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Appendix

A Predictive Bayes factor

The predictive Bayes factor is a generic and coherent1 Bayesian hypothesis testing method

(Zhou 2011), defined below. Denote Hk(D) the posterior predictive model under hy-

potheses Hk, k = 1, 2, with the parameter updated in the presence of observed data

D = {y1, y2, · · · , yn}. Under mild regularity conditions, a comparison between H1(D)

and H2(D) can be conducted using

PrBF1,2 =

Q
i P (yi|H1(D))Q
i P (yi|H2(D))

exp (b̂1)

exp (b̂2)
,

where b̂k = �tr{J�1
n,k(✓̂

k)In,k(✓̂k)} is an asymptotically unbiased estimator for hypothesis k

that corrects the estimation bias in the empirical log posterior predictive distribution, with

the model-specific density function g(y|✓), prior distribution ⇡(✓), posterior mode ✓̂ and

Jn(✓) = � 1

n

nX

i=1

(
@
2 log{g(yi|✓)⇡

1
n (✓)}

@✓@✓0
),

In(✓) =
1

n

nX

i=1

(
@ log{g(yi|✓)⇡

1
n (✓)

@✓

@ log{g(yi|✓)⇡
1
n (✓)}

@✓0
).

The predictive Bayes factor is an empirical estimator of P (H1(D))/P (H2(D)), the ratio

of the posterior weights of posterior predictive models, given the equal (non-informative)

prior model weights. In general, the predictive Bayes factors bear similarity to Bayes fac-

tors in interpretation by quantifying the “weight of evidence” in favor of one hypothesis

against another. However, the evidence is assessed using the posterior predictive distribu-

tion rather than the prior predictive distribution, which can help to significantly reduce the

sensitivity to prior variations and avoid the degeneration of the integrated likelihood un-

derlying Lindley’s paradox. Di↵erent from the posterior Bayes factors (Aitkin 1991) that

1
In the context of model selection (e.g., in Johnson 2005), rather than in the context of clinical trial

dose finding (Cheung 2005).
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may improperly use data twice for predictive inference, predictive Bayes factors correct

the asymptotic over-estimation error of the in-sample log posterior predictive distribution.

More importantly, when the total sample size is small, such as in the setting of dose-

finding trial designs, the predictive Bayes factors can also provide reasonable empirical

performance without further correction. Given these merits, we adopt the predictive Bayes

factor in hypothesis testing for the PoP design.

B Proof of Theorem 2

Proof. Denote Lnj =
argminyj PrBF0,1(yj ,nj)�C

nj
and Unj =

argmaxyj PrBF0,1(yj ,nj)�C

nj
the lower and

upper boundaries of the PoP design with nj patients treated at dose level j, for 8j 2 J .

Using the same notation as the main text by suppressing the subscript j, we first prove the

following lemmas:

Lemma 1. The predictive Bayes factor (3) converges to e as n ! 1 if H0 in (1) is true.

Otherwise, if H1 is true, it converges to 0.

Proof. As n ! 1,

(i) if H0 is true, y approximates n�0. Then, limn!1 PrBF0,1 = e

(ii) if H1 is true, denote the maximum likelihood estimator (MLE) of � be �̂ = y/n such

that

lim
n!1

PrBF0,1 = lim
n!1

e

(✓
�0

�̂

◆�̂ ✓1� �0

1� �̂

◆(1��̂)
)n

Note that
⇣

�0

�̂

⌘�̂ ⇣
1��0

1��̂

⌘(1��̂)

 1 with equality holds if and only if �̂ = �0. Thus, it

does not hold under H1. Then, limn!1 PrBF0,1 = 0.
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Lemma 2. Under the condition C < e, limn!1 Ln = � and limn!1 Un = �.

Proof. Without loss of generality, we prove limn!1 Ln = �. The proof for the upper bound

is similar.

