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Appendix

A Predictive Bayes factor

The predictive Bayes factor is a generic and coherent! Bayesian hypothesis testing method
(Zhou 2011), defined below. Denote Hg(D) the posterior predictive model under hy-
potheses Hy, k = 1,2, with the parameter updated in the presence of observed data
D = {y1,v92,- - ,yn}. Under mild regularity conditions, a comparison between H;(D)

and H(D) can be conducted using

. L Pl Hi(D)) exp (by)
P = P2 (D)) exp (1)

where by = —tr{J,, L(6")1,, (%)} is an asymptotically unbiased estimator for hypothesis k

that corrects the estimation bias in the empirical log posterior predictive distribution, with

the model-specific density function ¢(y|0), prior distribution 7 (6), posterior mode 6 and

1~ 0% log{g(y:|0)7= (0)}

nO) = 52 2606 )
1,(0) = %Z(alog{g(g;!@)m(e)8log{g(zg£)m(9)})‘

=1

The predictive Bayes factor is an empirical estimator of P(H;(D))/P(H>(D)), the ratio
of the posterior weights of posterior predictive models, given the equal (non-informative)
prior model weights. In general, the predictive Bayes factors bear similarity to Bayes fac-
tors in interpretation by quantifying the “weight of evidence” in favor of one hypothesis
against another. However, the evidence is assessed using the posterior predictive distribu-
tion rather than the prior predictive distribution, which can help to significantly reduce the
sensitivity to prior variations and avoid the degeneration of the integrated likelihood un-

derlying Lindley’s paradox. Different from the posterior Bayes factors (Aitkin 1991) that

In the context of model selection (e.g., in Johnson 2005), rather than in the context of clinical trial
dose finding (Cheung 2005).
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may improperly use data twice for predictive inference, predictive Bayes factors correct
the asymptotic over-estimation error of the in-sample log posterior predictive distribution.
More importantly, when the total sample size is small, such as in the setting of dose-
finding trial designs, the predictive Bayes factors can also provide reasonable empirical
performance without further correction. Given these merits, we adopt the predictive Bayes

factor in hypothesis testing for the PoP design.

B Proof of Theorem 2

arg minyj PrBFo,1(y;j,n;)> arg max PrBFo,1(y;j,n;)>C

the lower and

c
Proof. Denote Ly, = and Uy, =

nj nj

upper boundaries of the PoP design with n; patients treated at dose level j, for Vj € J.

Using the same notation as the main text by suppressing the subscript j, we first prove the

following lemmas:

Lemma 1. The predictive Bayes factor (3) converges to e as n — oo if Hy in (1) is true.

Otherwise, if Hy is true, it converges to 0.
Proof. As n — oo,
(i) if Hy is true, y approximates n¢o. Then, lim,_,,, PrBFy; =e

(i) if H; is true, denote the maximum likelihood estimator (MLE) of ¢ be ¢ = y/n such

¢ sq 1-5)"
lim PrBFy; = lim e (qb—f)) (1 gb?)

¢ (1-9) .
Note that (%) (ﬂ) < 1 with equality holds if and only if ¢ = @. Thus, it

that

1-¢
does not hold under H,;. Then, lim,,_,., PrBF; = 0.
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Lemma 2. Under the condition C' < e, lim,,_.o, L,, = ¢ and lim,,_,, U,, = ¢.

Proof. Without loss of generality, we prove lim,, o, L, = ¢. The proof for the upper bound
is similar.

Since lim,, o PrBFg 1 (n¢,n) = e > C, for e = e — C' > 0, there exists an N, such that
for Vn > N, PrBF (n¢,n) > e —e. Then, as n is large enough, at least y = n¢ € {y :
PrBF1(y,n) > C}. Thus, L, exists.

Then, we prove lim,,_, L,, = ¢ by contradiction. Iflim,, o L, = 0 < ¢, PrBF(1(nf,n) >
C. However, according to Lemma 1, lim,,_,. PrBF;(nf,n) = 0 < C. Thus, lim,_,~ L,

0.

