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Description of Supplementary Tables 

 

Supplementary Table 1  
Description of GWAS summary statistics 

Phenotypes explored, i.e., Hypertension (HTN), Heart Failure (HF), Ischaemic Heart 
Disease (IHD), Mixed Hyperlipidaemia (MHL), Cerebrovascular accident (CVA), 
Atherosclerosis (AS), Myocardial Infarction (MI), Coronary Heart Disease (CHD), 
Atrial Fibrillation (AF), and Type 2 Diabetes (T2D). 

 

Supplementary Table 2  
SNP heritability and genetic correlation 

Estimated using linkage disequilibrium score regression (LDSC) function and LD 
Scores calculated by Bulik-Sullivan BK et al. including only HapMap3 SNPs with 
minor allele frequency (MAF) > 0.01; and standard errors estimated using a block 
jackknife over SNPs. 

 

Supplementary Table 3 
Exploratory factor analysis (EFA) 

Implementing multivariable LDSC, then exploratory factor analysis (EFA) informing 
subsequent confirmatory factor analysis. 

 

Supplementary Table 4 
Confirmatory factor analysis (CFA) 

Fitting both common factor and two factor models indicated by EFA, implemented in 
Genomic SEM. 

 

Supplementary Table 5 
Characterization and annotation of lead variants 

Characterization and annotation implemented using FUMA GWAS SNP2GENE. 
Independent significant SNPs identified. Lead SNPs and genomic risk loci defined. 
Functional consequences on genes (ANNOVAR), Combined Annotation Dependent 
Depletion score (CADD) score, RegulomeDB (RDB) score, 15 chromatin state (127 
tissue/cell types) annotated. 

 

Supplementary Table 6 
Lead SNPs annotated in the five input CMD GWASs 
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Independent significant SNP annotation in five input cardiometabolic disease (CMD) 
GWASs. 

 

Supplementary Table 7 
GWAS Catalog look-up of the mvCMD GWAS lead SNPs 

Implemented using FUMA GWAS SNP2GENE. 

 

Supplementary Table 8  
GWAS Catalog look-up of the mvCMD GWAS novel lead SNPs 

Implemented using FUMA GWAS SNP2GENE. 

 

Supplementary Table 9 
ABF, SuSiE and FINEMAP fine-mapping of mvCMD lead SNPs 

Fine-mapping implemented to identify most plausible causal variants. SNPs contained 
within each 95% credible set for mvCMD loci are listed, along with their inclusion 
probability and functional annotation. 

 

Supplementary Table 10 
Transcriptome-wide association study (TWAS) 

TWAS implemented to integrate GWAS and gene expression datasets to identify gene-
trait associations and prioritize causal genes at GWAS loci. 

 

Supplementary Table 11 
Multi-marker analysis of genomic annotation (MAGMA) gene-based results 

MAGMA implemented with data from GTEx (version 8) to conduct gene-based and 
gene-set analyses. SNPs were mapped to 19,060 protein-coding genes located within 
10 kb of the lead SNPs, while accounting for LD between SNPs using the 1000 
Genomes Project reference panel. 

 

Supplementary Table 12 
Gene-set enrichment analysis (GSEA) using MAGMA-derived genes 

FUMA GENE2FUNC ("gene to function") gene-set analyses implemented in FUMA 
GWAS SNP2GENE (https://fuma.ctglab.nl/) using genes identified with MAGMA to 
evaluate potential relationships between mvCMD and lists of mapped genes from 
MSigDB gene sets, i.e., Reactome, and Gene Ontology (GO). 
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Supplementary Table 13 
Mendelian disease enrichment 

To investigate potential relationships of mvCMD with Mendelian disease genes and 
associated pathways with MendelVar (https://mendelvar.mrcieu.ac.uk/), using lead 
SNPs as input to MendelVar, performing analyses using intervals based on a ± 0.5 Mbp 
window around lead SNPs (1000 Genomes Phase 3 European reference panel). Within 
MendelVar, INRICH run using "Gene" enrichment mode and default setting for the 
target gene set filter and minimum observed threshold, and included gene sets from the 
Disease Ontology (do) (https://disease-ontology.org/) database. 

 

Supplementary Table 14 
Mendelian pathway enrichment 

To investigate potential relationships of mvCMD with Mendelian disease genes and 
associated pathways with MendelVar (https://mendelvar.mrcieu.ac.uk/), using lead 
SNPs as input to MendelVar, performing analyses using intervals based on a ± 0.5 Mbp 
window around lead SNPs (1000 Genomes Phase 3 European reference panel). Within 
MendelVar, INRICH run using "Gene" enrichment mode and default setting for the 
target gene set filter and minimum observed threshold, and included gene sets from the 
Human Phenotype Ontology (hpo) (https://hpo.jax.org/app/) database. 

 

Supplementary Table 15 
Mendelian randomization analysis investigating the causal role of different 
variables on mvCMD 

Single variable Mendelian randomization (SVMR) implemented using TwoSampleMR 
package. Effect estimates are standardised i.e. effects correspond to standard deviation 
(SD) change in outcome per SD increase in exposure. 

 

Supplementary Table 16 
Polygenic Mendelian randomization risk factors and biomarkers 

Description and sources of risk factors and biomarkers used in Mendelian 
randomization analysis exploring causal role on mvCMD, including but not limited to 
lipids, lung function, blood cells and inflammatory markers, liver function, glycemic 
markers, other markers, kindey function, blood pressure, anthropometric, substance use, 
sleep, well-being, education and physical activities. 

 

Supplementary Table 17 
Metformin target genes 

Seven primary metformin targets (AMPK, MCI, GPD1, GPD2, PEN2, FBP1, and 
GLP1) were identified from literature. ChEMBL database used to identify genes related 
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to the mechanism of action for the seven metformin target genes. 

 

Supplementary Table 18 
Drug-target MR IVs for metformin targets extracted from GWAS data of HbA1c 

Variants within 100 kb of gene boundaries (cis-IVs) extracted from the GWAS of 
circulating HbA1c levels used for the MR (OpenGWAS ID: ukb-d-30750_irnt, 
N=344,182). 

 

Supplementary Table 19 
Drug-target Mendelian randomization of metformin target genes on mvCMD 

MR IVW (random-effects analysis performed when there were more than three variants) 
also MR Egger and Wald Ratio analyses, both accounting for correlation between IVs 
(correlation matrices generated using 1000 Genomes Phase 3 EUR reference panel). 

 

Supplementary Table 20 
Drug-target MR IVs for antidiabetics targets extracted from GWAS data of 
HbA1c 

 

Supplementary Table 21 
Drug-target Mendelian randomization of antidiabetics target genes on mvCMD 

 

Supplementary Table 22  
Drug-target MR IVs for lipid-modulating targets from GWAS data of circulating 
lipid levels 

Variants within 100 kb of gene boundaries (cis-IVs) extracted from the GWAS of 
circulating lipid levels used for the MR (low-density lipoprotein cholesterol (LDL-C), 
high density lipoprotein cholesterol (HDL-C), triglycerides (TG), and lipoprotein A 
Lp(A)) from UK Biobank participants of European ancestry (N range: 361,194 to 
441,016). 

 

Supplementary Table 23 
Drug-target Mendelian randomization of lipid-modulating target genes on 
mvCMD 

MR IVW (random-effects analysis performed when there were more than three variants) 
also MR Egger analyses, accounting for correlation between IVs (correlation matrices 
generated using 1000 Genomes Phase 3 EUR reference panel). 
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Supplementary Table 24 
Protein coding genes within 50kb of HbA1c lead SNPs 

For cis-IVs MR scan of protein coding genes associated with biomarkers identified 
previously in polygenic and drug-target MR; having extracted lead variants with P-
values < 5.00E-08 (LD R2 < 0.1, threshold 10000 kb) associated with HbA1c, 
Bioconductor BiomaRt package (interface to BioMart databases) used to identify and 
curate protein-coding genes. 

