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Deinterleaving of Intercepted Radar Pulse Streams
via Temporal Convolutional Attention Network

Haojian Wang, Zhenji Tao, Jin He, Ting Shu

Abstract—In the domain of electronic warfare, radar signal
deinterleaving emerges as the foundational and indispensable
phase of electronic reconnaissance. The ever-increasing com-
plexity of electromagnetic environments, further compounded
by technological advancements such as multi-function radars
(MFRs), has led to the inadequacy of traditional deinterleav-
ing techniques. To tackle these challenges, this paper intro-
duces the Temporal Convolutional Attention Network (TCAN)
framework. This framework harmoniously combines a tempo-
ral convolutional network (TCN) with an advanced attention
mechanism, thereby significantly enhancing the system’s signal
sorting proficiency. Through rigorous experimental validation,
we demonstrate that TCAN consistently outperforms existing
baseline methods. This superiority is particularly pronounced
under conditions of signal sparsity and in non-ideal environments,
which are typified by pulse loss, spurious pulses, and measure-
ment errors. Furthermore, we conduct a thorough analysis to
elucidate the profound impact of various input formats and
multi-parameter features on deinterleaving performance. By
meticulously examining these factors, we establish TCAN as a
robust and versatile solution capable of effectively navigating
the heightened complexity of modern radar signal environments.
Our findings highlight TCAN’s potential as a potent instrument
for augmenting electronic reconnaissance capabilities amidst
evolving electromagnetic challenges.

Index Terms—Electronic warfare, radar signal processing,
radar signal sorting, temporal convolutional attention network
(TCAN).

I. INTRODUCTION

Electronic Support Measures (ESM) systems play a cru-
cial role in electronic reconnaissance, undertaking the vital
tasks of intercepting, identifying, and analyzing signals from
hostile radar systems. The importance of ESM systems has
surged in modern electronic warfare, as evidenced by recent
scholarly works (e.g., [1]) and vividly demonstrated in Fig.
1. A fundamental technology within ESM systems is Radar
Signal Sorting (RSS), also known as deinterleaving, which
separates intertwined pulse streams [2]. This initial sorting is
essential for subsequent accurate and effective signal source
classification, identification, and tracking [3].

However, the increasing complexity of the electromagnetic
environment, marked by radio frequency spectrum conges-
tion [4], poses significant challenges for ESM systems in
deinterleaving densely mixed pulse streams. This challenge
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Fig. 1. An intercepted pulse stream from radar emitters.

is further compounded by the proliferation of radar emitters.
Radar pulses are characterized by the Pulse Description Word
(PDW), which includes attributes such as Time of Arrival
(TOA), Pulse Width (PW), Radio Frequency (RF), and Direc-
tion of Arrival (DOA). Among these attributes, TOA stands
out as the most critical parameter. It not only pinpoints the
exact instances when different radar pulses are captured by
the signal interception receiver but also acts as a vital feature
for unveiling the underlying, manually configured parameters
of the emitter. In the case of a pulse stream originating from
a single radar source, the first-order difference of its TOA
sequence, termed the Difference of TOA (DTOA), often ex-
hibits a distinctive pattern. This regularity, known as the Pulse
Repetition Interval (PRI), encapsulates vital classified infor-
mation, including radar detection range and range resolution.
As a fundamental indicator of radar operation modes and a
cornerstone for threat assessment, PRI holds a pivotal position
in electronic reconnaissance and situational awareness.
Existing radar signal sorting methods can be broadly catego-
rized into TOA-based and multi-parameter-based approaches.
TOA-based methods, which primarily leverage TOA for signal
separation, include algorithms like Cumulative Difference His-
togram (CDIF) [5], Sequential Difference Histogram (SDIF)
[6], and PRI Transform [7]. These methods extract potential
PRIs through histogram analysis and search for corresponding
pulses in the sequence. Despite various improvements [8]—
[10], they grapple with issues such as PRI jitter, environmental
noise, and pulse loss. On the other hand, multi-parameter-
based methods utilize all features of the PDW for RSS, em-
ploying a subset or the entirety of PDW components as inputs.
These methods, often employing clustering techniques [11]-
[20], differentiate signal sources based on similarities among
parameters like RF, DOA, and PW. However, they presuppose
similar parameter distributions for pulses originating from
the same radar, which may be disrupted by Multi-Function
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Radars (MFRs) with wide-range agile parameters and multiple
operation mode.

To address these challenges, recent research has pivoted
towards deep learning techniques, aiming to enhance the
adaptability and efficacy of signal sorting. Convolutional Neu-
ral Networks (CNNs) have been applied to deinterleaving by
transforming PDWs into images [21], [22]. However, this
approach is sensitive to image resolution, whereby lower
resolutions can degrade sorting accuracy, while higher resolu-
tions can increase computational complexity. Additionally, the
process of transforming PDWs into images introduces extra
latency, which further compromises real-time performance.
Temporal deep learning models, such as Recurrent Neural
Networks (RNNs), have also been explored [23]-[26]. These
methods frame deinterleaving as a prediction task, utilizing
part or all of the PDW data to train an RNN. Advanced
algorithms enable sorting multiple signals using a single
trained model, reducing training costs. Researchers have also
approached RSS from alternative perspectives, such as framing
deinterleaving as a denoising challenge [27] or employing
blind signal separation principles [28]. These innovative ap-
proaches underscore the versatility of deep learning techniques
in tackling RSS challenges.

Despite the advancements, two pivotal challenges persist:
the selection of an optimal input format and the mitigation of
signal sparsity in realistic scenarios. A comprehensive analysis
of input format selection is absent from the existing literature,
with most studies limiting their discussions to qualitative as-
sessments [25]. Furthermore, the literature frequently models
pulse streams as contiguous sequences, overlooking the in-
herent signal sparsity encountered in practical reconnaissance
situations. This sparsity arises from the constrained beamwidth
of the main lobe, leading to discontinuous yet periodic pulse
segments. Addressing these challenges is imperative for the
progression of radar signal sorting in increasingly complex
electromagnetic environments.

In this paper, we embark on an exploration rooted in end-
to-end prediction methodologies, introducing a novel deinter-
leaving algorithm that integrates the Temporal Convolutional
Network (TCN) [29] with the attention mechanism [30]. This
synthesis is termed the Temporal Convolutional Attention
Network (TCAN). Our investigation focuses on the RSS task,
leveraging TOA data alongside multi-parameter inputs. To
achieve a comprehensive understanding, we examine two pre-
vailing input formats within the context of this task. Through
a rigorous experimental framework, we systematically assess
various combinations of neural networks and input formats,
meticulously analyzing the distinctive attributes, strengths, and
constraints associated with each configuration. Furthermore,
we delve into the impact of signal sparsity on sorting per-
formance via targeted experiments, aiming to elucidate the
intricate relationship between these factors.

The principal contributions of this research are outlined as
follows:

1) Novel Framework: We propose TCAN, a novel frame-
work that seamlessly integrates the foundational TCN
model with an attention mechanism. By embedding
self-attention within the TCN architecture, our model

demonstrates enhanced proficiency in capturing pivotal
temporal features. Experimental outcomes affirm that
TCAN consistently outperforms other baseline method-
ologies, establishing its superiority.

