

If you are using the interface with the Fireball code, please cite in addition the following work:

* J. I. Mendieta-Moreno, R. C. Walker, J. P. Lewis, P. Gomez-Puertas, J. Mendieta, J. Ortega, FIREBALL/AM-
BER: An efficient local-orbital DFT QM/MM method for biomolecular systems, J. Chem. Theory Comput.
10, 2185-2193 (2014), DOI: 10.1021/ct500033w

Access to QM methods not available within Amber is also possible via the Amber interface to the PUPIL simulation
framework. For details, see refs. 382, 383. In what follows we will describe the QM/MM interface that is native to
sander.

10.2.1. Theory

As described in section 10.1, the Hamiltonian of a system that is partitioned into a QM region that is treated
with WFT and a classical region that is treated with MM consists of three components and the energy associated
with this Hamiltonian is obtained as the corresponding expectation value

E = (¥Y|m + Hom/mum|Y) + Emum- (10.11)

A QM/MM calculation therefore requires not only to choose the WFT used in the QM region and the MM model
used for the MM region, but in addition also the form of the QM/MM Hamiltonian which describes the interaction
between the quantum and the classical region. The most simple approach is to neglect any electronic coupling
between the QM and the MM system and include only the classical non-bonded van der Waals (vdW) and electro-
static interactions between the QM and the MM atoms. This is useful to impose steric constraints on the embedded
QM system and commonly referred to as mechanical embedding. In most cases, however, it is better to allow for
an explicit polarization of the QM system due to the presence of the point charges on the MM atoms. This is
referred to as electronic embedding and the resulting interaction energy becomes

romic ' Za0B
Eeleclromc — Z /P(l‘) QA dr+
M /MM
M/ AEMM * Ir —Ra| AcQiBemm Rap

12 6
Rup Rup
This QM/MM energy expression also holds for DFT and the terms represent, in order, the electrostatic interaction

between the QM electron density and the MM point charges, the electrostatic interation between the QM point
charge nuclei and the MM point charges, and the van der Waals repulsion between the QM and MM atoms.

(10.12)

+)Y e
AeQM,.BeEMM

170

10.2. Interface for ab initio and DFT methods

The forces acting on an atom A in a QM/MM calculation are given in terms of derivatives of the total energy
expression (10.11) with respect to the Cartesian coordinates of the atom,

Fa = —VaEqu — VaEqumum — VaEmm, (10.13)

where V4 = d /R4 = (d/9dR},0/IR),d/IRY). If a QM and an MM program are coupled for QM/MM calcula-
tions, the QM program will calculate the QM forces —V 4Eqys acting on QM atoms and the MM program the MM
forces —V 4 Enmypr acting on the MM atoms. All that remains, is to calculate the forces acting on QM and MM atoms
due to the QM/MM interaction energy, —VaEqu/a- For mechanical embedding this will be entirely handled by
the MM program. For electronic embedding the forces are given as

I Ry—R d
VAEng/IL;IrlZnA/IIC:ZA Z M+ Z pr) Qs dr + Z VAV/{‘I!

BEMM Rip pévin/ R4 [r—Ry| BEMM (10.14)
= —ZAEMM(RA)—/p(r)EMM(r)dr+ Z VAVALEZ
BeMM

for the derivatives with respect to the positions of the QM atoms A where Eyyy, is the electric field generated by
the MM point charges and and V/ B is the Lennard-Jones potential from (10.12) and

)

B —Ry) .
vaegiiin =00 ¥ AER . [ow SR D ar i
AcQM AB (10.15)
=—0sEou(Rp)+ Y, VaVid
AEQM

for the derivatives with respect to the positions of the MM atoms B where Eqy is the electric field due to the QM
charge distribution. The contributions to the gradient due to the point charge interactions and due to the interaction
between the MM point charges and the QM electrons is evaluated by the QM program. Some QM programs do not
calculate the forces acting on the MM atoms (point charges) due to the presence of the QM system but in general
are able to return the electric field Eqy at arbitrary points in space which is then used to obtain these forces. The
van der Waals repulsion (Lennard-Jones interaction) between QM and MM atoms is treated by AMBER in the
same way as for semiempirical NDDO-type and DFTB methods.

10.2.2. General Remarks

When using the AMBER interface to external QM software packages for performing WFT or DFT based QM or
QM/MM MD simulations, it is absolutely critical to be aware of the capabilities and limitations of the QM method
to be employed. In particular, QM based MD can be more tricky than MM based MD in the sense that it is more
likely that the QM program can fail for example due to SCF convergence problems. This can be the case if the
geometry of the QM region is far from its ground state equilibrium, for example because a simulation is started
from a bad geometry or performed at high temperature.

We have gone to large efforts and analyzed a large set of test simulations to provide the best default parameters
for the supported QM programs such that forces are computed with sufficient accuracy to guarantee energy coser-
vation for constant energy MD simulations. Of particular importance are SCF convergence and associated integral
neglect thresholds and the size of the grid used for the numerical quadrature of the exchange-correlation (XC)
potential and energy for DFT calculations. However, other than providing appropriate input parameters, AMBER
does not have any control over the external program and it is at the user’s discretion to employ sensible input
parameters for the QM program and to prepare the system such that the simulations are started at a reasonable
starting structure.

In any case we highly recommend to write restart files frequently so that a simulation can be restarted without
loss of much computational time in the case that a simulation should crash. The interface also stores the last in-
and output files of the external QM program during each MD step. Should there be any problems with the QM
program, it is therefore possible to analyze the reasons and take appropriate countermeasures.

171

10. QM/MM calculations

The interface requires data to be exchanged between sander and the QM program. The default operation of the
interface is based on file exchange and system calls and, during each step of a geometry optimization or an MD
simulation, writes an input file for the external program, starts a single point gradient calculation with the external
program, and reads the energy and forces from the external program’s output file (binary ADF checkpoint or
formatted GAMESS, Gaussian, ORCA, QUICK, Q-Chem, MRCC or TeraChem output files). Data communication
using a client/server model is also implemented and currently supported by TeraChem (see section 10.4); this is the
recommended TeraChem interface. An exception is Fireball, which is interfaced as a linked library against sander
(see below). Similarly QUICK is also interfaced as a linked library against sander, which is built by default (see
section 10.3).

10.2.3. Limitations

In principle, all types of simulations that are possible with sander are supported. There are, however, some
restrictions for simulations that require sander to run in parallel, in particular path integral molecular dynam-
ics (PIMD) and replica exchange molecular dynamics (REMD), see the discussion of Parallelization below. The
interface to external QM programs also lacks some features regarding solvent models in comparison to the semiem-
pirical MNDO and DFTB QM/MM implementation that is available in AMBER, the most critical ones are listed
here.

Generalized Born Generalized Born (GB) implicit solvent models are not supported if external QM programs
are used for the QM region.