Since limn!1 PrBF0,1(n�, n) = e > C, for ✏ = e� C > 0, there exists an N , such that

for 8n > N , PrBF0,1(n�, n) > e � ✏. Then, as n is large enough, at least ŷ = n� 2 {y :

PrBF0,1(y, n) � C}. Thus, Ln exists.

Then, we prove limn!1 Ln = � by contradiction. If limn!1 Ln = ✓ < �, PrBF0,1(n✓, n) �

C. However, according to Lemma 1, limn!1 PrBF0,1(n✓, n) = 0 < C. Thus, limn!1 Ln =

�.

Let J denote the set of indices for dose levels that appear an infinite number of times

in the sequential allocation such that J = {j : nj ! 1 as n ! 1}. Denote j
⇤ the MTD

as j⇤ ⌘ argmin1jJ |⇡j � �|.

If ⇡j⇤ = �, we prove P (j⇤ 2 J ) = 1 by contradiction. Assume there is a dose k > j
⇤ for

which only dose levels above k are visited an infinite number of times. We know that ⇡k > �.

According to Lemma 2, for a large enough n, we have PrBF0,1(yk) < C and ⇡̂k > �. This

indicates that the next cohort of patients will be assigned to lower level k � 1. Then, dose

level k � 1 should appear an infinite number of times as well, reaching a contradiction.

Thus, there is no k > j
⇤ such that k 2 J . Similarly, there is no k < j

⇤ such that k 2 J .

Thus, we have j
⇤ 2 J and for n large enough, P (PrBF0,1(yj⇤) � C and ⇡̂j⇤ = �) = 1.

Upon visit j
⇤, it will be repeatedly allocated with probability 1. Thus, the design will

converge almost surely.

If no dose level has the toxicity rate �, we prove that P (j⇤, j⇤ + 1 2 J ) = 1 if ⇡j⇤ < �

and ⇡j⇤+1 > �. The proof is similar when ⇡j⇤�1 < � and ⇡j⇤ > �. Similar to the case
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when ⇡j⇤ = �, we can prove that there is no k > j
⇤ + 1 such that k 2 J and there is also

no k < j
⇤ such that k 2 J . For a large enough n, once visit j⇤, we have PrBF0,1(yj⇤) <

C and ⇡̂j⇤ < �. Thus, the next cohort of patients will be assigned to dose j⇤+1. Similarly,

once visit j⇤ + 1, the next cohort of patients will be assigned to dose j
⇤. Thus, the design

would eventually oscillate between two dose levels at which the associated toxicity rates

straddle �.

If all ⇡j’s are above or below �, similarly, the dose levels straddle �, including j
⇤, will be

repeatedly allocated with probability 1. According to the Lemma 1 of Oron et al. (2011),

the design will converge almost surely.

C Proof of Theorem 3

Proof. Without loss of generality, we prove |Ln � �|  kn
�1/2 as n ! 1, where k =

p
2�(1� �)(1� logC). The proof for |Un � �|  kn

�1/2 is similar.

Let f(x) = n
⇥
x log �

x + (1� x) log 1��
1�x

⇤
, such that PrBF0,1 = exp

�
f
�
y
n

�
+ 1

�
. Then,

we have

f(Ln) � logC � 1,

f(�) = f
0(�) = 0,

f
00
(�) = � n

�(1� �)
.

Based on the Taylor theorem, there exists a function h2 : R ! R, such that

f(x) = f(�) + f
0(�)(x� �) + f

00
(�)(x� �)2 + h2(x)(x� �)2

=

✓
�n

2

1

�(1� �)
+ h2(x)(x� �)2

◆
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and limx!� h2(x) = 0. Then, according to Lemma 2,

f(Ln) =

✓
�n

2

1

�(1� �)
+ h2(Ln)(Ln � �)2

◆
� logC � 1

. Thus,

(Ln � �)2  2�(1� �)(1� logC)

n

. it gives

|Ln � �| 
p

2�(1� �)(1� logC)n�1/2

D Proof of Theorem 4

Proof. According to the decision rules, the probability of dose escalation of the PoP de-

sign when the observed DLT rate is ⇡j < � is given by P (dose escalation|⇡̂j > �) =

P (PrBF0,1 < C & ⇡̂j < � | ⇡̂j > �) = 0. Thus, the PoP design will not escalate the dose

when the observed DLT rate is higher than the target.