 

Supplementary Table 25 
Protein coding genes within 50kb of HDL-C lead SNPs 

For cis-IVs MR scan of protein coding genes associated with biomarkers identified 
previously in polygenic and drug-target MR; having extracted lead variants with P-
values < 5.00E-08 (LD R2 < 0.1, threshold 10000 kb) associated with HDL-C, 
Bioconductor BiomaRt package (interface to BioMart databases) used to identify and 
curate protein-coding genes. 

 

Supplementary Table 26 
Protein coding genes within 50kb of LDL-C lead SNPs 

For cis-IVs MR scan of protein coding genes associated with biomarkers identified 
previously in polygenic and drug-target MR; having extracted lead variants with P-
values < 5.00E-08 (LD R2 < 0.1, threshold 10000 kb) associated with LDL-C, 
Bioconductor BiomaRt package (interface to BioMart databases) used to identify and 
curate protein-coding genes. 

 

Supplementary Table 27 
Protein coding genes within 50kb of TG lead SNPs 

For cis-IVs MR scan of protein coding genes associated with biomarkers identified 
previously in polygenic and drug-target MR; having extracted lead variants with P-
values < 5.00E-08 (LD R2 < 0.1, threshold 10000 kb) associated with TG, Bioconductor 
BiomaRt package (interface to BioMart databases) used to identify and curate protein-
coding genes. 

 

Supplementary Table 28 
Colocalization results for genes near HbA1c lead SNPs on mvCMD 

Genes with PP.H4.abf > 0.8 considered suggestive evidence of a shared causal variant 
between mvCMD and HbA1c within the gene locus. 

 

Supplementary Table 29 
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Colocalization results for genes near HDL-C lead SNPs on mvCMD 

Genes with PP.H4.abf > 0.8 considered suggestive evidence of a shared causal variant 
between mvCMD and HDL-C within the gene locus. 

 

Supplementary Table 30 
Colocalization results for genes near LDL-C lead SNPs on mvCMD 

Genes with PP.H4.abf > 0.8 considered suggestive evidence of a shared causal variant 
between mvCMD and LDL-C within the gene locus. 

 

Supplementary Table 31 
Colocalization results for genes near TG lead SNPs on mvCMD 

Genes with PP.H4.abf > 0.8 considered suggestive evidence of a shared causal variant 
between mvCMD and TG within the gene locus. 

 

Supplementary Table 32 
Cis-IVs scan of protein coding genes near HbA1c lead SNPs 

Taking forward HbA1c protein coding genes with posterior probabilities (PP.H4) > 0.8 
from (Supplementary Table 28) to cis-IVs for MR analysis. 

 

Supplementary Table 33 
Cis-IVs scan of protein coding genes near HDL-C lead SNPs 

Taking forward HDL-C protein coding genes with posterior probabilities (PP.H4) > 0.8 
from (Supplementary Table 29) to cis-IVs for MR analysis. 

 

Supplementary Table 34 
Cis-IVs scan of protein coding genes near LDL-C lead SNPs 

Taking forward LDL-C protein coding genes with posterior probabilities (PP.H4) > 0.8 
from (Supplementary Table 30) to cis-IVs for MR analysis. 

 

Supplementary Table 35 
Cis-IVs scan of protein coding genes near TG lead SNPs 

Taking forward TG protein coding genes with posterior probabilities (PP.H4) > 0.8 from 
(Supplementary Table 31) to cis-IVs for MR analysis. 

 

Supplementary Table 36 
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Druggable genes list 

To evaluate potential therapeutic actionability of top protein-coding genes, downloaded 
druggable genes defined by Finan et al. 

 

Supplementary Table 37 
Cis-IVs genes drug-gene interaction information from the Drug-Gene Interaction 
database (DGIdb) 

Searching list of protein coding genes against a compendium of drug-gene interactions 
and potentially 'druggable' genes to assess potential therapeutic actionability of these 
protein coding genes. 

 

Supplementary Table 38 
A detailed summary of genetic variants in significant genes 

Fully statistically significant cis-eQTLs (false discovery rate < 0.05, ± 1 Mb from each 
probe) were obtained from the eQTLGen consortium and a meta-analysis of 31,684 
individual peripheral blood eQTLs. 

 

Supplementary Table 39 
Cis-eQTLs scan of significant genes in biomarker near lead SNPs 

Taking forward significant protein coding genes associated with biomarkers from 
(Supplementary Table 38) to cis-eQTLs for MR analysis. 

 

Supplementary Table 40 
Univariate cis-eQTLs scan of significant genes in biomarker near lead SNPs 

Given the effect of six significant genes on the cardiometabolic diseases, HF, CVA, 
IHD, MHL, and HTN GWAS (input for mvCMD GWAS) were analyzed. Additionally, 
other related diseases (AS, MI, CHD, AF, and T2D) are also involved in MR analysis. 

 

Supplementary Table 41 
Cis-IVs for circulating proteins from the SCALLOP 

Exploring causal role of circulating proteins from SCALLOP (Systematic and 
Combined AnaLysis of Olink Proteins) consortia (N = 30,931, European ancestry), 
which used Olink Proteomics platform to perform protein quantitative trait loci (pQTLs) 
mapping of plasma proteins. Selected pQTLs associated with plasma protein at genome 
wide significance within cis-acting loci of target gene boundaries (± 100 kilobases). 
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Supplementary Table 42 
Results of cis-pQTLs scan of circulating proteins from the SCALLOP 

Exploring causal role of circulating proteins from (Supplementary Table 41) to cis-
pQTLs for MR analysis. 
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Supplementary Methods 

Overview of Genomic SEM 

Genomic SEM is a two-stage structural equation modeling methodology (1-3). In 
the first stage, the empirical genetic covariance matrix along with its corresponding 
sampling covariance matrix are estimated. In the second stage, a SEM is specified and 
parameters are estimated by minimizing the discrepancy between the model-implied 
genetic covariance matrix and the empirical covariance matrix obtained in the previous 
stage. Model parameters (𝜽) are estimated to minimize the discrepancy between the 
model-implied covariance matrix (𝜮(𝜽)) and the empirical covariance matrix (𝑺). A 
model is considered well-fitting when 𝜮(𝜽) closely approximates 𝑺. We report results 
using weighted least squares (WLS) estimation, which weights the discrepancy 
function by the inverse of the diagonal elements of the sampling covariance matrix and 
computes standard errors using the full sampling covariance matrix. Genomic-SEM has 
demonstrated robustness to variations in sample sizes and sample overlap across input 
GWAS studies, thereby enhancing its applicability and enabling improved statistical 
power through increased effective sample sizes (4). Furthermore, in contrast to other 
GWAS meta-analysis methods, we employed Genomic SEM to initially model the joint 
genetic architecture of cardiometabolic diseases by jointly analyzing GWAS data from 
five genetically correlated CMD-related phenotypes. Subsequently, we generated a 
unified GWAS to identify individual SNP associations for this general latent CMD 
factor. Below, we outline the pertinent principles and detailed information regarding 
SEM, drawing from the genomic SEM methods paper by Grotzinger et al (4). 