Particle Mesh Ewald (PME) and Periodic Boundary Conditions The PME approach for treating long-range
electrostatic QM/MM and QM/QM interactions in periodic systems is currently not supported. It is possible to
use periodic boundary conditions but a cutoff is used for the point charges to be included in the QM Hamiltonian
(determined by &gmmm namelist variable gmcut) thus truncating the long-range QM/MM electrostatic interactions
in (10.12). This leads to discontinuities in the potential energy surface and poor energy conservation for MD runs
in the NVE ensemble. The user may consider running non-periodic simulations with a cutoff that is larger than the
system size thus effectively including all interactions.

10.2.4. Performance Considerations

The computational cost of DFT is comparable to Hartree—-Fock (HF) theory which is the simplest WFT method
that serves as zeroth order approximation for more elaborate correlated WFT methods such as Mgller—Plesset per-
turbation theory, configuration interaction theory and coupled cluster theory. The calculations can be accelerated
by using density fitting approaches, sometimes called resolution-of-identity (RI) approximation, which in the case
of DFT with exchange-correlation (XC) functionals that do not require admixture of exact HF-exchange, leads to
speedups of roughly one order of magnitude without compromising the accuracy of the results. Nevertheless, the
computational cost of DFT is in general two to three orders of magnitude higher than that of semiempirical QM
models. We recommend to carefully test the performance of the QM program to choose an optimal number of
processor counts for parallelized QM calculations. QUICK can be executed efficiently on one or multiple GPUs,
providing hight performance for QM/MM MD simulations. Typical simulation performance for typical QM sys-
tem sizes of tens of atoms will be on the order of a few to tens of picoseconds per day, depending on the underlying
QM model chosen.

10.2.5. Parallelization

The MPI parallel executable sander. MPI can be used to run QM/MM MD simulations with external QM software
in which the MM portion of the calculation is parallelized. However, the computational cost of the MM part is
usually small compared to the cost of the QM part. In order to execute the QM part of the calculation in parallel,
the external QM program has to be instructed to do so, as described in the sections below.

In the case of PIMD or REMD simulations that require a separate energy and force evaluation for each group
at each time step, the parallelized executable sanderMPI has to be used. Multiple processes can be launched per

172

10.2. Interface for ab initio and DFT methods

group to parallelize the MM calculations. Care has to be taken to choose the right number of parallel threads in
the external QM program. For example, on a machine with 32 cores, a simulation with 16 beads or replicas can
run the external QM program with 2 threads in parallel to make maximum use of the available processing cores.
If the available processors are spread over multiple nodes, special care has to be taken to ensure that the different
instances of the external QM program are launched on the correct nodes.

It is possible to execute sander.MPI in parallel via MPI while also running MPI or OpenMP parallel versions
of the external QM program. Depending on the MPI implementation, this can, however, fail. In our experience,
MPICH and MVAPICH work well while OpenMPI does not work.

10.2.6. Usage

All that is required to use the interface is a working installation of AMBER and one or more of the supported
QM programs. In order to use the external program from within sander, the &cntrl namelist variable ifgnt = 1
must be set to enable QM calculations and the &gmmm namelist variable gm_theory = ’EXTERN’ must be set to
enable the external interface. The &gmmm namelist variable gmmask or igmatoms is used for selecting the QM
region just as for QM/MM calculations with the semiempirical NDDO-type and DFTB approaches that are
natively available in AMBER. Charge and spin multiplicity for the QM region need to be defined via the variables
gmcharge and spin, respectively, in the &gmmm namelist. For a QM MD simulation, the sander input file
therefore needs to contain

! example input for QM simulation with external QM program
&cntrl

ifgnt = 1, ! switch on QM/MM
/
&qgmmm
gmmask = '@x',
gmcharge = 0,
spin = 1,
gm_theory = 'EXTERN',

select QM atoms (here: make all QM)

charge on QM region (default = 0)

spin multiplicity of QM region (default = 1)
use external QM program

For QM/MM simulations with electronic embedding (this is the default) we recommend to include all MM point
charges as external electric field in the QM Hamiltonian to avoid problems with energy conservation. For non-
periodic simulations this can be achieved by setting the &gmmm namelist variable gmcut to a value larger than the
system size.

In addition either the &adf, &gms, &nw, &gau, &orc, &qc, &mrcc or &tc namelist must be present to use
either ADF, GAMESS, NWChem, Gaussian, ORCA, Q-Chem, MRCC or TeraChem, respectively, and to assign
parameters for the external QM program. Please refer to the ADF, GAMESS, NWChem, Gaussian, ORCA, Q-
Chem, MRCC or TeraChem user manual for details on settings for the ab initio or DFT calculations. A list
of namelist variables and their default setting is given below. The defaults have been chosen such that energy
conserving MD simulations in the NVE ensemble are possible. NWChem has not been extensively tested.

Properties that are calculated along the trajectory are printed to property files with names adf_job.ext,
gms__job.ext,gau_Jjob.ext,orc_job.ext,gc_job.ext and tc_job.ext, where ext is either dip
for dipole moment (X, y, z component and absolute value) or chg for atomic charges, where supported. These
property files are only written if requested and will be deleted at the beginning of a run, so back them up in case a
trajectory needs to be restarted.

All calculations with a spin multiplicity larger than one will automatically be performed in the framework of an
unrestricted formalism (as opposed to restricted open shell), that is with unrestricted HF (UHF), unrestricted DFT
(UDFT) and MP2 with a UHF reference wave function (UMP2).

In addition to controlling the external programs via the sander input file, you may supply a template input file
for the external program in order to provide input that is not supported via the program specific namelists. To
enable this option, you must set use_template = 1 inthe program specific namelist. The format, name, and

173

10. QM/MM calculations

input requirements for the template file vary with the external program as detailed in the corresponding program’s
documentation below. If you are using your own template, please make sure that the parameters of the QM method
(like SCF convergence threshold and XC quadrature grid size) yield sufficiently accurate forces. Please note that
program settings supplied via the program specific namelist are ignored if a template input file is used.

10.2.6.1. AMBER/ADF

This interface has been developed with older versions of ADF and last tested with ADF 2019. To use ADF with
the external interface, ADF must be properly installed on the working machine. In particular, the executable adf
must be in the search path. By default the Becke integration grid with quality “good” and the ZLM fit method with
quality “good” is employed. If you prefer to use the old pair fit method (or are using an older ADF version that
does not support the ZLM fit), we recommend to use “ZORA/QZ4P” basis set for the density fit for sufficiently
accurate forces.

Limitations At present only mechanical embedding is supported.