Similarly, P (dose de-escalation|⇡̂j < �) = P (PrBF0,1 < C & ⇡̂j > � | ⇡̂j < �) = 0.

Thus, the PoP design never de-escalates the dose when the observed DLT rate is lower

than the target toxicity rate. So, the PoP design is long-term memory coherent.
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E Details of implementing CRM

For the CRM method, we obtained the skeleton using the getprior function from the

R package dfcrm, employing the indi↵erence-interval based approach of Lee and Cheung

(2009). We set the halfwidth of the indi↵erence intervals to 0.05, used the middle dose

level (i.e., dose level 2 for K=4 and dose level 3 for K=6) as the prior guess of MTD, and

employed a one-parameter logistic model as the working model. Specifically,

• when � = 0.2, the skeleton is (0.112, 0.200, 0.311, 0.429) for K = 4,

and is (0.055, 0.112, 0.200, 0.311, 0.429, 0.539) for K = 6;

• when � = 0.25, the skeleton is (0.158, 0.250, 0.355, 0.462) for K = 4,

and is (0.089, 0.158, 0.250, 0.355, 0.462, 0.558) for K = 6;

• when � = 0.3, the skeleton is (0.205, 0.300, 0.402, 0.500) for K = 4,

and is (0.126, 0.205, 0.300, 0.402, 0.500, 0.587) for K = 6.
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F Design performance in additional scenarios

Table A1 shows the four prespecified scenarios for oncology trials used in Liu and Yuan

(2015) but with a di↵erent target toxicity rate. These scenarios were originally proposed

for � = 0.25, but here we examined when � = 0.20 to demonstrate the operating charac-

teristics of the PoP, BOIN, Keyboard, and CRM designs when the target toxicity rate may

fall in between two adjacent dose levels. MTD is considered the dose level whose DLT rate

is the closest to the target rate. As expected, the parametric CRM design performs the

best if the model assumptions are satisfied and the dose-toxicity skeleton closely resembles

the truth. Otherwise, if the assumptions are violated, the CRM design will not perform

as well, suggesting the importance of conducting comprehensive assessments across mul-

tiple scenarios (e.g. in Table 2). Simulation studies find that PoP design has excellent

performance in all settings and outperforms other interval designs.
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Table A1: Performance metrics of the PoP, BOIN, Keyboard, and CRM designs under

four prespecified dose-toxicity scenarios for cohort sizes of 1. The target toxicity rate is

0.20. N = 36. Results from isolated scenarios should be interpreted with caution, as

performance comparisons across di↵erent design classes can substantially vary by scenario.

1 2 3 4 5 6
Scenario 1 Pr(toxicity) 0.25 0.35 0.5 0.6 0.7 0.8
PoP Selection(%) 65.0 9.7 0.4 0.0 0.0 0.0 24.9 7.8

# Patients 22.8 6.4 1.7 0.5 0.2 0.0
BOIN Selection(%) 49.5 9.4 0.4 0.0 0.0 0.0 40.7 9.7

# Patients 17.3 6.4 2.1 0.7 0.2 0.1
Keyboard Selection(%) 49.7 8.8 0.4 0.0 0.0 0.0 41.1 8.6

# Patients 17.9 6.0 1.9 0.6 0.2 0.0
CRM Selection(%) 48.9 8.5 0.3 0.0 0.0 0.0 42.3 7.3

# Patients 18.3 5.7 1.6 0.5 0.1 0.0

Scenario 2 Pr(toxicity) 0.1 0.25 0.4 0.6 0.7 0.8
PoP Selection(%) 37.6 55.7 5.4 0.1 0.0 0.0 1.3 2.6