]

Let J denote the set of indices for dose levels that appear an infinite number of times
in the sequential allocation such that J = {j : n; = 0o as n — oo}. Denote j* the MTD
as j* = argminlSjSJ\wj — |-

If mj» = ¢, we prove P(j* € J) = 1 by contradiction. Assume there is a dose k > j* for
which only dose levels above k are visited an infinite number of times. We know that 7, > ¢.
According to Lemma 2, for a large enough n, we have PrBFy(yx) < C and 7, > ¢. This
indicates that the next cohort of patients will be assigned to lower level £ — 1. Then, dose
level £ — 1 should appear an infinite number of times as well, reaching a contradiction.
Thus, there is no k > j* such that £ € J. Similarly, there is no k < j* such that k£ € 7.
Thus, we have j* € J and for n large enough, P(PrBFy (y;«) > C and 7« = ¢) = 1.
Upon visit j*, it will be repeatedly allocated with probability 1. Thus, the design will
converge almost surely.

If no dose level has the toxicity rate ¢, we prove that P(j*,7*+1e€ J)=1if 1« < ¢

and 7=y > ¢. The proof is similar when 7+_; < ¢ and 7+ > ¢. Similar to the case
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when 7+ = ¢, we can prove that there is no & > j* + 1 such that £ € J and there is also
no k < j* such that k € J. For a large enough n, once visit j*, we have PrBFy;(y;-) <
C and 7+ < ¢. Thus, the next cohort of patients will be assigned to dose j*+1. Similarly,
once visit 7* 4+ 1, the next cohort of patients will be assigned to dose j*. Thus, the design
would eventually oscillate between two dose levels at which the associated toxicity rates
straddle ¢.

If all 7;’s are above or below ¢, similarly, the dose levels straddle ¢, including j*, will be
repeatedly allocated with probability 1. According to the Lemma 1 of Oron et al. (2011),

the design will converge almost surely.

C Proof of Theorem 3

Proof. Without loss of generality, we prove |L, — ¢| < kn~%/? as n — oo, where k =

V2¢(1 — ¢)(1 —log C). The proof for |U, — ¢| < kn~'/2 is similar.

Let f(z) = n[zlog2+ (1 —z)log i%ﬁ], such that PrBFg; = exp (f (£) +1). Then,

n

we have

" n

f(¢) = )

Based on the Taylor theorem, there exists a function hy : R — R, such that

f@) = f(o)+ (@) — )+ [ (9)(z — ¢)* + halz)(z — ¢)°

_ (%ﬁ + ha(2)(x — ¢>)2>
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and lim,_,, ho(x) = 0. Then, according to Lemma 2,

= (‘gﬁ + ha(Ln) (Lo = ¢)2) >logC — 1
. Thus,
(Lo — )2 < 2¢(1 — ¢)7(l1 —log C)
. 1t gives

1L — ¢] < \/2(1 — ¢)(1 —log C)n~'/?

D Proof of Theorem 4

Proof. According to the decision rules, the probability of dose escalation of the PoP de-
sign when the observed DLT rate is m; < ¢ is given by P(dose escalation|®; > ¢) =
P(PrBF,; < C & 7; < ¢|7m; > ¢) = 0. Thus, the PoP design will not escalate the dose
when the observed DLT rate is higher than the target.

Similarly, P(dose de-escalation|r; < ¢) = P(PrBFy; < C & 7; > ¢|7; < ¢) = 0.
Thus, the PoP design never de-escalates the dose when the observed DLT rate is lower

than the target toxicity rate. So, the PoP design is long-term memory coherent.
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E Details of implementing CRM

For the CRM method, we obtained the skeleton using the getprior function from the
R package dfcrm, employing the indifference-interval based approach of Lee and Cheung
(2009). We set the halfwidth of the indifference intervals to 0.05, used the middle dose
level (i.e., dose level 2 for K=4 and dose level 3 for K=6) as the prior guess of MTD, and

employed a one-parameter logistic model as the working model. Specifically,

e when ¢ = 0.2, the skeleton is (0.112,0.200,0.311,0.429) for K =4,

and is (0.055,0.112,0.200,0.311, 0.429, 0.539) for K = 6;

e when ¢ = 0.25, the skeleton is (0.158,0.250, 0.355, 0.462) for K = 4,

and is (0.089,0.158,0.250, 0.355, 0.462, 0.558) for K = 6;

e when ¢ = 0.3, the skeleton is (0.205, 0.300, 0.402, 0.500) for K = 4,

and is (0.126,0.205, 0.300, 0.402, 0.500, 0.587) for K = 6.
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F Design performance in additional scenarios