&adf Namelist variables

basis Basis set type to be used in the DFT calculation. Valid standard basis set types are: SZ, DZ, DZP,
TZP, TZ2P, TZ2P+ and ZORA/QZAP. (Default: basis = "'DZP’)

core Type of frozen core to use. Allowed values are: None, Small, Medium, Large. (Default: core =
’None’)

zlmfit Quality of density fit with the ZLM fit method. (Default: zlmfit = ’good”)

fit_type Fitbasis set type to be used for density fitting with the old pair fit method. Valid values are identical
to the available basis sets (SZ, DZ etc) in which case the fit basis corresponding to the AO Basis
will be used. By default the ZLLM fit method will be used (Default: fit_type =)

XC Exchange-correlation functional to be used. Popular choices are 'LDA VWN’, ‘GGA BLYP’,
’GGA PBE’, "HYBRID B3LYP’ and " HYBRID PBEQ’. Consult the ADF manual for all available
options. (Default: xc = ’GGA BLYP’)

scf_iter Maximum number of SCF cycles allowed. (Default: scf_iter = 50)

scf_conv Threshold upon which to stop the SCF procedure. The tested error is the commutator of the
Fock matrix and the density matrix. Convergence is considered to be achieved if the maximum

element of the commutator (which is zero for an optimized wave function) is smaller than scf_conv.
(Default: scf_conv = 1.0d-06)

beckegrid Quality of Becke integration grid. Allowed values are: Normal, Good, VeryGood. (Default: core
="Good’)

integration Numerical integration accuracy for integration with olde teVelde-Baerends integration grid
(Voronoi cells). By default the Becke grid will be used. The old integration grid can be used
by specifying a number larger than 0, we recommend at least 5.0. (Default: integration = -1.0)

num_threads Number of threads (and thus CPU cores) for ADF to use. Note that this is not required if you
are running in a queuing system as ADF will automatically use the full number of reserved cores.
(Default: num_threads = 0 [this causes ADF to use all available cores on a machine])

use_dftb Specifies whether DFTB shall be used with ADF’s DFTB program dftb. If use_dftb = 1 then
DFTB will be used and only variables charge and scf_conv will be considered. (Default: use_dftb
= 0 [do not use DFTB, regular DFT calculation]) - works only with older DFTB versions (prior to
2011).

174

10.2. Interface for ab initio and DFT methods

exactdensity The exact (as opposed to fitted) electron density is used for the evaluation of the exchange-
correlation potential if exactdensity = 1. (Default: exactdensity = 0)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for dipole moment to file adf_job.dip (Defaults to &cntrl
namelist variable ntpr)

dipole Toggles writing of dipole moment to file adf_ job.dip (Default: dipole = 0)

Example An input file for QM or (mechanical embedding) QM/MM MD with ADF using the PBE functional
and the TZP basis set therefore would have to contain

&adf
xc = 'GGA PBE',
basis = 'TZP',
/

This would execute a simulation in which the Beckgrid with quality quality good and the ZLM fit with quality
good are used (see default values above).

Template input file The template file for ADF should be named adf_ job.tpl and must contain the
following keywords:

BASIS ... END
SAVE TAPE21

You should not include the following (block) keywords in the template file as these are taken care of by sander:

UNITS

FRAGMENTS ... END
RESTART

GRADIENT

ATOMS ... END

10.2.6.2. AMBER/GAMESS-US

To use GAMESS with the external interface, GAMESS must be compiled on the target system. Make note of the
version number you specify during the GAMESS compilation process (default is 00 which makes the GAMESS
execution script rungms look for the executable gamess. 00 . x). If you use a different version number you must
specify it with the gms_version namelist variable. $GMS_PATH should be set to the path where the script rungms
is located (for example /opt /gamess/). We assume that the rungms script copies the output . dat files to the
directory from which GAMESS is invoked. If this is not the case, please modify the script rungms accordingly.

Limitations Only mechanical embedding is supported with GAMESS. The available QM models are limited to
HF, DFT and MP2 since only for these analytical gradients are available in GAMESS.

&gms Namelist variables

basis Basis set type to be used in the calculation. Presently supported are the Pople type basis sets
STO-3G, 6-31G, 6-31G*, 6-31G**, 6-31+G¥*, 6-31++G*, 6-311G, 6-311G* and 6-311G**. Also
supported are the Karlsruhe valence triple zeta basis sets KTZV, KTZVP and KTZVPP (with none,
one and two polarization functions, respectively) and the Dunning-type correlation consistent basis
sets CCn (n =D, T, Q, 5, 6; officially called cc-pVnZ) and ACCn (as CCn but augmented with a
set of diffuse function, officially called aug-cc-pVnZ). (Default: basis = "6-31G*")

175

10. QM/MM calculations

method QM method to be used. At present, we support "HF’ for Hartree—Fock, "MP2’ for second order
Mgller-Plesset perturbation theory and any of the supported DFT functionals. Popular choices for
for DFT functionals include BP86, BLYP, PBE, B3LYP or PBEO. (Default: method = "BP86")

nrad Number of radial points in the Euler-MacLaurin quadrature of the XC potential and energy density.
(Default: nrad = 96)

nleb Number of angular points in the Lebedev grids for the numerical quadrature of the XC potential
and energy density. (Default: nleb = 590 [The GAMESS default of 302 is not accurate enough to
conserve energy])

scf_conv SCF convergence threshold. Convergence is reached when the absolute density change between
two consecutive SCF cycles is less than scf_conv}. (Default: scf_conv = 1.0D-06)

maxit Maximum number of SCF iterations. (Default: maxit = 50)
gms_version This is the version number specified when building GAMESS. (Default: gms_version = 00)

num_threads Number of threads (and thus CPU cores) for GAMESS to use. Note that GAMESS may require a
special setup in the rungms script to be able to run using multiple threads. Unless num_threads is
explicitly specified, GAMESS will only use one thread (run on one core). (Default: num_threads
=1

mwords The maximum replicated memory which your job can use, on every node. This is given in units
of 1,000,000 words (as opposed to 1024*1024 words), where a word is defined as 64 bits. You
may need to increase this value if GAMESS crashes due to not having enough memory allocated.
(Default: mwords = 50)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for dipole moment and atomic charges to files gms_prop.ext
(Defaults to &cntrl namelist variable ntpr)

chelpg CHELPG charges are calculated if chelpg = 1. These charges are written to the file
gms_prop . chg (Default: chelpg = 0)

dipole Toggles writing of dipole moment to file gms_prop.dip (Default: dipole = 0)

Example An input file for QM or (mechanical embedding) QM/MM MD with GAMESS using the PBE
functional and the 6-31G** basis set that should run GAMESS on 16 CPU cores therefore would have to contain

&gms
method = 'DFT',
dfttyp = 'PBE’',
basis = '6-31Gxx',
num_threads = 16,

/

Template input file The template file for GAMESS should be named gms_ job.tpl and the SCONTRL card
must contain the following keywords:

RUNTYP=GRADIENT
UNIT=ANGS
COORD=UNIQUE

You should not include the $DATA card in the template file as it is taken care of by sander-.