We applied Genomic SEM to estimate the genetic covariance structure among 
traits. Genomic SEM partitions the model into a measurement model and a structural 
model. In the measurement model, genetic components of 𝑘 phenotypes are expressed 
as linear functions of 𝑚 latent variables: 

𝒚 =  𝜦𝜼 +  𝜺 
where 𝒚  is a 𝒌 × 𝟏  vector of observed traits, 𝜼  is an 𝒎 × 𝟏  vector of latent 
variables, 𝜦  is a 𝒌 × 𝒎  matrix of factor loadings, and 𝜺  is a 𝒌 × 𝟏  vector of 
residuals. The model-implied covariance matrix for a confirmatory factor analysis 
(CFA) is: 

𝜮(𝜽)  =  𝜦𝜳𝜦′ + 𝚯 

where 𝜳 is an 𝒎 × 𝒎 latent variable covariance matrix and 𝚯 is a 𝒌 × 𝒌 residual 
covariance matrix, typically assumed to be diagonal. To model relationships among 
latent variables, we incorporated a structural model, defined as: 

𝜼 = 𝑩𝜼 + 𝜻 
where 𝑩  is an 𝒎 × 𝒎  matrix of regression coefficients and 𝜻  represents latent 
variable residuals. The full SEM-implied covariance structure is: 

𝜮(𝜽) = 𝜦(𝑰 − 𝑩)ି𝟏 − 𝜳[(𝑰 − 𝑩′)ି𝟏]𝜦′ + 𝚯 
where 𝑰 is an 𝒌 × 𝒌 identity matrix. This framework allows for estimation of latent 
genetic factors and their interrelations while accounting for measurement error and 
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residual covariances. 

In the first stage, Genomic SEM uses a multivariable version of cross-trait LDSC 
(5) to estimate the genetic covariance matrix: 

𝑆௅஽ௌ஼ =  
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(k is number of observed phenotypes - k = 5 in our study). To ensure unbiased standard 

error (SE) estimates and test statistics, we compute the sampling covariance matrix, 𝑽𝑺𝑳𝑫𝑺𝑪
, which 

contains all nonredundant elements of the 𝑺𝑳𝑫𝑺𝑪 matrix. This symmetric matrix has 𝒌∗(𝒌∗ +

𝟏)/𝟐  nonredundant elements. The diagonal elements of 𝑽𝑺𝑳𝑫𝑺𝑪
 represent sampling variances 

(squared SEs), while the off-diagonal elements capture sampling covariances. These covariances 
reflect the overlap in sample distributions contributing to the variance and covariance estimates in 

𝑺𝑳𝑫𝑺𝑪 This 𝑽𝑺𝑳𝑫𝑺𝑪
 matrix can be written as: 
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Diagonal elements in 𝑽𝑺𝑳𝑫𝑺𝑪
  are estimated using a jackknife resampling procedure 

from the LDSC package extended in the GenomicSEM package. Next the effects of the 
individual SNPs are incorporated: first, the initial input genetic covariance matrix is 
extended to model covariances between individuals SNPs and each observed phenotype 
by incorporating a vector of SNP-phenotype covariances, denoted 𝑺𝑺𝑵𝑷 to 𝑺𝑳𝑫𝑺𝑪: 
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The sampling covariance matrix, 𝑽𝑺𝑭𝒖𝒍𝒍
, associated with the expanded 𝑺𝑭𝒖𝒍𝒍 

covariance matrix, consists of multiple components. One block, 𝑽𝑺𝑳𝑫𝑺𝑪
, includes the 

sampling variances and covariances of SNP heritabilities and genetic covariances, 
derived using the multivariable LDSC method. Another block, 𝑽𝑺𝑺𝑵𝑷

, represents the 

sampling covariance matrix of SNP effects on phenotypes. SNP variance, treated as 
fixed, has its sampling variance and covariance with other terms set to zero (or a 
negligible value for computational efficiency). Sampling covariances among SNP-
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genotype covariances are estimated using cross-trait LDSC intercepts, rescaled to their 
respective variances. A final block captures the covariances of SNP-genotype 
covariances with genetic variances and covariances, fixed to zero due to independence 
from test statistics in other LD blocks. Overall, the 𝑽𝑺𝑭𝒖𝒍𝒍

 matrix is structured as: 

𝑉ௌಷೠ೗೗
=  ቈ

𝑉ௌೄಿು

0 𝑉ௌಽವೄ಴

቉ 

In the second stage, parameters of the user-specified SEM model are estimated 
with either WLS or maximum likelihood (ML) estimators using the 𝑺𝑳𝑫𝑺𝑪  matrix 
(from the first stage). WLS and ML estimators weigh the matrix information differently, 
but both estimators minimize the fit error between the model-implied and empirical 
genetic covariances. WLS optimizes the fit function by leveraging the diagonal 
elements of the 𝑽𝑺𝑳𝑫𝑺𝑪

 matrix and adjusting the standard errors of the estimates using 

the off-diagonal elements, which account for the correlations among the sampling 
errors of the summary statistics. 

We evaluated model fit using conventional SEM indices, including the model 𝝌𝟐 
statistics, the Akaike information criterion (AIC), comparative fit index (CFI), and the 
standardized root mean square residual (SRMR). Model 𝝌𝟐 is an index of exact fit of 
a SEM. It indexes whether the model-implied genetic covariance matrix, 𝜮(𝜽), differs 
from the empirical genetic covariance matrix, 𝑺 . Model 𝝌𝟐  can also be used as a 
relative fit index for comparing nested models. CFI indexes the extent to which the 
proposed model fits better than a model that allows all phenotypes to be heritable, but 
assumes that they are genetically uncorrelated. Akaike information criterion (AIC) is a 
relative fit index that balances fit with parsimony, and can be used to compare models 
regardless of whether they are nested. AIC is calculated as: 

𝑨𝑰𝑪 =  𝝌𝟐 + 𝟐 × 𝒇𝒑 
where fp is the number of free parameters in the model. SRMR is an index of 
approximate model fit that is calculated as the standardized root mean squared 
difference between the model-implied and observed correlations in 𝜮(𝜽)  and 𝑺 , 
respectively. The goodness of fit for both the confirmatory and exploratory models was 
assessed using standard fit statistics and recommended criteria: a lower Akaike 
information criterion (AIC), a comparative fit index (CFI) within the range of 0.97 to 
1.00 (indicating good fit; 0.95-0.97, acceptable fit), and a standardized root mean square 
residual (SRMR) less than 0.05 (indicating good fit; 0.05-0.10, acceptable fit) (2,6). 
CFA confirmed that our common-factor model latent factor was a good fit of the CMD-
related GWAS data used as indicator/observed variables: the mvCMD AIC was 35.64, 
CFI was 0.994 and the SRMR was 0.039 (Supplementary Table 4).  

The Genomic SEM method is robust to sample overlap, making it applicable to 
our analyses given the overlap across cohorts included in the five CMD-related GWASs 
included (Supplementary Table 1). We calculated the effective sample sizes for each 
SNP included in the mvCMD GWAS following the previously established procedures 
(7). Given the multivariate GWAS effect estimate for SNP 𝑱, 
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𝜷𝑱 =  
𝒁𝑱

ඥ𝒏𝑱 × 𝟐 × 𝑴𝑨𝑭𝑱(𝟏 − 𝑴𝑨𝑭𝑱)
 

where 𝒁𝑱  is the multivariate GWAS association statistic for SNP 𝑱 , 𝒏𝑱  is the 
effective sample size for SNP 𝑱 that we aim to calculate, 𝑴𝑨𝑭𝑱 is the MAF of SNP 
𝑱; the SNP 𝑱 variance (𝝈𝑱

𝟐) is 𝟐 × 𝑴𝑨𝑭𝑱(𝟏 − 𝑴𝑨𝑭𝑱), and rearranging, 

𝒏𝑱 =  
(𝒁𝑱 𝜷𝑱⁄ )𝟐

𝝈𝑱
𝟐

 

Effective sample size (Neff) is taken to be approximately equal to the mean 𝒏𝑱 for 𝒎 

SNPs meeting the MAF thresholds. In our analyses, following recommendations, we 
restrict the MAF to between 10% and 40%, because the effective calculations are 
inflated: 