Table A1 shows the four prespecified scenarios for oncology trials used in Liu and Yuan
(2015) but with a different target toxicity rate. These scenarios were originally proposed
for ¢ = 0.25, but here we examined when ¢ = 0.20 to demonstrate the operating charac-
teristics of the PoP, BOIN, Keyboard, and CRM designs when the target toxicity rate may
fall in between two adjacent dose levels. MTD is considered the dose level whose DLT rate
is the closest to the target rate. As expected, the parametric CRM design performs the
best if the model assumptions are satisfied and the dose-toxicity skeleton closely resembles
the truth. Otherwise, if the assumptions are violated, the CRM design will not perform
as well, suggesting the importance of conducting comprehensive assessments across mul-
tiple scenarios (e.g. in Table 2). Simulation studies find that PoP design has excellent

performance in all settings and outperforms other interval designs.
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Table Al: Performance metrics of the PoP, BOIN, Keyboard, and CRM designs under
four prespecified dose-toxicity scenarios for cohort sizes of 1. The target toxicity rate is
0.20. N = 36. Results from isolated scenarios should be interpreted with caution, as

performance comparisons across different design classes can substantially vary by scenario.

Target ¢p=0.20

. Dose level Not Choosing Risk of Over-

Design .

1 2 3 4 5 6 Any Dose dosing
Scenario1l Pr(toxicity) 0.25 0.35 0.5 0.6 0.7 0.8

PoP Selection(%) 65.0 9.7 04 0.0 0.0 0.0 24.9 7.8
#Patients 22.8 64 1.7 05 0.2 0.0

BOIN Selection(%) 49.5 9.4 04 0.0 0.0 0.0 40.7 9.7
#Patients 173 64 21 0.7 0.2 041

Keyboard Selection(%) 49.7 8.8 04 0.0 0.0 0.0 41.1 8.6
#Patients 179 6.0 19 06 0.2 0.0

CRM Selection(%) 489 85 0.3 0.0 0.0 0.0 42.3 7.3

#Patients 183 57 16 05 0.1 0.0
Scenario 2 Pr(toxicity) 0.1 0.25 04 0.6 0.7 0.8

PoP Selection(%) 37.6 55.7 54 0.1 0.0 0.0 1.3 2.6
#Patients 13.8 15.2 48 1.0 0.3 0.1

BOIN Selection(%) 42.2 48.8 5.2 0.2 0.0 0.0 3.6 35
#Patients 142 139 50 14 04 041

Keyboard Selection(%) 43.1 485 46 0.1 0.0 0.0 3.7 3.1
#Patients 149 13.8 4.6 1.2 0.3 0.1

CRM Selection(%) 33.5 57.2 56 0.0 0.0 0.0 3.6 2.4

#Patients 13,5 15.7 46 09 0.2 0.1
Scenario 3 Pr(toxicity) 0.05 0.1 0.25 0.32 05 0.6

PoP Selection(%) 2.4 36.5 47.1 13.1 0.6 0.0 0.3 8.3
# Patients 36 11.5 123 59 1.7 0.4

BOIN Selection(%) 4.0 39.4 410 140 09 0.1 0.6 9.8
# Patients 36 11.8 11.1 64 2.1 0.7

Keyboard Selection(%) 4.4 40.2 41.1 13.0 0.6 0.0 0.6 9.3
#Patients 39 123 111 6.1 19 0.6

CRM Selection(%) 1.0 32.2 53.9 119 04 0.0 0.6 8.8

#Patients 31 111 140 58 14 04
Scenario4 Pr(toxicity) 0.01 0.02 0.03 0.04 0.05 0.25

PoP Selection(%) 0.0 0.1 0.3 1.1 31.2 67.2 0.0 0.0
#Patients 1.2 1.4 1.7 24 11.2 17.3

BOIN Selection(%) 0.1 0.2 04 1.0 40.8 57.4 0.0 0.0
# Patients 1.2 13 15 2.1 13.2 16.7

Keyboard Selection(%) 0.1 0.4 05 1.5 413 56.2 0.0 0.0
#Patients 1.2 14 16 2.2 134 16.3

CRM Selection(%) 0.0 0.0 0.2 13 26.9 716 0.0 0.0

#Patients 1.1 1.2 1.6 2.5 104 19.2
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G Dose selection

Here we investigated the distributed dose selection performance of the PoP, BOIN, Key-
board, and CRM designs. In addition to the chance of correct selection of MTD (% Correct
Selection), we calculated the percentage of selecting a dose above MTD (% Overdose Se-
lection), under MTD (% Underdose Selection), and claiming no MTD if the lowest dose is
considered overly toxic even though MTD exists (% No Selection).