2) Signal Sparsity Analysis: To our knowledge, this
study is the first to examine the phenomenon of signal
sparsity arising from restricted main lobe illumination.
While existing literature often models pulse streams
as continuous entities, addressing challenges such as
measurement inaccuracies, pulse omissions, and spu-
rious pulses, our research delves into the nuances of
radar detection in reconnaissance contexts. Specifically,
the constraints imposed by the main lobe’s beamwidth
necessitate scanning for comprehensive coverage, result-
ing in intercepted signals that contain pulse sequences
exclusively during main lobe illumination. This leads
to discontinuous segments, which we term as signal
sparsity.

3) Input Format Evaluation: Previous research has typ-
ically relied on qualitative analysis to select a singular
input format, overlooking the impact of different input
forms on sorting performance. In contrast, this study
builds upon qualitative analysis by incorporating quanti-
tative experimental research. We systematically evaluate
two primary input formats: DTOA input and binary
input. Our experimental findings elucidate the respective
strengths, limitations, and applicability of each format
across various scenarios, providing valuable insights for
future research endeavors.

The remainder of this paper unfolds as follows. Section
IT offers a comprehensive introduction to the deinterleaving
task, elucidating the mathematical underpinnings and char-
acteristic features of the signal. Furthermore, it enumerates
the intricate challenges confronted by interception systems in
this context. Section III delineates the methodology adopted
in this research, encompassing data preprocessing techniques
and delving into the intricate details of their implementation.
In Section IV, we present the experimental design and setup,
followed by an elaborate analysis of the experimental results,
offering insights into the efficacy and performance of our
proposed method. Finally, Section V summarizes the key
findings and contributions of this research.

II. PROBLEM FORMULATION

In the domain of electronic warfare, radar reconnaissance
systems employ signal interception receivers with expansive
apertures that cover both spatial and frequency domains. This
enables the capture of signals from multiple enemy radar
emitters. Consequently, the intercepted signal sequences often
consist of interleaved pulses originating from various radar
sources, as illustrated in Fig. 1. The primary objective of
RSS is to disentangle these interleaved signals by leveraging
PDWs extracted from the intercepted sequences. This allows
for the subsequent identification and comprehensive analysis
of diverse radar emitters.
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Fig. 2. Two representations of an interleaved sequence.

A. Representation of Pulse Sequences

Before delving into the mathematical formulation of signal
sorting, it is crucial to establish a solid mathematical repre-
sentation for pulse sequences. An intercepted pulse sequence
obtained from an interception receiver typically manifests as
a discrete sequence of PDWs. This sequence amalgamates
several key parameters: TOA, Pulse Width (PW), Radio Fre-
quency (RF), and DOA. As illustrated in Fig. 2, the PDWs of a
pulse sequence, which encompasses mixed radar pulses from
multiple radar sources, are ordered in ascending TOA. The
PDW of the i-th single pulse p; and the entire PDW sequence
P can be mathematically represented as follows:

pPi = {TOA,,PW“RF“DOAZ} (1)
P:{plap27"'apN} (2)

where N signifies the total number of pulses captured within
the reception window. The primary objective of RSS is to dis-
cern a mapping relationship that accurately assigns each pulse
to its respective radar source based on the PDW sequence.

Assuming the presence of M radar sources, the i-th pulse is
assigned a unique label y;, 1 < y; < M, and the corresponding
label sequence is denoted as Y = {yi,y2, - ,yn}. The
mathematical formulation of RSS can be succinctly expressed
as:

Determine a function f such that f(P) =Y 3)

Among the various parameters, TOA stands out as an
implicit and intrinsic feature of the PDW sequence, containing
a wealth of information compared to other parameters. Within
the temporal attributes of a radar signal, the PRI is paramount,
and it can be extracted from the TOA. Considering an ideal
scenario where a single radar transmits a pulse stream inter-
cepted by a perfect interception system, devoid of any pulse
loss or measurement error, the PRI can be determined through

the first-order difference of the TOA sequence, commonly
referred to as the DTOA. This PRI encapsulates crucial in-
formation such as the radar’s operating mode, detection range,
and range resolution, all of which are intrinsic to the radar and
frequently classified as confidential parameters by numerous
nations.

Due to the existence of interleaved pulse streams and non-
ideal conditions that alter the original PRI characteristics, it
is not possible to directly extract the PRI from intercepted
TOA or DTOA data. As depicted in Fig. 2, prior to successful
signal sorting, the DTOA merely represents the temporal
difference between consecutive pulse arrivals. The impact
of non-ideal conditions on this degradation will be further
analyzed in Section II-C. Moreover, to reduce variance and
ensure the stationarity of input data without compromising
any information, DTOA is often employed as a proxy for
TOA in various algorithms. This substitution significantly en-
hances the efficiency and stability of most of these algorithms.
Consequently, the actual input z; to these algorithms can
be expressed as follows for TOA-based and multi-parameter-
based approaches, respectively:

B. PRI Modulation

In this paper, we consider four prevalent PRI modula-
tion types that are encountered in realistic electromagnetic
environments. These include fixed PRI, jitter PRI, stagger
PRI, and dwell & switch PRI. For each of these typical
PRI patterns, both a precise definition and a corresponding
schematic diagram (Fig. 3) are provided as follows.
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Fig. 3. DTOA patterns of different PRI modulations. (a) Fixed PRI. (b) Jitter PRI. (c) Stagger PRI. (d) Dwell&Switch PRI.
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Fixed PRI: This modulation type is marked by a
consistent PRI value throughout the entire transmission
process. Mathematically, this can be expressed as:

PRI(i) = PRIy, i € N

where PRI, denotes the constant value of PRI.

Jitter PRI: Jitter PRI signals exhibit variations around
a central value. These fluctuations often adhere to a
Gaussian or uniform distribution, and the mathematical
representation is given by:

PRI(i) = PRIy + J - §, § ~ U(—PRIy, PRI)

(6)

)

Here, PRI represents the center value of the jitter PRI,
while J denotes the jitter rate, indicating the amplitude
of the fluctuations.

Stagger PRI: Stagger PRI signals are characterized by
a sequence of multiple, distinct PRI values that appear
periodically in a specific order. The mathematical model
for this pattern is:

PRI(i) = PRIy, (8)

Here, m denotes the number of unique PRI values,
specifically PRIy, PRI, ..., PRI,,—;.

Dwell & Switch PRI: This pattern consists of several
pulse groups that repeat in a predefined order, akin to
Stagger PRI. However, a key difference lies in the vary-
ing number of pulses within each group, all maintaining
the same PRI value within a given group. The PRI
sequence for this pattern can be described as:

PRI(i) = PRIy, Lj_1 <imodL < L

k =i mod m.

(€))

In this context, m also represents the number of dif-
ferent PRI values in the pulse groups, denoted as
PRIy, PRIy, ..., PRI, ;. Additionally, /; signifies the
length of each pulse group, where j =0,1,---,m—1.
We further define L, = Z?:o ljand L = Lp,_1 to
delineate the boundaries of the pulse groups.

The characteristic distinct DTOA pattern corresponding to
each PRI modulation type is graphically represented in Fig.
3. While other parameters also undergo modulation processes
akin to this, a comprehensive elaboration on those aspects is
omitted from the present discussion.

C. Non-ideal Conditions

Operating radar signal interception receivers in realistic
electromagnetic environments presents significant challenges.
Often, the high density of pulse streams gives rise to pulse
overlapping, impeding the detection of certain pulses by the
receiver and ultimately causing pulse loss within the received
pulse train. Moreover, spurious pulses, resulting from erro-
neous detections due to pulse splitting and overlapping, present
a persistent challenge. Furthermore, measurement errors, stem-
ming from the inherent imprecision of sensors in receivers and
typically following a Gaussian distribution, introduce further
imperfections during the sorting process. Consequently, dein-
terleaving in practical electronic warfare scenarios becomes
exceptionally challenging due to these three types of noise, as
they disrupt the patterns of PDWs and disturb the regularity
of the intercepted pulse flow.