𝑵𝒆𝒇𝒇 ≈
𝟏

𝒎
 ෍ 𝒏𝑱

𝒃

𝑴𝑨𝑭ୀ𝒂
 

QSNP Heterogeneity 

A key strength of the Genomic-SEM pipeline lies in its capability to evaluate 
whether multivariate GWAS SNP associations are best explained by shared causal 
pathways, which operate on observed GWAS results through a common latent factor, 
or by trait-specific pathways that are independent of the shared multivariate latent 
structure. SNP-level heterogeneity test statistics are estimated for each lead mvCMD 
SNP (an independent SNP associated with mvCMD, with a P-value < 5 × 10-8). The 
QSNP statistic follows a 𝝌𝟐-squared distribution under the null hypothesis that the SNP 
effect is entirely mediated by a common pathway. A statistically significant QSNP 
indicates that the SNP effect is most likely mediated through specific pathways 
independent of the shared mvCMD factor. Based on previous multivariate GWASs 
conducted using Genomic SEM, we assessed QSNP heterogeneity employing a 
Bonferroni-adjusted P-value threshold of 2.56 × 10-4, correcting for 195 lead SNPs (7,8). 
Among the 195 lead SNPs, 29 exhibited heterogeneity, indicating that the majority of 
the mvCMD lead SNP associations can be best explained by a common causal pathway. 
Among the mvCMD lead variants with statistically significant QSNP statistics (P-value 
< 2.56 × 10-4), the ncRNA_intronic variant rs1556516, located near the gene CDKN2B-
AS1, exhibited the strongest evidence for its association being explained by specific 
and independent pathways (P-value = 4.12 × 10-96) (Supplementary Table 5, 6). 
Notably, the four variants - rs118039278, rs2119690, rs6657811 and rs964184 - which 
are located near the LPA, LPL, CELSR2, and ZNF259 genes, showed statistically 
significant QSNP values (Supplementary Table 5, 6). SNPs showing strong statistical 
association with one or more lipid traits at the CELSR2, LPL and ZNF259 loci were 
also associated with coronary artery disease (CAD) risk (9). Furthermore, research has 
demonstrated that lipoprotein(a) is a genetically determined, causative, and pervasive 
risk factor for atherosclerotic cardiovascular disease (10). The human plasma lipidome 
has been recognized as a critical indicator for assessing the risk of cardiometabolic 
diseases. Multivariate GWAS studies have identified novel genetic loci with roles in 
lipid metabolism, indicated functional effects on detailed circulating lipid measures, 
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and shown associations with cardiometabolic and related diseases (11). Given its close 
relationship with lipid metabolism, the aforementioned variant is undoubtedly 
associated with cardiometabolic disease. However, according to the QSNP analysis, 
these variants are not involved in our more general CMD-related multivariate mvCMD 
genetic signature, possibly because it is primarily associated with lipid metabolism or 
affects the phenotype through other pathways. 

Fine-mapping 

We performed fine-mapping to identify the most plausible causal variants in the 
genomic loci associated with mvCMD. We utilized SuSIE (12), ABF (13), and 
FINEMAP (14) through the R package echolocatoR (15) version 2.0.3 to identify the 
most plausible causal variants associated with mvCMD. Fine-mapping methods 
represent a robust approach for identifying causal variants underlying specific 
phenotypes, yet their application remains limited due to the technical complexities 
involved in implementation. echolocatoR is an R package designed to automate the 
entire workflow of genomics fine-mapping, annotation, and visualization, thereby 
facilitating the identification of the most probable causal variants associated with a 
given phenotype. 

SuSIE (Sum of Single Effects) extends Bayesian Variable Selection in Regression 
(BVSR) for fine-mapping by implementing an Iterative Bayesian Stepwise Selection 
(IBSS) process, as opposed to traditional stepwise selection methods (12). This 
approach generates credible sets of variants that quantify the uncertainty associated 
with selecting a specific variant from a group of highly correlated variants (12). The 
Bayesian false discovery probability (BFDP) serves as a robust metric for evaluating 
the significance of observed associations. Similar to the false positive report probability 
(FPRP), BFDP is straightforward to compute, yet it offers a naturally defined 
significance threshold grounded in the relative costs of false discoveries and non-
discoveries (13). This approach also benefits from a well-established methodological 
foundation. Moreover, in the context of multiple testing, the expected number of false 
discoveries and false non-discoveries can be directly estimated. FINEMAP employs a 
Shotgun Stochastic Search (SSS) algorithm, which is grounded in the Markov Chain 
Monte Carlo (MCMC) methods commonly utilized in Bayesian inference applications 
(14). We used the same 1000 Genomes Phase 3 reference panel that was used to 
generate the mvCMD summary data in Genomic SEM. SuSIE, ABF, and FINEMAP 
methods each estimate a posterior probability that the variant is causal for mvCMD. We 
used a 250 kb window and a stringent probability threshold of 0.95 to define credible 
sets of potentially causal variants. echolocator defines a "consensus SNP" as a variant 
that is included in SuSIE, ABF, and FINEMAP (15). It calculates the average posterior 
probability ("mean.PP") and determines an average credibility set ("mean.CS"). 
Specifically, the mean.CS is 1 if the mean.PP from SuSIE, ABF, and FINEMAP exceeds 
0.95; otherwise, it is 0 (Supplementary Table 9).  

Transcriptome-Wide Association Study (TWAS) 
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We subsequently conducted a transcriptome-wide association study (TWAS) to 
further explore gene-level associations of the mvCMD genetic signature, employing the 
TWAS FUSION method (16). For our TWAS analysis, we obtained 37,920 pre-
computed expression quantitative trait loci (eQTL) features from GTEx v8 via the 
FUSION website 
(http://gusevlab.org/projects/fusion/weights/sCCA_weights_v8_2.zip). These features 
were derived using cross-tissue sparse canonical correlation (sCCA) models, which 
integrate genetic data across multiple tissues to enhance the statistical power of TWAS. 
Furthermore, we utilized the 1000 Genomes Project Phase 3 European subpopulation 
for LD estimation. We excluded genes located within the major histocompatibility 
complex (MHC) region on chromosome 6, a region renowned for its intricate LD 
structure. After munging the mvCMD summary statistics, 37,190 out of 37,920 sCCA 
features were available in the mvCMD data for analysis  (Supplementary Table 10). 
The main process of TWAS FUSION is introduced as follows (16). First, identify cis-
instrument gene expression signatures, that is, genetic variants associated with gene 
expression within or in close proximity to a genomic locus. Second, a linear predictor 
is constructed for each gene using its associated SNP genetic features. Third, TWAS 
test statistics and summary-level GWAS Z-scores were calculated by incorporating the 
SNP-based prediction weights. TWAS FUSION employs a variety of linear regression 
models and Bayesian sparse linear mixed models with regularization techniques (such 
as top1, LASSO regression, and Elastic-net regression) and calculates out-of-sample R2 
statistics to determine the best model through cross-validation of each gene-GWAS 
model. Furthermore, we employed a Bonferroni-corrected statistical threshold, which 
was calculated based on the number of genes tested: P-value < 1.34 × 10-6 (0.05/37,190 
sCCA signatures evaluated in mvCMD), as the evaluation criterion for interpreting the 
TWAS results.  

Colocalization analysis employs a Bayesian framework to quantify the strength of 
SNP associations between mvCMD and TWAS gene expression across various loci, 
driven by shared causal SNPs (17). This approach facilitates the determination of 
whether observed associations are attributable to horizontal pleiotropy, wherein a single 
SNP influences both gene expression and mvCMD (PP.H4), or LD, where independent 
SNPs in LD impact both gene expression and the GWAS signal (PP.H3). We assessed 
colocalization evidence between mvCMD-associated genes (P-value < 1.34 × 10-6) by 
incorporating all variants within a 500 kb region surrounding the lead variant in each 
gene (17). We classified the results based on a PP.H4 threshold of > 0.8, indicating a 
high probability of a shared causal variant between the eQTL and GWAS signals at this 
specific genomic locus (17) (Supplementary Table 10). 