176

10.2. Interface for ab initio and DFT methods

10.2.6.3. AMBER/Gaussian

To use Gaussian with the interface, Gaussian 16, Gaussian 09, or Gaussian 03 must be properly installed on the
system and a g16, g09, or g03 executable must be in the path.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations using electrostatic embedding
with and without PBCs. This leads to discontinuities in the potential energy surface and poor energy conservation.
In the case of QM/MM simulations without PBCs, this cutoff (gmcut variable in the &gmmm namelist) can be set
to a number that is larger than the simulated system, thus effectively not applying a cutoff. This is recommended.

&gau Namelist variables

basis Basis set type to be used in the calculation. Any basis set that is natively supported by Gaussian can
be used. Examples are the single zeta, split valence or triple zeta Pople type basis sets STO-3G, 3-
21G, 6-31G and 6-311G. The split-valence or triple zeta basis sets can be augmented with diffuse
functions on heavy atoms or additionally hydrogen by adding one or two plus signs, respectively, as
in 6-31++G. Polarization functions on heavy atoms or additionally hydrogens are used by adding
one or two stars, respectively, as in 6-31G**. (Default: basis = "6-31G*")

method Method to be used in the calculation. Can either be one of the WFT models for which Gaussian
supports gradients, for example RHF or MP2, or some supported DFT functional. Popular choices
are BLYP, PBE and B3LYP. (Default: method = "BLYP")

scf_conv Threshold upon which to stop the SCF procedure. The tested error is the commutator of the Fock
matrix and the density matrix. Convergence is considered to be achieved if the maximum element
of the commutator (which is zero for an optimized wave function) is smaller than scf_conv}. Set
in the form of 10~V. (Default: scf_conv = 8)

num_threads Number of threads (and thus CPU cores) for Gaussian to use. Unless num_threads is explicitly
specified, Gaussian will only use one thread (run on one core). (Default: num_threads = 1)

executable Optional name of the Gaussian executable. (Default: If a string for this namelist variable is not
specified then g16, g09, and g03 are tried in that order producing a fatal error if none are found.
Note that if a string is specified then it is a fatal error if that executable is not found.)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for dipole moment to file gau_job.dip (Defaults to &cntrl
namelist variable ntpr)

dipole Toggles writing of dipole moment to file gau__job . dip (Default: dipole = 0)

mem String that specifies how much memory Gaussian should be allowed to use. (Default: *256MB’)

Example An input file for QM or QM/MM MD with Gaussian using the BP86 functional and the 6-31G**
basis set and running in parallel on 8 threads (using 1 GB of memory) therefore would have to contain

&gau
method = 'BP86',
basis = '6-31Gxx',
num_threads = 8,
mem='1GB',

177

10. QM/MM calculations

Template input file The template file for Gaussian should be named gau_ job.tpl and should only contain
the route section of a Gaussian input file. The route section defines the method to be used and SCF convergence
criteria. Charge and spin multiplicity are specified via the &gmmm namelist. For example for a B3LYP
calculation with 6-31G* basis set, the route section would be:

#P B3LYP/6-31Gx SCF=(Conver=8)

Do not include any information about coordinates or point charge treatment since this will all be handled by sander.
Also, do not include any Link 0 Commands (line starting with %) since these are handled by sander. If you want
to run Gaussian in parallel, specify the number of processors via the num_threads variable in the &gau namelist.

10.2.6.4. AMBER/Orca

To use Orca with the interface, Orca must be properly installed on the system, the Orca executables need to
reside in a directory that is in the search path. For convenience of use, namelist parameters in general correspond
to Orca keywords, see the Orca manual for details.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the gmmm namelist) can be set to a number that is larger
than the simulated system, thus effectively not applying a cutoff. This is recommended.

Also note that ORCA only supports OpenMPI for parallel calculations.

&orc Namelist variables

basis Basis set type to be used in the calculation. Possible choices include svp, 6-31g, etc. See Orca
manual for a complete list. (Default: basis = "SV(P)")

cbasis Auxiliary basis set for correlation fitting. See Orca manual for a complete list. (Default: basis =
"NONE")

jbasis Auxiliary basis set for Coulomb fitting. See Orca manual for a complete list. (Default: basis =
YVNONE")

method Method to be used in the calculation. Popular choices include hf, pm3, blyp, and mp2. (Default:

method = "blyp")

convkey General SCF convergence setting for simplified Orca input. Can take values 'TIGHTSCF’,
"VERYTIGHTSCF, etc. (Default: convkey="VERYTIGHTSCF’)

scfconv SCF convergence threshold for the energy. (Default: scfconv = -1, that is, not in use since we
use the general convergence settings keyword convkey. Otherwise this would lead to SCF energy
convergence of 10 Nau, if set to N.)

grid Grid type used during the SCF for the XC quadrature in DFT. (Default: grid = 4, this corresponds
to Intacc = 4.34 for the radial grid and an angular Lebedev grid with 302 points. Conservatively
chosen together with finalgrid to conserve energy.)

finalgrid Grid type used for the energy and gradient calculation after the SCF for the XC quadrature in DFT.
(Default: finalgrid = 6, this corresponds to Intacc = 5.34 for the radial grid and an angular Lebedev
grid with 590 points. Conservatively chosen together with grid to conserve energy.)

maxiter Maximum number of SCF iteractions. (Default maxiter = 100)

maxcore Global scratch memory (in MB) used by Orca. You may need to increase this when running larger
jobs. See Orca manual for more information. (Default maxcore = 1024)

178

10.2. Interface for ab initio and DFT methods
num_threads Number of threads (and thus CPU cores) for Orca to use. Note that Orca only supports OpenMPIL.
(Default: num_threads = 1)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for the dipole moment to file orc_job.dip (Defaults to &cntrl
namelist variable ntpr)

dipole Toggles writing of the dipole moment to file orc_job.dip (Default: dipole = 0)

Example An input file for QM or QM/MM MD with Orca using the BLYP functional, the SVP basis set
therefore would have to contain

sorc
method = 'blyp',
basis = 'svp',
/

Template input file The template file for Orca should be named orc_job.tpl and must at least contain
keywords specifying the method and basis set to be used in the calculation, for example:

ORCA input file for BLYP/SVP simulation
! BLYP SVP

You should not include the following keywords in the template file as these are taken care of by sander (like
setting the runtype and adding coordinates):

NOT to be included in ORCA input file

!engrad
!lenergy # (or any run type)
$pointcharges

*xyzfile # (or any coordinates)

10.2.6.5. AMBER/Q-Chem

To use Q-Chem with the interface, Q-Chem must be properly installed on the system. The g-chem executable
needs to reside in a directory that is in the search path. For convenience of use, namelist parameters in general
correspond to Q-chem keywords, see the Q-Chem manual for details. The interface has been tested with Q-Chem
versions 4.0.0.1 and 4.1.1 for HF, DFT and MP2. Other methods have not been tested and could cause problems -
please be careful and verify that forces/energies used by sander are correct in this case.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the gmmm namelist) can be set to a number that is larger
than the simulated system, thus effectively not applying a cutoff. This is recommended.