It is important to highlight that deinterleaving is performed
on pulse sequences detected by the receiver. Consequently, the
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effects of various factors that impair receiver pulse detection
performance, such as Signal-to-Noise Ratio (SNR) or Signal-
to-Interference-plus-Noise Ratio (SINR), pulse overlapping,
and pulse splitting, are inherently manifested in pulse loss
and spurious pulses. Therefore, this study does not engage
in further modeling or analysis of these factors.

Moreover, to the best of our knowledge, existing published
research primarily simulates pulse streams as continuous se-
quences without significant intervals. These studies typically
focus on measurement errors, pulse loss, and spurious pulses,
either individually or in combination. However, in actual
reconnaissance scenarios, radars are constrained by the limited
width of their main lobes. To detect or search within a specific
range, mechanical or electronic scanning is often employed to
cover all relevant directions. As a result, the signals intercepted
by the receiver only encompass pulse sequences during the
illumination of the enemy radar’s main lobe. Consequently,
the received signals exhibit periodic changes corresponding to
the scan cycle of the enemy radar, manifesting as segments of
discontinuous yet periodic pulse sequences within the pulse
stream, as illustrated in Fig. 4.

Pulses beyond the enemy radar
main lobe coverage

Transmitted Pulse Sequence

Intercepted Pulse Sequence mm HH - -
Fig. 4. Discontinuous but periodic intercepted sequences.

To address this gap, this study introduces a novel non-
ideal condition, while retaining the aforementioned three types
of non-ideality: the intercepted pulse sequence undergoes
significant and continuous pulse loss over a duration much
longer than its PRI — a phenomenon we henceforth term
signal sparsity, due to the resulting sparsity of pulses within
the sequence, as illustrated in Fig. 4. This condition further
complicates the already challenging task of signal processing
in electronic warfare scenarios.

D. MFR Effects

Multi-function radar represents a pivotal advancement in
modern radar technology [31]. In contrast to conventional
radars that operate within a single working mode, MFRs
demonstrate remarkable versatility by switching among mul-
tiple operational modes tailored to diverse mission require-
ments. These radars encompass a wide range of capabilities,
including target search, tracking, moving target indication,
missile guidance, and target imaging.

MFRs are equipped with phased array antennas, enabling
precise directional control over the radiated signal energy.
Ideally, the radiation pattern of such antennas boasts a narrow
beam with high gain and minimal sidelobes. The main lobe
width typically spans only 1-2 degrees, and the gain disparity
between the main lobe and sidelobes can attain levels of 30-40
dB.

While signal sorting for conventional radars is primarily
influenced by factors such as pulse loss, spurious pulses, and

measurement errors, the signal sorting process for MFRs is
significantly more complex. On one hand, to achieve multiple
objectives like target search and tracking, MFRs emit specially
structured pulse groups in various spatial directions, lever-
aging agile parameters to enhance anti-reconnaissance and
anti-jamming capabilities. These parameters include frequency
agility and PRI agility, among others. In the presence of pulse
loss and spurious pulses, successful signal sorting requires a
deeper understanding of the temporal relationships between
pulse groups corresponding to different functions, enabling
more effective separation from other radar signals.

On the other hand, the strong directionality and beam agility
of MFRs significantly reduce the probability of signal intercep-
tion by traditional electronic reconnaissance systems. Unlike
conventional radars, which are primarily affected by sporadic
pulse loss, airborne radar-based reconnaissance systems often
encounter the loss of entire pulse groups when intercepting
MEFR signals. This results in a substantial decrease in the
temporal regularity between pulse groups, posing significant
challenges for subsequent signal sorting and the analysis of
MFRs’ diverse operational modes.

III. THE PROPOSED METHOD

A. Overall Structure

The architecture of the proposed end-to-end framework is
depicted in Fig. 5. Initially, the PDW sequence P undergoes a
preprocessing stage, where typically two options are available
for refinement. Following preprocessing, the sequence is fed
into the TCAN sorting network.

TCAN is an acronym representing a neural network archi-
tecture that primarily comprises several cascaded TCN Resid-
ual Blocks (Res Block, indicated in blue), a Self-Attention
Block (SA Block, highlighted in lavender), and a Fully-
Connected layer (FC layer, denoted in green).

The TCAN network processes the interleaved PDW se-
quence in an end-to-end manner. This processing involves the
sequential application of the TCN Residual Blocks, which
leverage dilated convolutions to capture temporal dependen-
cies at various scales. The Self-Attention Block further en-
hances the model’s ability to focus on relevant parts of the
input sequence, thereby improving its capacity to discern
between different signal types and their respective features.
Finally, the FC layer maps the processed sequence to the pre-
dicted label sequence Y, which corresponds to the identified
operational modes and signal characteristics of the MFR.

B. Data Preprocessing

In addition to the DTOA representation discussed in Section
II-A [24], [25], [28], the binary sequence representation consti-
tutes another prevalent input format in the relevant research do-
main. As illustrated in Fig. 2, this approach involves digitizing
the TOA by assigning each pulse to a specific time unit based
on its arrival time [23], [27], [31]. This digitization process is
analogous to sampling in digital signal processing, resulting in
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Fig. 5. The structure of proposed framework.

a binary sequence where the PRI pattern is encoded through
the positions of Os and 1s. The input z; is defined as:

|

where T denotes the sampling interval, [(i — 1)T5,iTy| sig-
nifies the i-th time unit, and S = {TOA}} is the set of TOA.
The other PDW parameters do not undergo similar processing;
instead, they are normalized, as delineated subsequently, and
appended to the respective TOA positions. For conciseness, the
mathematical formulation of x; in the multi-parameter case is
omitted. Furthermore, owing to the inherent flexibility of deep
learning models in handling input scalability, the network’s
input is not restricted by the number of available parameters, as
is the case with traditional methods. This adaptability enables
us to utilize a unified framework to assess the deinterleaving
performance of both TOA-based and multi-parameter-based
approaches. The conversion to both formats is seamlessly
integrated within the format transformation module (Format
Trans in Fig. 5, indicated in orange).

The binarization of TOA, achieved by encoding TOA inter-
vals through the strategic placement of Os and 1s, serves to
enhance the model’s capability to discern PRI patterns. This
enhancement, in turn, elevates deinterleaving performance in
scenarios where only TOA data is available. A comprehensive
exploration of this advantage will be provided in Section IV-B.
This binary encoding scheme also simplifies the model by
reducing its dimensionality and parameter count, thereby fa-
cilitating faster convergence. However, to ensure that adjacent
pulses do not fall into the same time unit, a smaller sampling
interval is often required. This choice results in a significant
increase in sequence length and computation time per epoch.
Conversely, the DTOA input format maintains the original
sequence length, leading to faster computation times per epoch
during training. Despite this advantage, the higher information
density of DTOA input necessitates a network with higher

1, SN[(i—1)Ts,iTs] #0

0, SN[({i—1)Ts,iTs] =0 (10)

dimensionality and more parameters to comprehend the in-
put data. Consequently, the number of epochs required for
convergence dramatically increases when using DTOA input
compared to binary input.