Figure Al presents the simulation results. Among all the designs, the PoP design
exhibited the highest % correct selection and the lowest % no selection, indicating its
efficiency and robustness in MTD identification. The CRM design demonstrated the highest
% overdosing selection and lowest % underdosing selection, suggesting a tendency to select
a higher dose as MTD. In contrast, the Keyboard design was more likely to select a dose
level lower than the true MTD, resulting in not only the lowest % Overdose Selection but
also the lowest % Correct Selection. Overall, this difference among the designs highlights

their risk preference and OC in MTD selection.
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Figure A1l: Barplots of the percentage of overdose, correct, underdose, and no selection for
the PoP, BOIN, Keyboard, and CRM designs over 10,000 simulated scenarios.
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H Simulation of consistency

The consistency property was proved in Appendix D. A simulation study with K = 3 and
phi = 0.25 various sample size n was examined to empirically demonstrate the property.
As Figure A2 illustrates, the PCS increases to 1 as the sample size increases, indicating

the consistency of the PoP design.

1.00 | I =
0.75

9]
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o
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18 36 72 144 288 576 1152
Sample size

Figure A2: Boxplots of the percentage of correct selection (PCS) for the PoP design for
different sample sizes over 20,000 simulated scenarios. Dose exclusion and elimination rules

are deactivated for illustration purposes.
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I Sensitivity analysis of PoP design for loss functions

In this sensitivity analysis, we investigate the performance of the PoP design with respect
to various sets of loss functions. We restrict the sensitivity analysis to the setting of K = 3
doses and n = 18 patients, so as not to lose the main ideas. Under the conditions mentioned
in Section 4, we examine b; = 0.2 or 0.25, by = 0.6 or 2/3, and b3 = 0.15 or 1/6.

Table A2 shows that the PoP designs generate universally higher PCS and PCA than the
BOIN and Keyboard designs. Different choices of loss functions punish the dose transition

to various extents so that the risk of overdosing at 70% varies.
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Table A2: Percentage of correct selection (PCS, %), percentage of correct allocation (PCA,

%) and overdose control for different loss functions.

BOIN 56.6 48.8 11 56.8 48.0 10.1 57.3 48.6 9.7
Keyboard 56.0 49.2 11.2 56.6 48.4 10 56.0 48.0 9.5
0.2 0.6 0.2 59.8 52.2 9.9 61.0 52.0 104 61.3 51.7 11.1
0.2 0.6 1/6 59.7 52.3 10.5 60.0 51.4 104 61.1 51.5 10.0
0.2 2/3 0.2 60.0 51.5 8.1 61.3 51.1 9.2 61.5 50.9 9.7
0.2 2/3 1/6 60.4 52.0 9.2 60.2 50.6 9.1 61.5 51.4 10.6
0.25 0.6 0.2 60.1 53.1 13.1 59.2 515 111 60.8 52.3 14.2
0.25 0.6 1/6 60.1 53.1 13.1 59.6 51.9 13.6 60.5 52.1 12.7
0.25 2/3 0.2 59.7 52.4 10.5 60.1 51.7 11.8 60.7 51.8 10.7
0.25 2/3 1/6 60.4 53.0 11.8 59.7 51.7 11.8 61.1 52.2 133

PoP

BOIN 57.3 48.6 10.2 58.4 49.1 10.5 56.8 479 8.2
Keyboard 55.1 47.4 10.1 54.7 46.2 8.7 56.8 47.2 9.6
0.2 0.6 0.2 60.9 51.3 10.9 61.7 51.9 12.0 61.8 51.6 10.2
0.2 0.6 1/6 60.4 51.2 11.4 61.6 51.7 11.9 61.6 51.8 10.8
0.2 2/3 0.2 60.9 50.2 9.2 61.7 50.6 8.7 61.7 50.2 9.2
0.2 2/3 1/6 60.4 50.1 9.2 61.6 50.4 8.6 61.6 50.6 10.5
0.25 0.6 0.2 60.3 51.5 12.2 61.1 52.3 12.0 61.4 52.2 12.0
0.25 0.6 1/6 59.8 51.2 12.9 61.0 52.0 11.9 61.1 52.1 11.2
0.25 2/3 0.2 60.7 51.5 12.1 61.5 52.0 125 61.6 519 11.2
0.25 2/3 1/6 60.2 51.2 12.1 61.4 519 114 61.5 519 11.2

PoP

Abbreviation: OD: over-dosing.
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