Polygenic Mendelian Randomization (MR)  

Mendelian Randomization Assumptions 

Mendelian randomization (MR) leverages SNPs as instrumental variables to 
investigate the causal relationship between genetic predisposition to an exposure trait 
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and its corresponding outcomes (18). The primary assumptions underpinning MR are 
as follows: firstly, SNP instruments are associated with the exposure trait of interest 
("relevance assumption"). Secondly, SNP instruments influence the outcome trait 
exclusively through the exposure trait ("exclusion restriction assumption"). Thirdly, the 
distribution of SNP instruments remain uninfluenced by confounding factors that also 
affect the outcome trait ("independence assumption") (19). In the subsequent exposition, 
we delineate the MR methodologies employed in our study and their implementation 
to investigate the associations of risk factors and biomarkers with mvCMD.  

Polygenic MR Phenotype Inclusion 

To examine the potential causal influence of diseases, lifestyle factors, and 
biomarkers on mvCMD, we conducted a MR analysis incorporating 67 different 
variables derived from GWAS involving participants of European ancestry 
(Supplementary Table 15, 16). These risk factors and biomarkers were pre-selected 
based on their established associations with CMD (20). It is crucial to identify 
modifiable CMD risk factors that may inform the development of targeted interventions 
and prevention strategies. We present below the rationale for selecting these specific 
risk factors and biomarkers. 

1) Lifestyle 

Given that the incidence of CMD is predominantly observed in the elderly 
population, their lifestyle choices and exposure to risk factors significantly influence 
cardiovascular health outcomes in this demographic (21). Furthermore, given that our 
subsequent analyses aimed to identify potential common genetic loci and 
pharmacological intervention strategies for CMD, we concentrated our MR analyses of 
lifestyle risk factors on common exposures. Therefore, our study incorporated a 
comprehensive set of exposures including smoking habits, alcohol intake, sleep patterns, 
educational background, and physical activities. Identifying causal biomarkers 
associated with cardiovascular health status may provide valuable insights for 
evaluating the risk of cardiovascular and cerebrovascular diseases during human aging 
and pinpoint potential targets for pharmacological interventions (22). 

2) Lipids and Glycemic Markers 

Disturbances in glucose and lipid metabolism have been extensively investigated 
as a critical mechanism underlying the pathogenesis of CMDs. However, there remains 
a paucity of research regarding the therapeutic efficacy of drugs targeting genetic loci 
involved in regulating glucose and lipid metabolism across various CMDs. 
Longitudinal studies to identify pathogenic biomarkers for CMD are also affected by 
cohort selection bias and disease heterogeneity (22). Given that MR serves as a crucial 
analytical methodology to enhance causal inference through the utilization of exposure 
and outcome data, we conducted polygenic MR analysis of multiple biomarkers 
employing quality-controlled genetic instrumental variables to evaluate their potential 
causal role on mvCMD.  
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Lipids have emerged as pivotal regulators of cardiovascular health. Beyond their 
influence on energy metabolism, lipid storage, and peroxidation in CMD, recent studies 
have highlighted that the regulation of lipid metabolism is intricately linked to various 
metabolic disorders, including non-alcoholic fatty liver disease (23) and diabetes (24). 
Therefore, we incorporated analyses assessing the effects of several major lipid 
subfractions, including Apolipoprotein A, Apolipoprotein A-I, Apolipoprotein B, 
Lipoprotein A, Cystatin C, low-density lipoprotein cholesterol (LDL-C), high‐density 
lipoprotein cholesterol (HDL‐C), triglycerides (TG), and total cholesterol on mvCMD.  

Metabolic dysfunction, often characterized by poorly controlled glucose 
regulation, is frequently observed in CMDs. Additionally, many therapies aimed at 
treating CMDs have been shown to improve glucose homeostasis (25). However, the 
causal relationship between metabolic dysfunction and cardiovascular function has yet 
to be fully elucidated. Furthermore, considering the pivotal role of metabolic regulation 
in CMD and type 2 diabetes, modulating glucose homeostasis may represent a viable 
strategy for mitigating disease risk (26). Consequently, we incorporated glycemic 
markers, including glucose, fasting insulin, and glycosylated hemoglobin (HbA1c) 
levels, into our biomarker MR analysis. Lipid and glucose markers, as central hubs of 
metabolic regulation, serve as common downstream biomarkers reflecting 
physiological responses to pharmacological modulation by frequently prescribed 
medications. We investigated the causal effects of drugs that modulate glucose and lipid 
metabolism on mvCMD and evaluated the potential relationship between gene 
expression and mvCMD to provide a evidence for selecting novel drug targets. 

3) Blood Cells and Inflammatory Markers 

Emerging evidence indicates that the crosstalk between immune cells and cardiac 
parenchymal cells, including cardiomyocytes and fibroblasts, is governed by intricate 
cellular metabolic pathways (27). Consequently, this study aims to investigate the 
causal roles of specific immune cell populations, such as basophil, eosinophil, 
lymphocyte,  monocyte and neutrophil, as well as inflammatory markers like C-
reactive protein (CRP) in relation to mvCMD. 

4) Liver Function 

Impaired hepatic function, characterized by alterations in liver function enzyme 
(LFE) levels as observed in both population-based and longitudinal studies, has been 
previously associated with an increased risk of diabetes and cardiovascular disease (28). 
Consequently, we incorporated several LFEs, including alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), Gamma glutamyltransferase (GGT), and 
alkaline phosphatase (ALP), into our biomarker MR analysis. 

5) Other Markers 

We also extended our biomarker analyses to include several other important 
biomarkers, such as lung function, anthropometric, kindey function, calcium, IGF-1, 
vitamin D, etc., to identify potential causal markers for mvCMD. 
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Drug-target MR  

We acquired summary-level data for glycated hemoglobin (HbA1c) and 
circulating lipid levels, including low-density lipoprotein cholesterol (LDL-C), high 
density lipoprotein cholesterol (HDL-C), triglycerides (TG), and lipoprotein A (Lp(a)), 
from UK Biobank participants of European ancestry (N range: 273,896 to 441,016) (29) 
(http://www.nealelab.is/uk-biobank/). These data were utilized to construct genetic 
instruments serving as proxies for pharmacological modulation of the respective 
biomarkers. 

Antidiabetics Gene Instrument Selection 

We conducted an extensive review of antidiabetic medication classes and 
identified six distinct classes of antidiabetic agents, beyond metformin, that have 
established drug targets and may be suitable for genetic instrumentation (30). These 
classes include dipeptidyl peptidase-4 (DPP-4) inhibitors, insulin analogs, glucagon-
like peptide-1 receptor (GLP-1R) analogs, thiazolidinediones, sodium-glucose 
cotransporter-2 (SGLT2) inhibitors, and sulfonylureas. Similarly, we utilized the 
ChEMBL databases to identify the pharmacologically active targets of DPP-IV 
inhibitors (DPP4), insulin analogs (INSR), GLP-1R analogs (GLP1R), 
thiazolidinediones (PPARG), SGLT2 inhibitors (SGLT2), and sulfonylureas (ABCC8 
and KCNJ11) (31,32). For each target gene, we evaluated the presence of suitable 
genetic variants within a 100 kb region flanking the gene boundaries using the HbA1c 
GWAS dataset. For genetic instruments proxying GLP-1R analogs, sulfonylureas, 
SGLT2 inhibitors, and thiazolidinediones, were selected variants at conventional 
genome-wide statistical significance (P-value < 5 × 10-8). For DPP-IV inhibitors and 
INSR analogs, given the absence of variants meeting the conventional threshold in 
either the INSR or DPP4 loci, we adopted a relaxed threshold (P-value < 5 × 10-4) 
(Supplementary Table 20). 