Furthermore, to address the challenges posed by substan-
tial disparities in the magnitudes of parameters, such as
RF typically measured in MHz and PW expressed in us,
normalization emerges as a pivotal step in augmenting both
the convergence rate and the overall sorting efficacy of the
model. The normalization procedure for each parameter within
the interleaved sequence is executed using the formula:

, x — min(x)

"~ max(x) — min(x) (i
where x represents the vector form of the input z;. This nor-
malization strategy guarantees that all parameters are confined
within the unified range of [0, 1], thereby enabling the model
to proficiently extract pertinent features, This normalization is
executed within the data normalization module (Data Norm in
Fig. 5, highlighted in red).

C. Details in Proposed Framework

1) TCN Residual Block: The foundational element of our
proposed framework is the TCN residual block, which plays
a pivotal role in the extraction and fusion of features from
the original input sequence [29]. Each TCN residual block is
composed of two identical sub-structures, seamlessly integrat-
ing dilated causal convolution, weight normalization, a ReLU
activation function, and a dropout layer. This architectural de-
sign is particularly adept at modeling long-range dependencies
within the input sequence with high efficiency.

Central to these sub-structures is the concept of dilated
causal convolution, which combines the attributes of causal
convolution and dilated convolution. Causal convolution en-
sures that the output at any time step t is solely dependent on
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inputs that occur at or precede t, thereby preserving causality.
The formula for a standard causal convolution is given by:

k—1
Yt = E Wi+ Tp—q
i=0

where y, represents the output, w; denotes the kernel weights,
x, signifies the input sequence values, and k is the kernel size.
The dilation rate, denoted by d, controls the spacing between
kernel elements, thereby effectively enlarging the receptive
field to forge wider temporal linkages among each pulse
without necessitating deeper network layers. The output of
a dilated causal convolution is mathematically expressed as:

k—1
Yt = E Wi * Lt—d-i
i=0

Across all layers, the convolution kernel size remains con-
stant, while the dilation factor increases exponentially with
the depth of the network: d; = 2!1=1 " where [ represents
the network level. For instance, as illustrated in Fig. 5, d; is
initialized to 1 at the first layer (equivalent to standard convolu-
tions) and progressively increases with each subsequent layer,
ultimately reaching a value of 128 at the final hidden layer.
This pyramidal structure significantly enhances the receptive
field of the TCAN, enabling a more thorough examination
of individual pulses and their interactions with neighboring
pulses. By establishing connections to distant contextual in-
formation, this structure enhances sorting performance and
effectively alleviates the challenges presented by non-ideal
factors, such as pulse loss, spurious pulses, and signal sparsity.

Subsequent to the dilated convolution layer, weight nor-
malization is employed to stabilize the learning process. The
ReLU activation function introduces non-linearity, allowing
the model to learn complex patterns, particularly in pulse
streams influenced by non-ideal factors. Dropout is applied
to regularize the network and reduce overfitting by randomly
setting a fraction of the layer outputs to zero during training.

Furthermore, to mitigate the issues of vanishing and explod-
ing gradients in deep networks and to accelerate convergence,
each TCN residual block incorporates residual connections,
which are integral to their design. When the dimensions of
the input and output sequences do not match, the residual
connection is typically replaced with a 1 x 1 convolution
to ensure compatibility. This approach facilitates a unified
framework capable of handling both TOA-based and multi-
parameter-based inputs. This design not only enhances the
stability and performance of the network but also contributes
to its robustness and generalization capabilities. The output of
a TCN residual block can be expressed as:

H(z) = F(z) + conv(x)

12)

13)

(14)

where F'(x) represents the function learned by the block, and
conv(z) denotes the 1 x 1 convolution used for dimensional
matching when necessary.

2) Self-Attention Block: In the field of deep learning, par-
ticularly in addressing sequential data and natural language
processing tasks, self-attention mechanisms have emerged as
a cornerstone technique [30]. This research endeavor extends

the application of these mechanisms to the realm of signal
sorting, where they play a pivotal role in enhancing the
model’s proficiency in discerning essential temporal features.
Following a series of residual blocks, which are essential
for retaining crucial information as it propagates through the
network, a self-attention block is strategically deployed to
dynamically calibrate the significance of each element within
the overall context.

The core of this self-attention mechanism lies in its abil-
ity to assess similarities across different positions within a
sequence, thereby assigning varied weights to distinct time
steps. In the signal sorting task, this translates to allocating
appropriate weights to different pulses based on the similarity
of their extracted features. This is achieved through a process
wherein the query (), key K, and value V matrices are
all derived from the output of the preceding residual block
X = [x1,m9, - ,x,]7 € R4 via linear transformations,
each ; € R% being a feature vector. Mathematically, this
process can be expressed as:

Q=XwW? K=xwkE v=xwV (15)

where W@, WE WV ¢ Rd=>dx represent learnable weight
matrices that facilitate the derivation of these matrices from
X, Q,K,V € R™ 9 are the resulting matrices of queries,
keys, and values, and dx denotes the dimension of the queries,
keys, and values.

By utilizing these transformed matrices, the self-attention
block effectively captures global dependencies in pulse
streams based on the local features extracted by the residual
blocks. This is achieved through the computation of attention
weights, which hinge on the similarity between the query and
key matrices. Initially, the attention score matrix S € R™*"
is computed by taking the dot product of @ and K7, scaled
by v/df to mitigate the risk of excessively large values:

_ QKT
Vi

Subsequently, S undergoes normalization via the softmax
function, which translates the attention scores into a probabil-
ity distribution:

S (16)

A = softmax (5)
__ exp(Sy)

ZZ=1 exp(Six)
where A € R™*™ is the attention weight matrix. The softmax
ensures that each row of A sums to 1, reflecting the relative
importance of each key in contributing to the corresponding
query.

The resulting attention weights are then employed to com-
pute the final output of the self-attention block as a weighted
aggregation of the value vectors. This can be succinctly
expressed in matrix notation:

Z =AV

a7)

Ayj (18)

19)

where Z € R"X%x is the output matrix. Each row of Z
constitutes a contextual representation, encapsulating pertinent
information from all positions, weighted by their respective
importance.
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By integrating the self-attention mechanism, the model
gains the ability to recognize common characteristics among
pulses belonging to the same category within the features
extracted by the TCN residual block. Prior to the final clas-
sification stage, it assigns greater weights to these identified
pulses, thereby enhancing their probability of being accurately
categorized. This capability notably alleviates the challenges
presented by pulse loss and signal sparsity, where isolated
pulses face difficulties in establishing meaningful connections
owing to the absence of similar neighboring pulses. Fur-
thermore, the similarity-based reweighting scheme employed
by the self-attention mechanism effectively prevents pulses
from establishing dependencies with low-similarity spurious
pulses, thus enhancing the model’s robustness against spurious
signals.

Following this, the output from the self-attention block is
funneled through a fully connected layer, which maps the
extracted features to the corresponding label sequence. This
sequence-to-sequence mapping is indispensable for the precise
sorting and interpretation of signals within the given context.