# Patients 13.8 15.2 4.8 1.0 0.3 0.1
BOIN Selection(%) 42.2 48.8 5.2 0.2 0.0 0.0 3.6 3.5

# Patients 14.2 13.9 5.0 1.4 0.4 0.1
Keyboard Selection(%) 43.1 48.5 4.6 0.1 0.0 0.0 3.7 3.1

# Patients 14.9 13.8 4.6 1.2 0.3 0.1
CRM Selection(%) 33.5 57.2 5.6 0.0 0.0 0.0 3.6 2.4

# Patients 13.5 15.7 4.6 0.9 0.2 0.1

Scenario 3 Pr(toxicity) 0.05 0.1 0.25 0.32 0.5 0.6
PoP Selection(%) 2.4 36.5 47.1 13.1 0.6 0.0 0.3 8.3

# Patients 3.6 11.5 12.3 5.9 1.7 0.4
BOIN Selection(%) 4.0 39.4 41.0 14.0 0.9 0.1 0.6 9.8

# Patients 3.6 11.8 11.1 6.4 2.1 0.7
Keyboard Selection(%) 4.4 40.2 41.1 13.0 0.6 0.0 0.6 9.3

# Patients 3.9 12.3 11.1 6.1 1.9 0.6
CRM Selection(%) 1.0 32.2 53.9 11.9 0.4 0.0 0.6 8.8

# Patients 3.1 11.1 14.0 5.8 1.4 0.4

Scenario 4 Pr(toxicity) 0.01 0.02 0.03 0.04 0.05 0.25
PoP Selection(%) 0.0 0.1 0.3 1.1 31.2 67.2 0.0 0.0

# Patients 1.2 1.4 1.7 2.4 11.2 17.3
BOIN Selection(%) 0.1 0.2 0.4 1.0 40.8 57.4 0.0 0.0

# Patients 1.2 1.3 1.5 2.1 13.2 16.7
Keyboard Selection(%) 0.1 0.4 0.5 1.5 41.3 56.2 0.0 0.0

# Patients 1.2 1.4 1.6 2.2 13.4 16.3
CRM Selection(%) 0.0 0.0 0.2 1.3 26.9 71.6 0.0 0.0

# Patients 1.1 1.2 1.6 2.5 10.4 19.2

Dose level Risk of Over-
dosing

Not Choosing 
Any DoseDesign

Target !=0.20
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G Dose selection

Here we investigated the distributed dose selection performance of the PoP, BOIN, Key-

board, and CRM designs. In addition to the chance of correct selection of MTD (% Correct

Selection), we calculated the percentage of selecting a dose above MTD (% Overdose Se-

lection), under MTD (% Underdose Selection), and claiming no MTD if the lowest dose is

considered overly toxic even though MTD exists (% No Selection).

Figure A1 presents the simulation results. Among all the designs, the PoP design

exhibited the highest % correct selection and the lowest % no selection, indicating its

e�ciency and robustness in MTD identification. The CRM design demonstrated the highest

% overdosing selection and lowest % underdosing selection, suggesting a tendency to select

a higher dose as MTD. In contrast, the Keyboard design was more likely to select a dose

level lower than the true MTD, resulting in not only the lowest % Overdose Selection but

also the lowest % Correct Selection. Overall, this di↵erence among the designs highlights

their risk preference and OC in MTD selection.
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Figure A1: Barplots of the percentage of overdose, correct, underdose, and no selection for

the PoP, BOIN, Keyboard, and CRM designs over 10,000 simulated scenarios.
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H Simulation of consistency

The consistency property was proved in Appendix D. A simulation study with K = 3 and

phi = 0.25 various sample size n was examined to empirically demonstrate the property.