&qc Namelist variables

basis Basis set type to be used in the calculation. Possible choices include *6-31g**’, *cc-pVDZ’ etc.
See the Q-chem manual for a complete list. (Default: basis = ’6-31G*’ for DFT calculations and
basis = "cc-pVDZ’ for MP2)

auxbasis Auxiliary basis set for density fitting / RI methods. See Q-Chem manual for a complete list.
(Default: basis = 'rimp2-cc-pVDZ’ for RI-MP2 calculations, otherwise none)

179

10. QM/MM calculations

method Method to be used in the calculation. Popular choices include 'BLYP’ or other density functionals,
"MP2’ and 'RIMP2’. Alternatively, the keywords exchange and correlation can be employed.
(Default: method = ’BLYP’)

exchange Exchange method. Can be specified together with the correlation keyword in place of the combined
method keyword. (Default: exchange =)

correlation Correlation method. Can be specified together with the exchange keyword in place of the com-
bined method keyword. (Default: correlation =)

scf_conv SCF convergence threshold. (Default: scfconv = 6)

num_mpi_prcs Number of MPI processes for Q-Chem to use. The total number of CPUs to be used is
num_mpi_pres times num_threads. (Default: num_mpi_pres = 1)

num_threads Number of threads for Q-Chem to use for each MPI process. Really this is number of threads.
The total number of CPUs to be used is num_mpi_prcs times num_threads. (Default: num_threads
=1

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for the dipole moment to file gc_job.dip (Defaults to &cntrl namelist
variable ntpr)

dipole Toggles writing of the dipole moment to file gc_job.dip. This is currently not supported.
(Default: dipole = 0)

guess Toggles use of MOs from previous step as initial guess to accelerate SCF convergence. Any string
different from 'read’ will disable this. (Default: guess = 'read’)

Example An input file for QM or QM/MM MD with Q-Chem using MP2 with the cc-pVTZ basis set therefore
would have to contain

&qc
method = 'mp2’',
basis = 'cc-pVTZ',
/

Template input file The template file for Q-chem must be named gc_job . tpl and must only contain
keywords in the Q-Chem $rem input section that specify the QM method and basis set to be used in the
calculation, for example:

EXCHANGE becke
CORRELATION lyp
BASIS 6-311Gxx*
SCF_CONVERGENCE 7

The interface will take care of adding other keywords to the $rem section such as JOBTYPE and writing the
$molecule input file sections.

10.2.6.6. AMBER/MRCC

To use MRCC with the interface, the MRCC program suite must be properly installed on the system. The MRCC
driver program dmrcc needs to reside in a directory that is in the search path. For convenience of use, namelist
parameters in general correspond to MRCC keywords, see the MRCC manual for details. The interface has been
tested with the MRCC release from July 15, 2016 for HF and DFT. Other methods have not been tested but should
also work - please be careful and verify that forces/energies used by sander are correct in this case.

180

10.2. Interface for ab initio and DFT methods

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the gmmm namelist) can be set to a number that is larger
than the simulated system, thus effectively not applying a cutoff. This is recommended.

&mrcc Namelist variables

basis Basis set type to be used in the calculation. Possible choices include '6-31g**’, *cc-pVDZ’ etc.
See the MRCC manual for a complete list. (Default: basis =’6-31G*’)

calc Type of calculation, e.g. "SCF’, "B3LYP’, "MP2’, *"CCSD(T)’, etc. (Default: calc =’SCF’)
dft Can be specified to request a DFT calculation and specify the DFT method. (Default: dft = ’off”)
mem Memory that will be allocated for the calculation. (Default: mem =’256MB’)

verbosity Controls the verbosity of the MRCC output file. (Default: verbosity = 2)

ntpr Controls frequency of printing for the dipole moment to file mrcc_ job . dip (Defaults to &cntrl
namelist variable ntpr)

do_dipole Toggles writing of the dipole moment to file mrcc_job.dip. (Default: dipole = 0)

nprintlog Frequency of storing MRCC output files during a minimization of molecular dynamics run. (De-
fault: keep only last output file, nprintlog = 0)

debug Toggles debug mode, which prints subroutine calls and additional information about the AM-
BER/MRCC interface. (Default: no debugging, debug = 0)

use_template Requests use of a template file to generate MRCC input files to utilize all the capabilities of
that are not available through &mrcc namelist keywords. The template file is basically a truncated
MINP file (the default input file for MRCC) which only includes the MRCC keywords. (Default:
do not use a template input file, use_template = 0)

The following &mrcc namelist variables control multilayer calculations (i.e. QM/QM/MM or QM/QM/QM/MM
embedding[384]; the region highlighted in bold is controlled by the keyword). Only single point calculations are
currently possible with such mulitlayer calculations.

embed Specifies the method of the embedding QM region (2. layer) in a QM/QM/MM (3 layer) calcu-
lation or specifies the method of the 3. layer in a QM/QM/QM/MM (4 layer) calculation. Please
read the MRCC manual for available options. (Default: embed = ’oft”)

embedatoms Specifies the active atoms of the embedded QM region (1. layer) in a QM/QM/MM (3 layer)
calculation or specifies the active atoms of the 1. and 2. layer in a QM/QM/QM/MM (4 layer)
calculation. Comma separated list of integers (Default: embedatoms = 0)

nmo_embed Specifies the number of active MOs of the embedded QM region (1. layer) in a QM/QM/MM
(3 layer) calculation or specifies the number of active MOs of the 1. and 2. layer in a
QM/QM/QM/MM (4 layer) calculation.

=0 The program automatically determines the MOs of the active region with the Boughton-Pulay
(BP) algorithm. (default)

>0 Number of MOs that will be selected based on the Mulliken charges of the active atoms.
corembed Specifies the low-level correlation method of the embedding QM region (2. layer) in a
QM/QM/MM (3 layer) calculation or specifies the low-level correlation method of the 2. layer

in a QM/QM/QM/MM (4 layer) calculation. Please read the MRCC manual for available options.
(Default: corembed = ’off”)

181

10. QM/MM calculations

corembedatoms Specifies the active atoms of the embedded QM region (1. layer) in a QM/QM/MM (3 layer)
calculation or specifies the active atoms of the 1. layer in a QM/QM/QM/MM (4 layer) calculation.
Please note that the corembedatoms have to be a subset of the embedatoms if a 4 layer calculation
is requested. Comma separated list of integers (Default: corembedatoms = 0)

nmo_corembed Specifies the number of active MOs of the embedded QM region (1. layer) in a QM/QM/MM
(3 layer) calculation or specifies the number of active MOs of the 1. layer in a QM/QM/QM/MM
(4 layer) calculation.