D. Loss Function

In the training phase of our model, we employ focal loss as
the loss function to address class imbalance in classification
tasks, particularly in scenarios characterized by a significant
disparity between the number of easy-to-classify examples
(i.e., Os in binary input) and harder examples (i.e., 1s in binary
input). The standard cross-entropy loss treats all examples
equally when computing the overall loss, which can be ex-
pressed as:

c
Leg = — Y yilog(pi)

i=1

(20)

where C is the number of classes, y; is the true label for class
i, and p; is the predicted probability that the sample belongs
to class 7. However, the abundance of irrelevant Os in binary
input can disrupt the balance of the dataset, leading to biased
model training. To mitigate this issue, focal loss is designed to
down-weight the loss contribution of easy examples, thereby
enabling the model to focus more on challenging ones. It ex-
tends the standard binary cross-entropy loss and is formulated
as:
c
Lyocal = — »_ ai(1 = pi)y; log(ps)
i=1

2n

where «; is the weighting factor for class i, which helps
balance the contribution of each class. Specifically, under-
represented or minority classes can be assigned a larger
«; to ensure they are not overlooked due to their lower
frequency. Additionally, focal loss incorporates a modulating
factor ((1 — p;)”) to reduce the loss contribution from well-
classified examples, thereby directing the model’s learning
towards more difficult examples. The parameter y controls
the strength of this modulating factor, allowing for fine-
tuning of the model’s focus on harder examples. By carefully
selecting appropriate hyperparameters for the focal loss, our
model can effectively capture temporal information from the

training sequence while mitigating the adverse effects of data
imbalance.

IV. EXPERIMENTS

To thoroughly assess the efficacy of the proposed dein-
terleaving method and demonstrate its robustness under non-
ideal conditions, a comprehensive series of experiments were
carried out in both TOA-only and multi-parameter scenarios.
Section IV-A elaborates on the parameters utilized in generat-
ing the simulated datasets, the evaluation metrics employed to
quantify the performance of the sorting process, the baseline
methods selected for comparative analysis, and the overall
experimental setup. The experimental results, along with their
corresponding analysis, are presented in Sections IV-B through
IV-E. These sections provide a detailed examination of the
proposed method’s performance across various conditions,
highlighting its superior capabilities in accurately deinterleav-
ing signals even when confronted with challenging non-ideal
circumstances. Through this rigorous experimental validation,
the study aims to establish the proposed deinterleaving method
as a reliable and effective solution for signal sorting tasks.

A. Experimental Design

1) Dataset: Two distinct categories of datasets, encompass-
ing both conventional radar signals and MFR signals, were
created to assess the performance of various algorithms under
diverse scenarios. The PDW data for both conventional radars
and MFRs were simulated using the parameters detailed in
Tables I and II, respectively.

Table I presents the parameters of the simulated conven-
tional radar emitters, detailing PRI modulation types, PRI
values, PW, RF, and DOA, as referenced in [32]. Each radar
corresponds to a specific PRI modulation mode, including
fixed PRI (540 us), jitter PRI (370 us, J=0.25, where J
represents the PRI jitter rate), stagger PRI (110, 280, 800 us,
which appear in sequence and repeat cyclically), and dwell
& switch PRI (400 pus x 20, 600 ps x 15, 900 ps x 10,
where each PRI corresponds to pulse groups of lengths 20, 15,
and 10, respectively). Meanwhile, each radar operates within
a specified range for PW, RF, and DOA, with these parameters
varying randomly within their respective limits. Furthermore,
Table II provides an in-depth overview of the parameters
for MFR emitters. Unlike conventional radars, MFRs operate
in multiple modes, each employing distinct PRI modulation
techniques to support various tasks such as target search and
tracking. Each MFR emitter in this dataset are operating in
three modes, including fixed PRI, jitter PRI, stagger PRI,
and dwell & switch PRI. As the operating mode shifts, the
ranges of PW and RF adjust accordingly, while DOA, being
a directional factor, remains constant.

The data of four radar emitters generated from each table’s
parameters were individually merged into a unified, inter-
leaved pulse stream arranged in chronological order, spanning
a duration of 20 seconds. This process culminated in the
formation of the final datasets. Each dataset was subsequently
partitioned into training and testing subsets, maintaining a
ratio of 4 : 1, respectively. It is important to highlight that
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the parameters were deliberately set with a certain degree
of overlap to more accurately emulate the complexities of
a realistic electronic countermeasure environment. Fig. 6(a)
depicts a 100 ms segment from the testing set, where different
colors denote different radar categories, encompassing the four
PRI modulation types specified in Table I. In contrast, Fig. 6(b)
showcases the deinterleaving results of a 10 ms testing sample
processed by our proposed TCAN framework.

For TOA-based algorithms, the training process is con-
ducted using exclusively TOA data and their corresponding
labels extracted from the training set. In contrast, multi-
parameter-based algorithms utilize the complete set of PDW
parameters in conjunction with the labels for training purposes.
Furthermore, the entire training procedure is executed on
interleaved pulse sequences.
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Fig. 6. Visualization of our dataset. (a) A segment from our
dataset. (b) The sorting results of the proposed framework.

2) Baseline Methods For Comparison: To ensure a com-
prehensive evaluation of our proposed approach, we have
selected several baseline methods for comparison. These meth-
ods encompass both well-established traditional techniques
and emerging deep learning-based approaches, enabling us to
conduct a thorough and impartial assessment of the relative
performance of our model. This comparison aims to highlight
any improvements achieved by our proposed method.

1) Long Short-Term Memory (LSTM): As a widely-

adopted framework for processing time series data,

LSTM has naturally become a cornerstone in main-
stream research for radar signal sorting [24]. Leverag-
ing memory cells and gating mechanisms—specifically,
input, forget, and output gates—LSTM scrupulously
regulates the flow of information over time. This unique
structure enables LSTM to retain pertinent information
throughout extensive pulse sequences, rendering it par-
ticularly suitable for separating mixed radar signals.

2) Gated Recurrent Unit (GRU): Another prominent model
designed for time series data, GRU (Gated Recur-
rent Unit) offers computational simplicity compared to
LSTM while achieving comparable performance [25].
GRU combines the input and forget gates into a sin-
gle update gate and eliminates the output gate, effec-
tively managing long-term dependencies between pulses
while reducing computational overhead in comparison to
LSTM.

3) TCN: The original version of the proposed TCAN, TCN
is a model entirely constructed using convolutions for
sequence modeling, including signal sorting [29]. Unlike
LSTM and GRU, which rely on sequential processing,
TCN utilizes causal convolutions to capture long-range
dependencies in pulse flow without necessitating recur-
rence. Additionally, TCN employs dilated convolutions
and residual connections, enabling it to attain large
receptive fields and maintain stable gradients. These
characteristics render TCN highly effective for signal
sorting, as it can efficiently handle long and complex
pulse sequences with superior parallelization capabili-
ties.

4) CDIF: As the most fundamental histogram-based ap-
proach for deinterleaving radar signals [5]. CDIF calcu-
lates the time differences between pulse arrivals step-by-
step and generates a histogram of these time differences,
thereby obtaining potential PRIs by setting a threshold
on the histogram. Subsequently, it searches for pulses
corresponding to the potential PRIs one-by-one across
the pulse sequence.

5) SDIF: An enhanced variant of CDIF [6], SDIF optimizes
the threshold design to better align with real-world
conditions and, in contrast to the cumulative multi-
level difference histogram employed by CDIF, directly
detects a specific-order histogram, thereby improving
computational efficiency.

6) PRI Transform: Another improved histogram-based
method, the PRI Transform addresses the issue of
subharmonics commonly introduced by methods like
CDIF and SDIF [7]. By adding a phase factor to the
autocorrelation function, the PRI Transform algorithm
suppresses these subharmonics, retaining the true PRI
while eliminating higher-order harmonics. However, this
method comes with a notable drawback: its computa-
tional complexity is significantly increased due to the
need for integral calculations similar to autocorrelation.