Lipid-modulating Gene Instrument Selection 

We further searched for genetic targets for lipid-modulating therapies (33). 
Specific genes were selected as follows: PCSK9, HMGCR, NPC1LC, ACLY, and 
ABCG8 SNP effect estimates were extracted from LDL-C (ieu-b-110, N=440,546); 
CETP and APOA1 SNP effect estimates were extracted from HDL-C (ieu-b-109, 
N=403,943); ANGPTL3, ANGPTL4, APOC3, PPARA, and LPL SNP effect estimates 
were extracted from TG (ieu-b-111, N=441,016); and LPA variants were extracted from 
the Lp(A) GWAS (ukb-d-30790_irnt, N=273,896) (29). We proxy the pharmacological 
modulation of these drug targets by identifying lipid-associated SNP cis-acting loci 
within ± 100 kb of gene boundaries, which represent the primary physiological 
responses to pharmacological interventions such as LDL-C-lowering therapy, TG-
lowering therapy, and HDL-C-raising therapy. For 13 of the remaining 12 lipid-
modulating drug targets, we identified variants achieving conventional genome wide 
statistical significance (P-value < 5 × 10-8). For the instrumental variable analysis of 
ACLY in LDL-C data, we used a relaxed P-value threshold (P-value < 5 × 10-4) due to 
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the absence of variants meeting conventional genome-wide significance within the 
ACLY locus (Supplementary Table 22). 

Drug-target MR Methods 

We clumped drug targets as described for the metformin analyses (LD R2 < 0.2 
threshold within a 250 kb window, based on the 1000 Genomes Phase 3 EUR reference 
panel), and calculated F-statistics to evaluate instrument strength to assess the MR 
assumption. We used an F-statistic > 10 to minimal bias from weak IVs, which is 
particularly critical for drug-target IVs comprising variants with relaxed P-value 
thresholds because no genome-wide significant variants exist at those loci in the 
corresponding biomarker GWAS data, such as DPP4 and ACLY (34). After 
harmonization with mvCMD, we performed correlated MR IVW (random-effects 
analysis performed when there were more than three variants) and MR Egger analyses 
accounting for the correlation between our instrument variants, with correlation 
matrices generated using the 1000 Genomes Phase 3 EUR reference panel. We 
employed MR IVW as the primary method to enhance precision by integrating 
additional, partially independent IVs into the drug-target MR analysis (35). 
Furthermore, we conducted heterogeneity testing, amd when heterogeneity tests 
indicated significant heterogeneity in the MR estimates (Cochran's Q P-value < 0.05), 
we repeated the analyses using a more stringent LD R2 threshold of 0.1 to remove 
potential heterogenous IVs.  

To elucidate the effects of the aforementioned glucose- and lipid-modulating drugs 
on mvCMD, we adjusted the MR effect estimates to align with the anticipated 
physiological responses resulting from pharmacological modulation of the drug target. 
We applied a Bonferroni-corrected threshold with a P-valueௗofௗ0.00263, accounting for 
19 total drug targets examined in both antidiabetic and lipid-modulating therapies, to 
systematically guide follow-up analyses on a manageable number of significant 
findings. 
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Supplementary Checklist: STROBE-MR Reporting Guidelines 

1. TITLE and ABSTRACT 

Q: Indicate Mendelian randomization as the study's design in the title and/or the 
abstract if that is a main purpose of the study. 
A: Not applicable for title. MR discussed in abstract.  

INTRODUCTION 
2. Background 

Q: Explain the scientific background and rationale for the reported study. Is causality 
between exposure and outcome plausible? Justify why MR is a helpful method to 
address the study question. 
A: Addressed in the methods and supplementary methods. 

3. Objectives 

Q: State specific objectives clearly, including pre-specified causal hypotheses (if any). 
A: Addressed in the methods. 

METHODS 
4. Study Design and Data Sources 

Q: Present key elements of study design early in the paper. Consider including a table 
listing sources of data for all phases of the study. For each data source contributing to 
the analysis, describe the following: 
a) Setting: Describe the study design and the underlying population, if possible. 
Describe the setting, locations, and relevant dates, including periods of recruitment, 
exposure, follow-up, and data collection, when available. 
b) Participants: Give the eligibility criteria, and the sources and methods of selection 
of participants. Report the sample size, and whether any power or sample size 
calculations were carried out prior to the main analysis. 
c) Describe measurement, quality control, and selection of genetic variants. 
d) For each exposure, outcome, and other relevant variables, describe methods of 
assessment and diagnostic criteria for diseases. 
e) For each exposure, outcome and other relevant variables, describe methods of 
assessment. 
and, in the case of diseases, the diagnostic criteria used. 
f) Provide details of ethics committee approval and participant informed consent, if 
relevant. 
A: Addressed in the methods and supplementary methods. 

5. Assumptions 

Q: Explicitly state the three core instrumental variable assumptions for the main 
analysis (relevance, independence, and exclusion restriction), as well assumptions for 
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any additional or sensitivity analysis. 
A: Addressed in the supplementary methods. 

6. Statistical Methods: Main Analysis 

Q: Describe statistical methods and statistics used. 
a) Describe how quantitative variables were handled in the analyses (that is, scale, 
units, model) 
b) Describe the process for identifying genetic variants and weights to be included in 
the analyses (i.e, independence and model). Consider a flow diagram. 
c) Describe the MR estimator, e.g. two-stage least squares, Wald ratio, and related 
statistics. Detail the included covariates and, in case of two-sample MR, whether the 
same covariate set was used for adjustment in the two samples. 
d) Explain how missing data were addressed. 
e) If applicable, say how multiple testing was dealt with. 
A: Addressed in the methods and supplementary methods. 

7. Assessment of Assumptions 

Q: Describe any methods used to assess the assumptions or justify their validity. 
A: Addressed in the methods and supplementary methods. 

8. Sensitivity Analyses 

Q: Describe any sensitivity analyses or additional analyses conducted, including 
comparison of effect estimates from different approaches, independent replication, bias 
analytic techniques, validation of instruments, and simulations. 
A: Addressed in the methods and supplementary methods. 

9. Software and Pre-registration 

Q: 
a) Name statistical software and package(s), including version and settings used. 
b) State whether the study protocol and details were pre-registered (as well as when 
and where). 
A: Addressed in the methods and supplementary methods. 

RESULTS 
10. Descriptive Data 

Q: 
a) Report the numbers of individuals at each stage of included studies and reasons for 
exclusion. Consider use of a flow-diagram. 
b) Report summary statistics for phenotypic exposure(s), outcome(s) and other relevant 
variables (e.g. means, standard deviations, proportions). 
c) If the data sources include meta-analyses of previous studies, provide the number of 
studies, their reported ancestry, if available, and assessments of heterogeneity across 
these studies. Consider using a supplementary table for each data source. 
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d) For two-sample Mendelian randomization: 
i. Provide information on the similarity of the genetic variant-exposure associations 
between the exposure and outcome samples. 
ii. Provide information on extent of sample overlap between the exposure and outcome 
data sources. 
A: Addressed in the results, supplementary methods, and supplementary tables. 

11. Main Results 

Q: 
a) Report the associations between genetic variant and exposure, and between genetic 
variant and outcome, preferably on an interpretable scale. 
b) Report causal effect estimate between exposure and outcome, and the measures of 
uncertainty from the MR analysis. Use an intuitive scale, such as odds ratio, or relative 
risk, per standard deviation difference. 
c) If relevant, consider translating estimates of relative risk into absolute risk for a 
meaningful time-period. 
d) Consider any plots to visualize results , such as forest plot, scatterplot of associations 
between genetic variants and outcome versus between genetic variants and exposure. 
A: Addressed in the results and supplementary tables. 