=0 The program automatically determines the MOs of the active region with the Boughton-Pulay
(BP) algorithm. (default)

>0 Number of MOs that will be selected based on the Mulliken charges of the active atoms.

Examples An input file for QM or QM/MM MD with MRCC using DFT with the BLYP functional and the
cc-pVTZ basis set therefore would have to contain

&mrcc
calc = 'blyp',
basis = 'cc-pVTZ',
/

An example input for a multilayer QM/QM/MM calculation with LCCSD(T) for a subset of QM atoms 7 to 12
embedded into the remainder of the QM region described by PBE (i.e. LCCSD(T)/PBE/MM) would be

&mrcc
calc = 'LCCSD(T) ',
basis = 'cc-pVTZ',

embed = 'PBE',
embedatoms = 7,8,9,10,11,12

This assumes that atoms 7-12 are part of the QM region. A 4-layer QM/QM/QM/MM calculation with
LCCSD(T) for atoms 7 to 12 embedded into LMP2 for atoms 13 to 16 and the remainder described by PBE (i.e.
LCCSD(T)/LMP2/DFT/MM) would be requested with

&mrcc
calc = 'LCCSD(T)',
basis = 'cc-pVTZ',

embed = 'PBE',

embedatoms = 7,8,9,10,11,12,13,14,15,16,
corembed = 'LMP2',

corembedatoms = 7,8,9,10,11,12,

Template input file The template file for MRCC must be named mrcc_Jjob.tpl and must only contain key-
words that specify the QM method and basis set to be used in the calculation. Not to be included are following
keywords: gmmm, gmreg, dens, pointcharges, geom, embed, corembed, scfiguess. The interface will take care of
adding other keywords and writing the coordinate input file section.

182

10.2. Interface for ab initio and DFT methods

10.2.6.7. AMBER/Fireball

To use Fireball with the QM/MM interface, a special version of sander must be compiled and linked against the
Fireball library (libfireball.a). The Fireball library can be obtained from the fireball-qmd web site at https://fireball-
gmd.github. Compilation requires the Intel compilers and Intel MKL library. You can compile a version of sander
that supports Fireball as follows (bash assumed):

export FIREBALLHOME=/path/to/fireball.a
export MKL_HOME=/path/to/Intel/MKL/library
cd SAMBERHOME

./configure -fireball intel

make install

It is possible to compile the MPI parallel version of sander in the same fashion. However, only the MM part of the
calculation will execute in parallel.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the &gmmm namelist) can be set to a number that is
larger than the simulated system, thus effectively not applying a cutoff.

Basis set Fireball requires a basis set, commonly provided in an “Fdata” directory. This directory contains all
the interactions (different contributions to the electronic Hamiltonian matrix elements) for the different types of
atoms (C, H, O, N, etc.) appearing in the QM region. In principle, the Fdata directory should be placed in the
working directory. Alternatively, the path where the Fdata directory is located can be defined using the variable
basis in the &fb namelist variables (see below).

This Fdata directory can be downloaded from the fireball-qmd web (https:/fireball-qmd.github). Advanced
users can also calculate their own Fdata using the create set of programs that can be found in the fireball-qmd
github repository.

&fb Namelist variables

basis Path to the Fdata directory. (Default: basis = *./Fdata’)

max_scf_iterations Maximum number of iterations in the loop for the calculation of the self-consistent
charges. (Default: max_scf_iterations = 70)

sigmatol Threshold for selc-consistency in the electronic structure calculations. (Default: sigmatol = 1.0E-
08)

idftd3 DFTD3 dispersion correction. (No correction: idftd3 = 0; Dispersion correction for BLYP: idftd3
= 1; Default: idftd3 = 0)

iwrtcharges Writes atomic charges in fireball output. (Default: iwrtcharges = 0)
iwrteigen Writes energy levels in fireball output. (Default: iwrteigen = 0)

Fora complete list of all &fb Namelist variables, please visit http://nanosurf.fzu.cz/wiki/doku.php?id=fireball

Example An input file for QM or QM/MM MD using AMBER/FIREBALL with all the default values would
just have to contain an empty &fb namelist

&fb
/

183

https://fireball-qmd.github
https://fireball-qmd.github
https://fireball-qmd.github
http://nanosurf.fzu.cz/wiki/doku.php?id=fireball

10. QM/MM calculations

As another example, a simulation using DFTD3 dispersion corrections for BLYP that also writes out the atomic
charges with Fdata in a central location of the user’s home directory would need the following input:

&fb
basis = '/home/fireball/Fdata'’,
idftd3 =1,
iwrtcharges =1

/

To launch the simulation, simply run sander as follows:

sander -0 —-i mdin -o mdout -p prmtop -c¢ inpcrd -x mdcrd -r rstrt > amberfireball.out

10.3. QM/MM simulations with QUICK

The sander program has the capability to run QM/MM simulations with the quantum chemical code QUICK
(QUantum Interaction Computational Kernel),[358-364, 368] shipped along with AmberTools. If you use
QM/MM simulations with QUICK in your work, please cite the following references:

* Manathunga, M.; O’Hearn, K. A.; Shajan, A.; Cruzeiro, V. W. D.; Giese, T. J.; Smith, J.; Miao, Y.; He, X.;
Ayers, K; Brothers, E.; Gotz, A. W.; Merz, K. M. QUICK-24.03. University of California San Diego, CA
and Michigan State University, East Lansing, MI, 2024

e Cruzeiro, V. W. D.; Manathunga, M.; Merz, K. M.; Gotz, A. W.; Open-Source Multi-GPU-Accelerated
QM/MM Simulations with AMBER and QUICK. J. Chem. Inf. Model. 61,2109-2115 (2021).