It is crucial to emphasize that among the baseline methods,
deep learning-based approaches necessitate input adaptation
to conform to the network’s requirements and, consequently,
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TABLE 1
Parameters of Simulated Conventional Radar Emitters
Radar Index PRI Modulation PRI Value/us PW/us  RF/GHz DOA/o
1 Fixed 540 20-40 8.1-8.5 35-37
2 Jitter 370, J=0.25 30-50 8.15-8.3 36-39
3 Stagger 110, 280, 800 10-40 8.4-8.6 34-38
4 Dwell&Switch 400 x 20, 600 x 15, 900 x 10 25-45 8.25-8.6 36-37
TABLE 11
Parameters of Simulated Multi-Function Radar Emitters
Radar Index  Working Mode PRI Modulation PRI Value/us PW/us RF/GHz DOA/°
Mode 1 Jitter 420, J=0.2 20-40 8.1-8.5
1 Mode 2 Stagger 190, 240, 380 30-50 8.2-8.4 35-37
Mode 3 Dwell&Switch 290x%20, 350x 14, 180x10 20-40 8.6-8.8
Mode 1 Fixed 260 10-20 8.15-8.3
2 Mode 2 Stagger 370, 410, 230 20-40 8.3-8.6 36-39
Mode 3 Jitter 330, J=0.1 30-50 8.2-8.4
Mode 1 Fixed 320 30-40 8.4-8.6
3 Mode 2 Stagger 460, 140 10-20 8.2-8.4 34-38
Mode 3 Dwell&Switch 280 x 10, 360x8, 80x24, 190x 12 10-40 8.5-8.8
Mode 1 Dwell&Switch 440x 15, 49020 25-45 8.1-8.3
4 Mode 2 Fixed 390 30-50 8.2-8.5 36-37
Mode 3 Jitter 150, J=0.1 20-40 8.5-8.8

employ the preprocessing module discussed in Section III-B.
Conversely, traditional methods can proceed directly with their
algorithmic procedures for signal sorting, without the necessity
to alter the input format of the pulse sequences.

3) Evaluation Metric: To facilitate a quantitative compari-
son between baseline algorithms and our proposed methodol-
ogy, it is imperative to adopt a unified evaluation metric that
assesses their respective performances. In this study, we select
recall as the primary performance indicator for evaluating the
diverse algorithms under consideration. Recall, which signifies
the ratio of samples correctly predicted as positive to the total
actual positive samples, is particularly relevant in this context
as it reflects the proportion of pulses from a specific radar that
are accurately categorized.

1) True Positive (TP): This refers to pulses that originate
from a particular radar and are successfully deinter-
leaved.

2) False Negative (FN): This pertains to pulses that belong
to a specific radar but are erroneously assigned to other
radar categories.

The recall for each radar category can be formulated as
follows:
I
recall; = TP, 7 FN,
Furthermore, to obtain a comprehensive measure of perfor-
mance across all radar categories, we compute the average
recall:

(22)

N TP,

1
uavera e —
rec@faverage = 7y ; TP, + FN,

(23)

where N represents the total number of radar categories and 7
denotes the i-th radar category. It is important to highlight that,

unless otherwise specified, the recall presented in the charts
of the subsequent experimental results refers to the average
recall.

4) Experimental Arrangements: To comprehensively val-
idate and evaluate the efficacy of the proposed method, a
meticulously designed series of experiments are conducted
across various scenarios. The ensuing sections delve into
four distinct cases, each addressing critical aspects of the
methodology’s performance:

1) Performance Analysis of Input Format Influence: Sec-
tion IV-B systematically investigates the impact of dif-
ferent input formats on the overall effectiveness of both
the proposed method and baseline approaches. A com-
parative analysis is presented, elucidating the differential
effects these formats exert on performance metrics.

2) Exploring the Impact of Signal Sparsity on Algorithmic
Performance: In Section IV-C, we delve into the intricate
relationship between signal sparsity and the performance
of multiple algorithms. This exploration highlights the
proposed algorithm’s potential strengths and challenges
in managing sparse data, offering valuable insights into
its adaptability.

3) Assessing Performance Degradation in Non-Ideal Con-
ditions: Section IV-D shifts focus to the robustness of
the proposed method under three prevalent non-ideal
conditions encountered by interception receivers. This
analysis provides a nuanced understanding of how these
adverse scenarios impact performance, thereby shedding
light on the method’s resilience.

4) Evaluating Sorting Performance on MFR Streams:
Lastly, Section IV-E scrutinizes the proposed method’s
sorting capabilities when applied to streams originating
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from MFRs. This assessment underscores the method’s
proficiency in handling such data, offering a comprehen-
sive evaluation of its practical utility.

5) Simulation Settings: The procedures outlined in this
paper were executed on a high-performance desktop work-
station running Windows 10 and equipped with an RTX
3090 GPU (24GB VRAM) to ensure robust computational
capabilities. All network models used in the deep learning
methodologies were implemented using Python 3.11.4 (64-bit)
and PyTorch 2.0.1, leveraging the versatility and efficiency of
these frameworks.

In the subsequent experiments, the maximum batch size
that can be supported varies according to the input format
and model complexity. Specifically, for binary input, TCN
and TCAN can accommodate a batch size of up to 512,
whereas GRU and LSTM are constrained to a maximum of
128. When using DTOA input, the maximum batch size is
limited to 32 owing to the increased memory requirements.
During the actual training process, the batch size can be
adjusted according to the available VRAM to suit different
GPU configurations. Given that training is typically performed
in advance on high-performance GPUs, with the trained pa-
rameters subsequently distributed to various electronic warfare
computing platforms, the hardware configuration for practical
deployment is primarily determined by the desired inference
speed and cost constraints.

B. Performance Analysis of Input Format Influence

As detailed in Section III-B, we introduced two typical
methodologies to transform the intercepted sequence into
suitable inputs for various models. In this section, we conduct
a comparative analysis of the deinterleaving performance of
different input formats for pulse sequences. To ensure an eq-
uitable comparison, two sequences derived from the same 16-
second pulse stream, generated using the parameters outlined
in Table I, were input into distinct networks. This allowed us
to verify the efficacy of both binary input and DTOA input.

For the given dataset, as depicted in Table III, the per-
formance of binary input surpassed that of DTOA input for
arbitrary model sorting based on TOA. This suggests that
binary input, which represents TOA using intervals of 0 and 1,
aids the network in recognizing potential PRIs. Furthermore,
the sparsity of the data results in a limited training dataset,
and the binary input can effectively extend the data length,
proving advantageous for network training. Conversely, as
illustrated in Table IV, for deinterleaving methods based on
multiple parameters, the improvement with binary input is
marginal, while DTOA input demonstrates substantial en-
hancement. The performance of TCN and TCAN with binary
input remains superior. However, GRU and LSTM algorithms
exhibit better performance with DTOA input compared to the
binary format. This can be attributed to the fact that binary
input directs the model’s focus more towards patterns in the
TOA dimension, effectively characterizing TOA features, but
it also attenuates the exploration of information embedded in
other dimensions. Consequently, in subsequent experiments,
all TOA-based deinterleaving algorithms will adopt binary

input as the preprocessing step, while GRU and LSTM will
transition to DTOA input for multi-parameter sorting tasks.

Fig. 7 depicts the recall of pulses for each class across
various algorithms, considering both TOA-based and multi-
parameter-based scenarios. A notable observation is the vari-
ation in recall rates among different classes, where Class 2
and Class 3 consistently exhibit higher recall values across all
deep learning methods. This can be ascribed to their relatively
larger proportion in the dataset, as compared to the other two
classes. Although focal loss was employed to alleviate the data
imbalance issue, performance disparities among classes still
persist. In contrast, traditional methods demonstrate commend-
able performance in sorting Fixed PRI (Class 1) and Stagger
PRI (Class 3), yet they encounter challenges in identifying
Jitter PRI (Class 2), leading to a significant degradation in
their overall sorting performance.