As Figure A2 illustrates, the PCS increases to 1 as the sample size increases, indicating

the consistency of the PoP design.
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1.00

18 36 72 144 288 576 1152
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S

Figure A2: Boxplots of the percentage of correct selection (PCS) for the PoP design for

di↵erent sample sizes over 20,000 simulated scenarios. Dose exclusion and elimination rules

are deactivated for illustration purposes.
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I Sensitivity analysis of PoP design for loss functions

In this sensitivity analysis, we investigate the performance of the PoP design with respect

to various sets of loss functions. We restrict the sensitivity analysis to the setting of K = 3

doses and n = 18 patients, so as not to lose the main ideas. Under the conditions mentioned

in Section 4, we examine b1 = 0.2 or 0.25, b2 = 0.6 or 2/3, and b3 = 0.15 or 1/6.

Table A2 shows that the PoP designs generate universally higher PCS and PCA than the

BOIN and Keyboard designs. Di↵erent choices of loss functions punish the dose transition

to various extents so that the risk of overdosing at 70% varies.
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Table A2: Percentage of correct selection (PCS, %), percentage of correct allocation (PCA,

%) and overdose control for di↵erent loss functions.

b1 b2 b3 PCS PCA Risk 
of OD PCS PCA Risk 

of OD PCS PCA Risk 
of OD

BOIN 56.6 48.8 11 56.8 48.0 10.1 57.3 48.6 9.7
56.0 49.2 11.2 56.6 48.4 10 56.0 48.0 9.5

0.2 0.6 0.2 59.8 52.2 9.9 61.0 52.0 10.4 61.3 51.7 11.1
0.2 0.6  1/6 59.7 52.3 10.5 60.0 51.4 10.4 61.1 51.5 10.0
0.2  2/3 0.2 60.0 51.5 8.1 61.3 51.1 9.2 61.5 50.9 9.7
0.2  2/3  1/6 60.4 52.0 9.2 60.2 50.6 9.1 61.5 51.4 10.6

0.25 0.6 0.2 60.1 53.1 13.1 59.2 51.5 11.1 60.8 52.3 14.2
0.25 0.6  1/6 60.1 53.1 13.1 59.6 51.9 13.6 60.5 52.1 12.7
0.25  2/3 0.2 59.7 52.4 10.5 60.1 51.7 11.8 60.7 51.8 10.7
0.25  2/3  1/6 60.4 53.0 11.8 59.7 51.7 11.8 61.1 52.2 13.3

K=3,N=18

b1 b2 b3 PCS PCA Risk 
of OD PCS PCA Risk 

of OD PCS PCA Risk 
of OD

BOIN 57.3 48.6 10.2 58.4 49.1 10.5 56.8 47.9 8.2
Keyboard 55.1 47.4 10.1 54.7 46.2 8.7 56.8 47.2 9.6

0.2 0.6 0.2 60.9 51.3 10.9 61.7 51.9 12.0 61.8 51.6 10.2
0.2 0.6  1/6 60.4 51.2 11.4 61.6 51.7 11.9 61.6 51.8 10.8
0.2  2/3 0.2 60.9 50.2 9.2 61.7 50.6 8.7 61.7 50.2 9.2
0.2  2/3  1/6 60.4 50.1 9.2 61.6 50.4 8.6 61.6 50.6 10.5

0.25 0.6 0.2 60.3 51.5 12.2 61.1 52.3 12.0 61.4 52.2 12.0
0.25 0.6  1/6 59.8 51.2 12.9 61.0 52.0 11.9 61.1 52.1 11.2
0.25  2/3 0.2 60.7 51.5 12.1 61.5 52.0 12.5 61.6 51.9 11.2
0.25  2/3  1/6 60.2 51.2 12.1 61.4 51.9 11.4 61.5 51.9 11.2

PoP

!=0.3 !=0.35 !=0.4

PoP

K=3,N=18 !=0.15 !=0.2 !=0.25

Keyboard

Abbreviation: OD: over-dosing.
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