If you perform DFT calculations please also cite:

e Manathunga, M.; Miao, Y.; Mu, D.; G6tz, A. W.; Merz, K. M. Parallel Implementation of Density Functional
Theory Methods in the Quantum Interaction Computational Kernel Program. J. Chem. Theory Comput. 16,
4315-4326 (2020). DOI: 10.1021/acs.jctc.0c00290

If you use the GPU accelerated version of QUICK please also cite:

* Manathunga, M.; Aktulga, H. M.; Gotz, A. W.; Merz, K. M. Quantum Mechanics/Molecular Mechanics
Simulations on NVIDIA and AMD Graphics Processing Units. J. Chem. Inf. Model. 63, 711-717 (2023).
DOI: 10.1021/acs.jcim.2c01505

e Manathunga, M.; Jin, C.; Cruzeiro, V. W. D.; Miao, Y.; Mu, D.; Arumugam, K.; Keipert, K.; Aktulga,
H. M.; Merz, K. M., Jr.; Gotz, A. W. Harnessing the Power of Multi-GPU Acceleration into the Quan-
tum Interaction Computational Kernel Program. J. Chem. Theory Comput. 17, 3955-3966 (2021). DOL:
10.1021/acs.jctc.1c00145

* Miao, Y.; Merz, K. M., Jr. Acceleration of High Angular Momentum Electron Repulsion Integrals and
Integral Derivatives on Graphics Processing Units. J. Chem. Theory Comput. 11, 1449-1462 (2015). DOI:
10.1021/ct500984t

The QUICK QM/MM features are available in two options: 1) Directly through the sander program as a linked
library via an application programming interface (API) or 2) via a file-based interface (FBI) (see also section
10.2). As shown in reference [368], the API option provides faster simulations because it does not require repeated
initialization of the QM program or I/O operations for data exchange. Therefore, we recommend to use the API
interface. The QUICK QM/MM features are compiled by default and immediately available after installation of
AmberTools. Please refer to section 9.2 for installation instructions. Additionally, a list of QUICK features and
limitations has been presented in section 9.1.

Important note: Both the FBI and API interfaces of QUICK support QM/MM simulations with mechanical
embedding and electrostatic embedding. At present the same limitations and caveats apply with respect to QM/MM
cutoffs as for external QM codes (see section 10.2).

184

10.3. QM/MM simulations with QUICK

10.3.1. Usage

As discussed in chapter 9, SANDER can access different QUICK installation types for QM/MM simula-
tions: serial, MPI parallel, CUDA, HIP, CUDA + MPI parallel and HIP + MPI parallel. If using the file-
based interface (FBI), the sander executable is capable calling any of the different QUICK executables: quick,
quick.MPI, quick.cuda, quick.hip, quick.cuda.MPI or quick.hip. MPI. If using the application programming in-
terface (API), a different SANDER executable must be used for different QUICK types: the serial and MPI
parallel versions of QUICK can be accessed from the sander and sanderMPI executables, respectively; fur-
thermore, the single-GPU-accelerated and multi-GPU-accelerated versions of QUICK can be accessed from
sander.quick.cuda/sander.quick.hip and sander.quick.cuda.MPI/sander.quick.hip.MPI; these executables are iden-
tical to sander and sander.MPI in all SANDER functionalities, except they perform QM/MM calculations with
QUICK using the GPU-accelerated code through the API.

Examples for how to use both the API and FBI functionalities can be found at the test suites in
the following locations within AMBER’s source: $AMBERHOME/test/qmmm_Quick and $SAMBERHOME-
/test/gmmm_EXTERN/*Quick for, respectively, API and FBI.

Important note: Before running any QM/MM simulations with QUICK, users must make sure to source SAM-
BERHOME/amber.sh (or SAMBERHOME/amber.csh, depending on your enviroment). This step ensures that the
location of the necessary executables and libraries are set in the environmental variables of the operating system.

10.3.1.1. File-based interface (FBI)

Below is an example of the modifications necessary in the SANDER input file to perform a mechanical embed-
ding QM/MM simulation. In this example, the first two residues of the system are assigned to the QM region, and
the simulation is executed at the B3LYP/def2-SVP level with quick.cuda. MPI using 2 GPUs:

&cntrl

ifgnt = 1,

/

&gmmm

gmmask = ':1-2"',

agm_theory = 'extern',
gmmm_int = 5,

/

&quick

method = 'B3LYP',

basis = 'def2-svp',
executable = 'quick.cuda.MPI',
do_parallel = 'mpirun -np 2',
/

where ifgnt set to 1 activates the QM/MM functionality, gmmask specifies the QM region, gm_theory set as
‘extern’ indicates that the FBI will be used, and gmmm_int set to 5 specifies the use of mechanical embedding.
The executable flag can be set to any of the different QUICK executables, and the do_parallel flag must be specified
only if using one of the MPI parallel versions of QUICK. It is important to emphasize that some machines may
require a command other than mpirun, depending on the MPI library being used. In general the serial sander
executable must be used because of limitations to the system calls from within MPI programs (i.e. you cannot use
sander.MPI if you want to call an external MPI program). This means that the MM portion of the calculation will
be executed in serial.

10.3.1.2. Application programming interface (API)

In the example below, we present the modifications necessary in the SANDER input file to perform a QM/MM
simulation with electrostatic embedding. Unlike for the FBI case, simulations using serial, MPI parallel, single-
GPU-accelerated, and multi-GPU-accelerated QUICK functionalities can all use the same input file.

185

10. QM/MM calculations

&cntrl

ifgnt = 1,

/

&gmmm

gmmask = ':1-2"',
gm_theory = 'quick',
gmmm_int 1,
agm_ewald 0,

/
&quick
method
basis

/

"B3LYP',
'def2-svp',

where ifgnt set to 1 activates the QM/MM functionality, gmmask specifies the QM region, gm_theory set as
‘quick’ makes use of API, gmmm_int set to 1 specifies the use of electrostatic embedding and gm_ewald set to 0
indicates that the QM/MM interactions should be truncated at a given cutoff (the cut variable is specified in the
&ecntrl namelist). This is currently required in the same way as when external QM codes are used via the FBL
An approach for an Ewald based treatment of long-range QM/MM electrostatics with ab initio QM methods is
currently under development and being tested in a development version of AmberTools.

Note: when the simulation is executed with the API, an output file called quick.out (the prefix name for this file
can be modified; see below) is generated containing the QUICK output information for all MD steps.

10.3.1.3. &quick namelist variables

Below we show a list of all variables that can be specified in the &quick namelist. Please notice that some
variables are specific to only the API or the FBL

method = String Method to be used in the calculation, can be either ‘HF’ or some supported DFT func-
tional. (Default: BLYP).

basis = String Basis set type to be used in the calculation. (Default: 6-31G).

executable = String (FBI only) QUICK executable to be used in the simulation with the FBI. Options are:
quick, quick. MPI, quick.cuda, quick.hip, quick.cuda.MPI or quick.hip. MPI (Default: quick).

do_parallel = String (FBI only) Portion of the command to be placed right before the executable specifica-
tion for activating the parallelization. Example: ‘mpirun -np 2’. (Default: none).

scf_cyc = Integer Number of SCF cycles. (Default: 200).

reuse_dmx = Integer (API only) Reuse the density matrix from previous MD step.