Additionally, it is noteworthy that even though radar sig-
nals may be indistinguishable in the dimensions of PW, REF,
and DOA, incorporating these features still yields additional
improvements in sorting. Therefore, given that PDW data
is comprehensive, all other dimensions should be harnessed
during model training and inference to maximize performance.

The training and inference time-related metrics are pre-
sented in Fig. 8 and Table V, encompassing the average
training time per epoch, the number of epochs needed for
convergence, the overall training duration, and inference time
for various methods. As elaborated in Section III-B, DTOA
input leads to a reduced execution time per epoch compared to
binary input; nevertheless, it necessitates a substantially higher
number of epochs to achieve convergence. Owing to its greater
model complexity, TCAN exhibits the longest computation
time per epoch for a given input format. In terms of total train-
ing time, although GRU with DTOA input is the most time-
efficient, its recall performance lags behind that of TCAN with
binary input. Regarding inference speed, the runtime of each
method is directly proportional to its per-epoch computation
time during training. DTOA input offers a marked advantage
in inference efficiency over binary input, with both outpacing
traditional methods by a significant margin.

TABLE III
Recall of Different Input Formats
(TOA-based)

Input Format TCN TCAN BGRU BLSTM
Binary 84.38%  92.99%  74.34% = 75.31%
DTOA 75.32%  7047% 5737%  71.03%

TABLE IV

Recall of Different Input Formats
(Multi-parameter-based)

Input Format TCN TCAN BGRU BLSTM
Binary 84.53%  94.06%  72.719%  73.93%
DTOA 83.02% 84.75%  88.84%  88.55%
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TABLE V
Computation Time and Convergence Performance of Different Input Formats and Algorithms

Method Avg. Execution Time Per Epoch (s) Avg. Convergence Epochs  Avg. Time Consumed for Training (s)
TCN DTOA 0.0546 9750 532.35
TCAN DTOA 0.0646 2700 174.42
GRU DTOA 0.0326 1600 52.16
LSTM DTOA 0.0514 1850 95.09
TCN Binary 0.3050 100 30.50
TCAN Binary 0.8534 350 298.34
GRU Binary 0.6228 575 358.11
LSTM Binary 0.6572 650 427.18

Recall of Each Class (%)
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Fig. 7. Deinterleaving performance of each class. (a) TOA-
based algorithms. (b) Multi-parameter-based algorithms.

LSTM DTOA 10.0069
GRU DTOA {0.0044
TCAN DTOA 10.0071
TCN DTOA 10.0068

LSTM Bin{ 0.0882
GRU Bin{ 0.0831
TCAN Bin{ 0.0948
TCN Bin{ 0.0390
PRI Trans 0.2400
SDIF 0.5000
CDIF 3.0400

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Inference Time (s)

Fig. 8. Inference time of different algorithms.

C. Impact of Signal Sparsity on Algorithmic Performance

In this section, we investigate the influence of signal spar-
sity, induced by the scan cycle in real radar systems, on dein-
terleaving performance. To this end, we prepared intercepted
sequences characterized by three distinct levels of sparsity to
assess the impact on various algorithms. Here, x in Fig. 9
denotes the ratio of signal length to interval length within a
scan period (i.e., 1:3, 1:5, and 1:8).

As depicted in Fig. 9, it is evident that the performance
trend of deep learning algorithms, across datasets with varying
sparsity levels, is closely associated with the input format.
Specifically, with binary input, performance tends to improve
as sparsity increases. For instance, TCAN (Binary) attains a
recall rate of approximately 92% at 1:8 sparsity, compared to
89% at 1:3 sparsity. This can be attributed to the sampling-
like preprocessing, which transforms the fixed-duration pulse
sequence into a fixed-length 0-1 sequence sampled at regular
intervals. As the pulse train becomes sparser, the density of
1s decreases, facilitating easier pattern identification by the
model.

Conversely, the performance with DTOA input improves
as the dataset becomes denser. For example, BGRU (DTOA)
exhibits an increase in recall from 80% at 1:8 sparsity to 86%
at 1:3 sparsity. This enhancement is due to the sequence length
for DTOA input increasing with signal density, providing
more training samples and leading to a more effective model.
Traditional methods, such as CDIF and SDIF, which rely on
histogram statistics for sorting, remain relatively unaffected
by signal sparsity, with recall values consistently hovering
around 70% — 75% across different sparsity levels. Notably,
their sorting performance is still inferior to that of deep
learning methods, regardless of sparsity changes, highlighting
the efficacy of modern machine learning approaches in radar
signal deinterleaving.

Furthermore, TCAN (Binary) consistently outperforms
other methods across all sparsity levels, maintaining a recall
rate above 90%. On the other hand, traditional methods like
PRI Transform exhibit the lowest recall, remaining below 60%,
which underscores their limitations in effectively handling
sparse radar pulse sequences compared to advanced deep
learning techniques.

D. Performance Degradation in Non-Ideal Conditions

In this section, we assess the sorting capabilities of the algo-
rithms under three typical non-ideal scenarios: measurement
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13

TABLE VI
Parameter Setting for Combination of Three Types of Non-ideality

Case  Measurement Error STD [TOA (us), PW (us), RF (GHz), DOA (o)] Pulse Loss Ratio (%) Spurious Pulse Ratio (%)
0 [0, 0.0, 0, 0.0] 0 0
1 [2, 0.2, 10, 0.2] 5 5
2 [4, 0.4, 20, 0.4] 10 10
3 [6, 0.6, 30, 0.6] 15 15
4 [8, 0.8, 40, 0.8] 20 20
5 [10, 1.0, 50, 1.0] 25 25
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Fig. 9. Deinterleaving performance against varying levels of
sparsity. (a) TOA-based algorithms. (b) Multi-parameter-based
algorithms.

error, pulse loss, and spurious pulses. Measurement error is
simulated by introducing Gaussian noise with zero mean and a
standard deviation (STD) that incrementally rises from 0 to 10
ws) in steps of 2 us to the PDW data. Both pulse loss ratio and
spurious pulse ratio are varied from 0 to 25% in increments
of 5%. The pulse loss dataset is generated by randomly
removing a specified percentage of pulses from the original
pulse stream. For the dataset containing spurious pulses, we
first generate a specified number of spurious pulses based on
the predefined spurious pulse rate, which are then randomly
inserted into the original pulse stream. Specifically, in the
multi-parameter scenario, the PW, RF, and DOA parameters of

the spurious pulses are either randomly assigned or duplicated
from nearby pulses, to mimic spurious pulses arising from
receiver detection errors and pulse splitting.

From a comprehensive viewpoint, deep learning-based tech-
niques exhibit notable superiority over traditional methods
in signal sorting when constrained to using only TOA data,
especially within increasingly complex electromagnetic envi-
ronments, as illustrated in Fig. 10. Conversely, when full PDW
information is available, the conventional two-step deinterleav-
ing paradigm, consisting of pre-sorting followed by primary
sorting, proves less effective than end-to-end deep learning
frameworks that utilize the entire PDW data holistically, as
depicted in Fig. 11.