12. Assessment of Assumptions 

Q: 
a) Assess the validity of the assumptions. 
b) Report any additional statistics (e.g., assessments of heterogeneity, such as I2, Q 
statistic, or E value). 
A: Addressed in the results, discussion, and supplementary tables. 

13. Sensitivity and Additional Analyses 

Q: 
a) Use sensitivity analyses to assess the robustness of the main results to violations of 
the assumptions. 
b) Report results from other sensitivity analyses, such as replication study with different 
dataset, analyses of subgroups, validation of instrument(s), and simulations. 
c) Report any assessment of direction of causality (e.g., bidirectional MR). 
d) When relevant, report and compare with estimates from non-MR analyses. 
e) Consider any additional plots to visualize results (e.g., leave-one-out analyses). 
A: Addressed in the results and supplementary tables. 

DISCUSSION 
14. Key Results 

Q: Summarize key results with reference to study objectives. 
A: Addressed in the discussion. 
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15. Limitations 

Q: Discuss limitations of the study, taking into account the validity of the MR 
assumptions, other sources of potential bias, and imprecision. Discuss both direction 
and magnitude of any potential bias, and any efforts to address them. 
A: Addressed in the discussion. 

16. Interpretation 

Q: 
a) Meaning: Give a cautious overall interpretation of results considering objectives and 
limitations. 
Compare with results from other relevant studies. 
b) Mechanism: Discuss underlying biological mechanisms that could be modelled by 
using the genetic variants to assess the relationship between the exposure and the 
outcome, and whether the gene-environment equivalence assumption is reasonable. 
c) Clinical relevance: Evaluate the clinical and public policy relevance of the results, 
and determine the extent to which they inform the effect sizes of potential interventions. 
A: Addressed in the discussion. 

17. Generalizability 

Q: Discuss the generalizability of the study results (a) to other populations (i.e. external 
validity),(b) across other exposure periods/timings, and (c) across other levels of 
exposure. 
A: Addressed in the discussion. 

OTHER INFORMATION 
18. Funding 

Q: Describe the sources of funding and the roles of funders in the present study. If 
applicable, also detail the sources of funding for the databases and the original studies 
that form the basis of the current research. 
A: Addressed in the funding. 

19. Data and Data Sharing 

Q: Provide the datasets utilized for all analyses, clearly reporting their sources and 
access methods. Reference these data sources appropriately within the article. 
Additionally, supply the statistical code necessary to replicate the results presented in 
the article, or specify whether the code is publicly accessible and provide details on its 
location. 
A: Addressed in the methods. 

20. Conflicts of Interest 

Q: All authors should declare all potential conflicts of interest. 
A: Addressed in the declaration of competing interest. 
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Supplementary Figures 
 

 

Supplementary Fig. 1 Mendelian Diseases and Phenotypes Enrichment Results 

Implemented to investigate potential relationships of mvCMD with Mendelian disease 
genes and associated pathways with MendelVar (https://mendelvar.mrcieu.ac.uk/). 
Within MendelVar, INRICH was executed in "Gene" enrichment mode with default 
settings for the target gene set filter and minimum observed threshold. Additionally, 
gene sets from the Human Disease Ontology (do) (https://disease-ontology.org/) and 
the Human Phenotype Ontology (hpo) (https://hpo.jax.org/app/) databases were 
incorporated. The figure shows the top 50 items in the enrichment analysis results. 
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Supplementary Fig. 2 Analysis Overview of Cis-IVs MR of Genes in Biomarker 

Results show number of protein-coding genes including in the stages of the 
colocalization and cis-IVs MR analysis. Exposure GWAS data for each of the 
biomarkers came from HbA1c (ukb-d-30750_irnt, N=344,182); several lipid 
subfractions including HDL-C (ieu-b-109, N=403,943), LDL-C (ieu-b-110, 
N=440,546), and TG (ieu-b-111, N=441,016). Outcome data was mvCMD 
(Nௗ=ௗ932,442). HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides. 
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Supplementary Fig. 3 Associations between Genetically Predicted ENSG000
00175305 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000175305 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests.  
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Supplementary Fig. 4 Associations between Genetically Predicted ENSG000
00111252 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000111252 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests. 
  



27 
 

 
Supplementary Fig. 5 Associations between Genetically Predicted ENSG000
00137825 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000137825 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests. 
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Supplementary Fig. 6 Associations between Genetically Predicted ENSG000
00134243 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000134243 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests. 
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Supplementary Fig. 7 Associations between Genetically Predicted ENSG000
00055483 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000055483 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests. 
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Supplementary Fig. 8 Associations between Genetically Predicted ENSG000
00131323 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000131323 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests. 
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Supplementary Fig. 9 Associations between Genetically Predicted ENSG000
00196821 and CMD 

Data presented are odds ratio (calculated from the MR estimates) for the IVW MR 
method and the corresponding 95% CIs. The vertical line at the center of the forest plots 
represents a value of 0, which corresponds to no change in the IVW estimate of the 
effect of ENSG00000196821 on mvCMD. Full results are presented in Supplementary 
Table 39-40. * indicates that the MR estimate surpasses the Bonferroni-adjusted P-
value thresholdௗ=ௗ0.005, corrected for the 10 variables compared. P-values are derived 
from two-sided Wald tests. 
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Supplementary Fig. 10 Regional Association Plot for SNP rs205262 

Regional plot of the locus around the novel lead variant rs205262 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 11 Regional Association Plot for SNP rs1060126 

Regional plot of the locus around the novel lead variant rs1060126 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 12 Regional Association Plot for SNP rs2680688 

Regional plot of the locus around the novel lead variant rs2680688 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 13 Regional Association Plot for SNP rs3033134 

Regional plot of the locus around the novel lead variant rs3033134 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 14 Regional Association Plot for SNP rs3793742 

Regional plot of the locus around the novel lead variant rs3793742 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 15 Regional Association Plot for SNP rs6507881 

Regional plot of the locus around the novel lead variant rs6507881 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 16 Regional Association Plot for SNP rs6955307 

Regional plot of the locus around the novel lead variant rs6955307 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 17 Regional Association Plot for SNP rs7226020 

Regional plot of the locus around the novel lead variant rs7226020 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 18 Regional Association Plot for SNP rs7807976 

Regional plot of the locus around the novel lead variant rs7807976 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 19 Regional Association Plot for SNP rs7958372 

Regional plot of the locus around the novel lead variant rs7958372 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 

 

  



42 
 

 
Supplementary Fig. 20 Regional Association Plot for SNP rs10204808 

Regional plot of the locus around the novel lead variant rs10204808 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 21 Regional Association Plot for SNP rs11607791 

Regional plot of the locus around the novel lead variant rs11607791 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 22 Regional Association Plot for SNP rs35297486 

Regional plot of the locus around the novel lead variant rs35297486 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 23 Regional Association Plot for SNP rs56179563 

Regional plot of the locus around the novel lead variant rs56179563 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 24 Regional Association Plot for SNP rs138682554 