=0 OFF.
=1 (Default) ON.

denserms = Float (API only) User defined density matrix maximum RMS for convergence. (Default: 1.0E-
6).

intcutoff =Float (API only) User defined integral cutoff. (Default: 1.0E-8).

xccutoff = Float (API only) User defined threshold for grid pruning in exchange correlation algorithm.
(Default: 1.0E-8).

basiscutoff = Float (API only) Cutoff for neglecting insignificant basis functions. (Default: 1.0E-6).

gradcutoff = Float (API only) User defined gradient cutoff. (Default: 1.0E-7).

186

10.4. QM/MM simulations with TeraChem

export= String (API only) Export molecular orbitals and other QM data into a separate file, currently
supports ‘molden’ only. (Default: none).

keywords = String (API only) Instead of specifying the QUICK input variables separetely with the flags
above, users can use this flag instead to specify the full keywords line that would go on the top of
a QUICK input file. Example in a simulation with electrostatic embedding: ‘B3LYP BASIS=cc-
pVDZ CHARGE=0 MULT=1 GRADIENT EXTCHARGES’. (Default: none).

outfprefix = String (API only) Prefix to be used in the QUICK output file. The name chosen here will be
followed by a ‘.out’ suffix. (Default: quick).

debug Debugging information.

=0 (Default) No debugging information is printed.
=1 Debugging information is printed.

= 2 Extra debugging information is printed if using the FBI.

use_template (FBI only) Use a template input file.
=0 (Default) No template file is used.

=1 Template file is used.

10.4. QM/MM simulations with TeraChem

TeraChem has a demo version freely available at http://www.petachem.com. In this version, each QM calcu-
lation can be ran up to 15 minutes using up to 2 GPUs. So QM/MM simulations (with both interfaces described
below) will execute continously as long as each MD step takes less than 15 minutes.

QM/MM simulations with TeraChem are available in two options: 1) through a file-based interface as described
in section 10.2 or 2) using a interface based on TeraChem’s client/server model. The TeraChem client is called
TCPB-cpp (TeraChem Protocol Buffers, C++ version) and is shipped with AmberTools. TeraChem’s client/server
model users Google’s Protocol Buffers for data communication, and can be used over the internet. We recom-
mend users to use the client/server interface (using TCPB-cpp) since it is faster than the file-based interface
because it saves time with GPU startup time and I/O operations. In order to use the recommened interface, Amber
needs to be compiled with TCPB-cpp support, which is an optional feature. To install TCPB-cpp along with the
Amber installation (see instructions at section 2.1), add ~-DBUILD_TCPB=TRUE into your cmake command at
amber24_src/build/run_cmake and (re)compile AMBER.

If you are using the client/server interface with TeraChem (using TCPB-cpp), please cite the following work:

* V. W. D. Cruzeiro, Y. Wang, E. Pieri, E. G. Hohenstein, T. J. Martinez, TCPB: Accessing TeraChem as an
External Library for Faster QM or QM/MM Simulations. Submitted.

If you are using the file-based interface with TeraChem, please cite the following work:

e C. M. Isborn, A. W. Gotz, M. A. Clark, R. C. Walker, T. J. Martinez, Electronic Absorption Spectra from
MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of
Photoactive Yellow Protein, J. Chem. Theory Comput. 8, 5092-5106 (2012), DOI: 10.1021/ct3006826

10.4.1. Usage

Examples for how to use both the client/server and file-based interfaces can be found, respectively, at the test
suites in the following locations within AMBER’s source: $AMBERHOME/test/qmmm_TeraChem and SAMBER-
HOME/test/qmmm_EXTERN/*TeraChem .

To start TeraChem in server mode, for example, using port number 12345, run:

terachem -s 12345

187

10. QM/MM calculations

The server can run on the same machine that will run AMBER, or on a remote machine. By default, Ter-
aChem will use all GPUs in the machine, but users can control which GPUs are accessible by setting the
CUDA_VISIBLE_DEVICES environmental variable before running the command above.
If using the file-based interface (not recommended), the t erachem executable needs to be in the search path.
More information about the options in the TeraChem input file can be found at the TeraChem manual, which
can be downloaded at http://www.petachem.com .

10.4.1.1. Client/server interface with TCPB-cpp

Make sure the TeraChem server is up. sander will print an error message in case the TeraChem server is not
found. The number of GPUs to be used is controlled when the server is started, not in Amber.

In the example below, we present the modifications necessary in the SANDER input file to perform a QM/MM
simulation with electrostatic embedding. This example assumes that the server is running on the local machine
(i.e., localhost) and on port 12345:

&cntrl

ifgnt = 1,

/

&gmmm

gmmask = ':1-2"',
agm_theory = 'terachem',

gmmm_int = 1,
gm_ewald = O,

/

&tc

host = 'localhost',
port = 12345,
method = 'B3LYP',
basis = 'def2-svp',
/

where ifgnt activates QM/MM, gmmask specifies the QM region (residues 1 and 2), gm_theory with a value of
‘terachem’ specifies that the TCPB interface will be used, gmmm_int as 1 requests electrostatic embedding, and
gm_ewald as 0 means that a hard QM/MM cutoff will be employed, whose value can be controlled by the cut
variable in the &cntrl namelist.

In the example above SANDER will create a TeraChem input file that will be passed to TCPB-cpp. Alternatively,
users can directly provide the TeraChem input file as follows:

&cntrl

ifgnt = 1,

/

&gmmm

gmmask = ':1-2"',
gm_theory = 'terachem',
gmmm_int = 1,

gm_ewald = O,
/
&tc

host = 'localhost',
port = 12345,
tcfile = 'terachem.inp',
/

188

10.4. QM/MM simulations with TeraChem

10.4.1.2. File-based interface

In the example below, we present the modifications necessary in the SANDER input file to perform a QM/MM
simulation with mechanical embedding. This example assumes that the server is running on the local machine
(i.e., localhost) and on port 12345:Here we consider the first two residues as the QM region, explicitly specify a
location for TeraChem'’s scratch folder, and use 2 GPUs in TeraChem:

&cntrl

ifgnt = 1,

/

&gmmm

gmmask = ':1-2"',
agm_theory = 'extern',
gmmm_int = 5,

/

&tc

method = 'B3LYP',
basis = 'def2-svp',
guess = 'scr/c0',
scrdir = 'scr',
keep_scr = 'yes',
ngpus = 2,

/

where ifgnt activates QM/MM, gmmask specifies the QM region, gm_theory with a value of ‘extern’ specifies
that the file-based interface will be used, and gmmm_int as 5 requests mechanical embedding.
10.4.1.3. &tc namelist variables

Below we show a list of all variables that can be specified in the &tc namelist. Please notice that some variables
are specific to only the client/server interface (TCPB) or the file-based interface (FBI).

host (TCPB only) Address to the machine where the TeraChem server is hosted. (Default: host = none)

port (TCPB only) Port number used by the TeraChem server. (Default: port = none)

tcfile (TCPB only) TeraChem input file to be passed to TCPB-cpp. (Default: tcfile = none)

method