As the intensity of non-ideal conditions, encompassing these
three distinct types, escalates, all deep learning approaches
undergo a significant decline in performance. Despite these
adverse circumstances, the proposed TCAN substantially out-
performs other methods when TOA data alone is utilized
for deinterleaving, as shown in Fig. 10. Specifically, TCAN
achieves an approximate 10% improvement in recall over
the TCN and roughly a 15% improvement over GRU and
LSTM networks. This advantage is primarily attributed to
the attention mechanism, which reweighs the significance of
different time steps, enabling the network to more effectively
capture temporal similarities across adjacent time steps and
facilitating the identification of signals from the same radar
emitter.

In the context of deinterleaving using multiple parameters,
TCAN continues to demonstrate robust performance. However,
Figs. 11(a) and 11(b) reveal that, in terms of performance
degradation due to measurement error and pulse loss, the
TCAN model with Binary input experiences more pronounced
degradation compared to GRU and LSTM models with DTOA
input. At high noise levels, TCAN’s performance is eventually
surpassed by GRU and LSTM algorithms. Nonetheless, TCAN
with Binary input is less susceptible to the impact of spurious
pulses compared to GRU and LSTM with DTOA input,
consistently maintaining a 5% to 7% performance edge, as
shown in Fig. 11(c).

An analysis of the performance curves for all algorithms
using only TOA with Binary input reveals a similar rate of
decline for TCN, TCAN, GRU, and LSTM, suggesting that
this phenomenon is intrinsically linked to the characteristics of
the input representation. This observation implies that different
input formats possess distinct advantages in addressing various
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Fig. 11. Deinterleaving performance of multi-parameter-based algorithms against three non-ideal conditions. (a) Measurement

error. (b) Pulse loss. (c) Spurious pulses.
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Fig. 12. Deinterleaving performance of multi-parameter-based
algorithms under a combination of three non-ideal conditions.

non-ideal conditions. Binary input, which reconstructs se-
quence data in a sampling-like manner, is particularly sensitive
to measurement errors, which can cause signals to deviate from
their intended time windows. For instance, a slight timing error
in the recording of a radar pulse may result in its assignment
to an incorrect time unit, leading to misalignment of the input
sequence. Additionally, pulse loss can cause signals to be
absent from their original time windows, further complicating
the sorting process and reducing recall. This severely impacts

algorithms that rely on the distribution of binary values for
signal identification. In contrast, DTOA input, which does not
depend on relative position for pulse pattern recognition, is
less sensitive to the impacts of measurement errors and pulse
losses, thereby preserving the network’s ability to determine
the relationships between different signal components.

Furthermore, we assessed the impact of combining all three
non-ideal conditions within a single scenario. The specific
settings for each case, which introduce varying levels of
these three noise types, are detailed in Table VI. The sorting
performance of different algorithms under these challenging
conditions is depicted in Fig. 12. As anticipated, the concurrent
presence of multiple data challenges results in a more pro-
nounced decline in model performance compared to individual
non-ideal conditions. Notwithstanding this, the TCAN algo-
rithm consistently maintains a performance advantage over
baseline methods in these complex scenarios. However, this
advantage diminishes gradually, from an initial 5% margin to
merely 1% in the final case.

It is worth noting that, as shown in the supplementary
experimental results in Fig. 7, traditional methods are largely
ineffective in sorting PRI jitter signals (Class 2), leading to
poor deinterleaving performance. Moreover, since we utilized
the original versions of these traditional methods, which
were not specifically designed to address various non-ideal
conditions, a direct comparison of their relative strengths is of
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limited significance. Instead, their results are presented here
solely as a reference for performance evaluation in complex
environments.

E. Sorting Performance on MFR Streams

Recall vs. Number of MFR
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Fig. 13. Performance on deinterleaving MFR streams by (a)
TOA-based algorithms; (b) multi-parameter-based algorithms.

In the concluding segment of our analysis, we shift our
focus to assessing the deinterleaving effectiveness of an array
of algorithms across datasets that encompass a varying number
of MFRs. Unlike conventional radars, which operate within a
single, predetermined mode, MFRs exhibit operational adapt-
ability by dynamically transitioning between multiple modes
according to mission-specific requirements. This adaptability
introduces substantial challenges to the task of signal sorting.
Traditional deinterleaving methodologies frequently fall short
in distinguishing between the different operational modes of a
single radar signal or differentiating distinct signals when prior
information is lacking. Specifically, conventional algorithms
may encounter difficulties in recognizing subtle variations
in signal parameters as the same radar toggles between
modes, resulting in frequent misclassifications, particularly in
scenarios involving overlapping signals devoid of contextual
knowledge.

In contrast, deep learning methodologies necessitate exten-
sive training datasets to capture and learn the intricate patterns

embedded within these sophisticated signals. Consequently, all
algorithms employed for deinterleaving MFR streams in our
study are rooted in deep learning. The datasets used in our
experiments consist of 2 to 4 MFRs, each of which operates
in three distinct modes that switch stochastically, as detailed
in Table II.

The results of our deep learning-based deinterleaving meth-
ods, one utilizing TOA features and the other leveraging multi-
parameter features, are presented in Fig. 13(a) and 13(b). As
the number of MFR sources escalates, both the TOA-based
and multi-parameter-based algorithms exhibit a pronounced
decline in sorting performance. This deterioration is primarily
attributed to the heightened signal overlap and interference
among multiple radar sources, which exacerbates the difficulty
for the algorithms to accurately distinguish individual signals.
Notwithstanding, the multi-parameter-based algorithm demon-
strates a notable capacity to maintain a relatively high recall
rate by integrating information from multiple feature dimen-
sions. As data-driven algorithms, deep learning approaches
capitalize on the diverse patterns present in multiple features,
enabling the network to proficiently learn the characteristics
of each operational mode of MFRs, thereby augmenting dein-
terleaving recall.

Furthermore, our proposed TCAN consistently outperforms
other benchmark algorithms across datasets with an increasing
number of radar sources, except in instances where the dataset
comprises only two interleaved MFRs, where its performance
is comparable to that of the benchmark approaches. It is worth
noting that the TCAN algorithm exhibits minimal degradation
in performance as the number of radar sources rises, with only
a 5% drop in recall rate compared to the 15% — 20% decline
observed in other benchmark algorithms. This underscores the
robustness of the TCAN algorithm in managing the escalating
complexity associated with multi-source environments. Such
robustness suggests that the TCAN algorithm is particularly
adept at preserving deinterleaving recall despite the challenges
posed by interleaved radar signals and the rising density of
emitters.

V. CONCLUSION

In the present study, we introduce a novel methodology
for deinterleaving radar pulse streams through the application
of Temporal Convolutional Attention Networks. By seam-
lessly integrating temporal convolutional architectures with
a sophisticated attention mechanism, TCAN has exhibited
exceptional proficiency in the sorting of radar signals, par-
ticularly within intricate electromagnetic environments. These
environments are typified by challenging factors, including
pulse loss, spurious pulses, measurement inaccuracies, and
signal sparsity. Our experimental results demonstrate that
TCAN outperforms conventional baseline approaches, main-
taining elevated recall rates even as the complexity of radar
sources escalates. Furthermore, our comprehensive analysis
underscores the crucial role played by multi-parameter features
and diverse input formats, both of which exert a substantial
influence on the model’s adaptability. The findings of this
study suggest that TCAN offers a promising resolution to
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the increasingly intricate demands of deinterleaving, thereby
presenting a significant advancement in this domain.

It is important to note that this study focuses on closed-set
signal sorting based on a known radar database. The open-set
problem, which encompasses unknown classes and random
PRI patterns, lies beyond our current scope. Addressing is-
sues such as these, along with ambiguity, requires additional
techniques or alternative models for effective resolution. These
present promising avenues for our future research.
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