Regional plot of the locus around the novel lead variant rs138682554 identified in the 
mvCMD (Neff = 932,442). Top panel displays the -log10(P-value) results of two-sided 
Wald tests for each variant on mvCMD and LD R2 information in the locus (variants 
are colored by LD R2) and the genes prioritized by FUMA are highlighted in red on the 
track below. The bottom panel illustrates the CADD (combined annotation dependent 
depletion) scores and RegulomeDB scores, presented in the top and bottom tracks, 
respectively. 
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Supplementary Fig. 25 Fine-mapping Results of CASZ1 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 26 Fine-mapping Results of CLCN6 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 27 Fine-mapping Results of PTPN22 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 28 Fine-mapping Results of WNT2B 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 29 Fine-mapping Results of CCDC85A 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 30 Fine-mapping Results of SPINK8 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 31 Fine-mapping Results of ARHGAP26 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 32 Fine-mapping Results of C6orf106 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 33 Fine-mapping Results of LPA 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 34 Fine-mapping Results of TCF21 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 35 Fine-mapping Results of VEGFA 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 36 Fine-mapping Results of MMD2 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 37 Fine-mapping Results of NOS3 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 38 Fine-mapping Results of ZC3HC1 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 39 Fine-mapping Results of LPL 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 40 Fine-mapping Results of NDUFAF6 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 41 Fine-mapping Results of ADRB1 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 42 Fine-mapping Results of BNIP3 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 43 Fine-mapping Results of CACNB2 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 44 Fine-mapping Results of ARHGAP42 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 45 Fine-mapping Results of ZNF259 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 46 Fine-mapping Results of GOLT1B 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 47 Fine-mapping Results of RP4-605O3.4_CERS5 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 48 Fine-mapping Results of SLC7A1 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 49 Fine-mapping Results of INO80 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 50 Fine-mapping Results of CACNA1H 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 51 Fine-mapping Results of WWP2 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 52 Fine-mapping Results of KIAA0753 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 53 Fine-mapping Results of UBE2Z 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 54 Fine-mapping Results of APOE 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 55 Fine-mapping Results of LDLR 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 56 Fine-mapping Results of MYO9B 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 57 Fine-mapping Results of RAB3D 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 58 Fine-mapping Results of SMARCA4 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 
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Supplementary Fig. 59 Fine-mapping Results of ZNRF3 

The top panel displays genes located within 250 kilobases of the lead variant. The 
second panel displays the -log10(P-value) results of two-sided Wald tests for each 
variant on mvCMD and LD R2 information in the locus (variants are colored by LD R2). 
The third panel shows the fine-mapping results of the ABF method. The fourth panel 
displays the fine-mapping results from the FINEMAP method. The fifth panel exhibits 
the fine-mapping results of the SuSIE methods. A vertical red line indicates the location 
of the GWAS lead SNP. See supplementary methods for further details. 

  



82 
 

References 
1. Cheung MW. metaSEM: an R package for meta-analysis using structural equation 

modeling. Front Psychol. 2014;5:1521. 

2. Savalei V, Bentler PM. A two-stage approach to missing data: Theory and application to 

auxiliary variables. Structural Equation Modeling: A Multidisciplinary Journal. 

2009;16(3):477-497. 

3. Yuan K-H, Bentler PM. Robust mean and covariance structure analysis through iteratively 

reweighted least squares. Psychometrika. 2000;65:43-58. 

4. Grotzinger AD, Rhemtulla M, de Vlaming R, et al. Genomic structural equation modelling 

provides insights into the multivariate genetic architecture of complex traits. Nat Hum 

Behav. 2019;3(5):513-525. 

5. Bulik-Sullivan BK, Loh PR, Finucane HK, et al. LD Score regression distinguishes 

confounding from polygenicity in genome-wide association studies. Nat Genet. 

2015;47(3):291-295. 

6. Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation 

models: Tests of significance and descriptive goodness-of-fit measures. Methods of 

psychological research online. 2003;8(2):23-74. 

7. Karlsson Linnér R, Mallard TT, Barr PB, et al. Multivariate analysis of 1.5 million people 

identifies genetic associations with traits related to self-regulation and addiction. Nat 

Neurosci. 2021;24(10):1367-1376. 

8. Rosoff DB, Mavromatis LA, Bell AS, et al. Multivariate genome-wide analysis of aging-

related traits identifies novel loci and new drug targets for healthy aging. Nat Aging. 

2023;3(8):1020-1035. 

9. Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing circulating lipid 

levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 

2010;30(11):2264-2276. 

10. Reyes-Soffer G, Ginsberg HN, Berglund L, et al. Lipoprotein(a): A Genetically Determined, 

Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific 

Statement From the American Heart Association. Arterioscler Thromb Vasc Biol. 

2022;42(1):48-60. 

11. Ottensmann L, Tabassum R, Ruotsalainen SE, et al. Genome-wide association analysis of 

plasma lipidome identifies 495 genetic associations. Nat Commun. 2023;14(1):6934. 

12. Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection 

in regression, with application to genetic fine mapping. J R Stat Soc Series B Stat Methodol. 

2020;82(5):1273-1300. 

13. Wakefield J. A Bayesian measure of the probability of false discovery in genetic 

epidemiology studies. Am J Hum Genet. 2007;81(2):208-227. 

14. Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient 

variable selection using summary data from genome-wide association studies. 

Bioinformatics. 2016;32(10):1493-1501. 

15. Schilder BM, Humphrey J, Raj T. echolocatoR: an automated end-to-end statistical and 

functional genomic fine-mapping pipeline. Bioinformatics. 2022;38(2):536-539. 

16. Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide 

association studies. Nat Genet. 2016;48(3):245-252. 



83 
 

17. Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between 

pairs of genetic association studies using summary statistics. PLoS Genet. 

2014;10(5):e1004383. 

18. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference 

in epidemiological studies. Hum Mol Genet. 2014;23(R1):89-98. 

19. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a 

guide, glossary, and checklist for clinicians. Bmj. 2018;362:k601. 

20. Zeljkovic A, Vekic J, Stefanovic A. Obesity and dyslipidemia in early life: Impact on 

cardiometabolic risk. Metabolism. 2024;156:155919. 

21. Jiang M, Tian S, Liu S, et al. Accelerated biological aging elevates the risk of 

cardiometabolic multimorbidity and mortality. Nat Cardiovasc Res. 2024;3(3):332-342. 

22. Stitziel NO. Human genetic insights into lipoproteins and risk of cardiometabolic disease. 

Curr Opin Lipidol. 2017;28(2):113-119. 

23. Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to 

cardiovascular disease. Mol Metab. 2020;42:101092. 

24. Islam MA, Amin MN, Siddiqui SA, Hossain MP, Sultana F, Kabir MR. Trans fatty acids and 

lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes 

Metab Syndr. 2019;13(2):1643-1647. 

25. Honigberg MC, Zekavat SM, Pirruccello JP, Natarajan P, Vaduganathan M. Cardiovascular 

and Kidney Outcomes Across the Glycemic Spectrum: Insights From the UK Biobank. J Am 

Coll Cardiol. 2021;78(5):453-464. 

26. Chen J, Yin D, Dou K. Intensified glycemic control by HbA1c for patients with coronary 

heart disease and Type 2 diabetes: a review of findings and conclusions. Cardiovasc 

Diabetol. 2023;22(1):146. 

27. DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart 

of Cardiovascular Disease. JACC Basic Transl Sci. 2023;8(7):884-904. 

28. Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, 

cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 

2019;7(4):313-324. 

29. Richardson TG, Sanderson E, Palmer TM, et al. Evaluating the relationship between 

circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A 

multivariable Mendelian randomisation analysis. PLoS Med. 2020;17(3):e1003062. 

30. Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical Review of Antidiabetic Drugs: 

Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne). 

2017;8:6. 

31. Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: streamlining access to 

drug discovery data and utilities. Nucleic Acids Res. 2015;43(W1):612-620. 

32. Zdrazil B, Felix E, Hunter F, et al. The ChEMBL Database in 2023: a drug discovery platform 

spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 

2024;52(D1):1180-1192. 

33. Ference BA, Kastelein JJP, Ray KK, et al. Association of Triglyceride-Lowering LPL Variants 

and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. Jama. 

2019;321(4):364-373. 

34. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian 



84 
 

randomization studies. Int J Epidemiol. 2011;40(3):755-764. 

35. Schmidt AF, Finan C, Gordillo-Marañón M, et al. Genetic drug target validation using 

Mendelian randomisation. Nat Commun. 2020;11(1):3255. 

 


