Concerning Debugging in TEA and the TEA
Software Operating Environment

Joseph Willrich Lutalo,*
jwl@nuchwezi.com, joewillrich@gmail.com

February 19, 2025

Abstract

As with many software systems whether manually engineered or auto-
matically generated, the need to identify and eliminate or resolve errors in
the system’s implementation — so-called “bugs” is an important aspect
of good and effective software construction and maintenance. In standard
Software Engineering parlance, this practice is what is known as “debug-
ging” the system — or rather “software debugging”, and for the case of
software implemented using the TEA programming language, is such an
important aspect of the language’s ecosystem, the debugging mechanisms
have been designed and implemented as part of the core language’s run-
time — essentially, the TEA debugger is part of the language’s Software
Operating Environment (SOE), and in this paper, we highlight what fea-
tures the TEA debugger offers, how it works and what remains to be done
so as to help software engineers build robust and error-free software in the
TEA language by leveraging the essential software debugging features of
the TEA language runtime; tttt.

Keywords: Software Engineering, Software Debugging, Debuggers, Text
Processing Languages, TEA

1 TEA Debugging Preamble

In the early phases of designing and implementing the Transforming Executable
Alphabet (TEA) language, it became quite clear that not only might developers
and software engineers leveraging the new language’s syntax and its unusual
approach to general-purpose programming via a Text-Processing paradigm meet
with some difficulties, but that, there would be a sure need for a mechanism
to help readily isolate, understand and fix the source of errors in software built
using the still rare and undoubtedly unique language [4]. Thus, when the first
Reference Implementation (RI) of the complete (a: to z:) TEA language was

*Inventor of TEA — Transforming Executable Alphabet at Nuchwezi ICT Research Labs

rolled-out in 2024[6], it also came with an in-built debugger for TEA programs
accessible via the “-d” flag for the command-line TEA interpreter; tttt — TEA
Text Transforming Terminal (TTTT) [3] [2], in which case the so invoked TEA
program would be said to be running in "DEBUG MODE”.

As per the standard semantics of the term “debugging” — see excerpts from
the Oxford Dictionary of Computing|1] below:

Definition 1 (Debugging). The identification and removal of lo-
calized implementation errors — or bugs — from a program or system.
By contrast, testing seeks to establish whether bugs exist but does not iso-
late or remove them. Program debugging is often supported by a debug
tool [debugger], a software tool that allows the internal behavior of the
program to be investigated. Such a tool would typically offer trace facil-
ities..., allow the planting of breakpoints (i.e. points in the program at
which execution is to be suspended so that examination of partial results is
possible), and permit examination and perhaps modification of the values
of program variables when a breakpoint is reached.

Our theory and practice of debugging in TEA wishes to stay true to what
the traditions of the important Software Engineering sub-discipline of Software
Debugging calls for. It is based on this background that we then shall take a
moment to explore what sort of debugging is [readily] possible for TEA programs
as per the current language design, implementation and support tools in the
TEA SOE — Software Operating Environment[5]. This we shall mostly cover
in Section [2| while Section [3| shall wrap-up this paper by focusing on what
isn’t yet possible or what remains to be done concerning debugging in TEA.

2 An Exploration of Debugging in TEA

In the first part of this section (Section , we shall look at a high-level
overview of what is currently practically possible concerning debugging in TEA
as per the standard debugging theory (refer to Definition . That section is
presented using a Question-Answer approach to quicken and keep the discus-
sions factual and succinct. We shall then progress into a deeper, more hands-
on exploration of what is currently [practically] possible concerning debugging
in the TEA RI in Section starting with simple explorations in Section
2.2.7] then diving into more advanced debugging concerns in Section [2.2.2]
In Section we shall close off with an authoritative overview of what exactly
happens in a typical DEBUG MODE session of the TEA debugger via tttt.

2.1 Quick Overview of TEA Debugging
Q1 Is there support for debugging in the TEA SOE?

Al. YES. The official TEA RI environment[6] — currently with sup-
port for running standard TEA programs on Linux via the com-
mandline, but also for other *nix-compliant systems such as

for Microsoft Windows via the Windows Subsystem for Linux,
makes possible and officially supports debugging in the TEA
standard SOE[3] [2].

Q2 How does the TEA SOE support/enable debugging?

Al.

The “-d” flag when passed to the standard TEA interpreter —
tttt, allows for the TEA program thus invoked or executed,
to be run in DEBUG MODE (see Section for details and
practical examples).

Q3 Is it possible to flag an erroneous TEA program before it is run?

Al.

A2.

Only syntax errors might easily be caught upfront because lexing
happens before any actual execution of the instructions in a TEA
program happens (refer to the “TEA PROGRAM EXECUTION
PROCESS” illustrated in the TEA TAZ [3]); at invocation time.

Though, instructions such as e: and e*: might process imported
TEA code during run-time (meaning, after the execution of the
active TEA program already started); and this could be code
that wasn’t available or seen at program invocation or validation
time; such as code from the network via w:, and which is then
stored into a vault/memory for later reference via v:. In case
such imported code is erroneous, it can only be flagged as such
at the time when attempts to execute it as TEA code manifest
— such as when code originally imported into a vault (at which
point it is merely a string as far as TEA semantics and types
are concerned) is finally evaluated as TEA code via a call to e*:
Bl

Q4 What constitutes an erroneous TEA program?

Al

A2.

Invalid Syntax (such as qualifying a TEA primitive with an
unknown or unsupported qualifier symbol; only *, ! and *! are
valid TEA command qualifiers (see TCQ in the formal TEA
language grammar [3]) allowed as per current TEA grammar
and syntax.

But also, Invalid Semantics — such as some TEA primitives
being invoked with the wrong number of parameters or with
an invalid signature; for example, invoking the memory clearing
command c: with any parameter — e.g. a literal string such as
in ¢:TEST or with reference to some memory location such as
passing the name of some vault e.g. in c¢:vRECORDS, won’t do
anything expected because such invocations are currently treated
by the TEA RI as being “INERT” [3]. Invoking an “INERT”
TEA instruction essentially isn’t harmful, though it is wasteful
since the instruction is processed without [any potentially useful]

Q5

Q6

Q7

effect[s]. Nonetheless, future versions of the TEA runtime might
flag warnings for such instances as an example. However, some
semantic errors such as invoking a memory-referencing TEA in-
struction without a valid argument — these, by convention be-
ing the TEA instructions in which a TEA primitive is qualified
with the symbol *; such as when a: which is meant to com-
pute anagrams of its parameters, is invoked with a non-existent
vault/memory pointer in the instruction a*:{SOME DATA} in-
stead of ax:vDATA, results in a run-time memory-violation error.
These can’t yet be caught at invocation time, but do get flagged
and cause exceptions when encountered during run-time.

When a TEA program contains an erroneous sector, would the
entire program fail to run or only the erroneous sector?

Al. Sometimes, especially if the error is semantic, it might only be
possible to catch it at run-time (such as in the executing of
strings imported from external sources — like with w: as TEA
code or processing of results from executing external commands
as TEA code — like with z:.) In such cases, when an exception
occurs during the running of that instruction, the entire program
fails or halts.

A2. But if the error is perhaps semantic, though, without effects;
such as calling j! :PARAM — Don’t Jump, yet it takes a name for
a potential jump point — typically, the name of a label in the
TEA program code; such code, which in TEA is considered “IN-
ERT” shall be parsed but shall merely be skipped without any
errors or modifications to the preceding or succeeding system
state apart from advancing the instructions counter |[3].

What kinds of errors can be automatically flagged in a TEA
program before or while it is being run; syntactic, semantic, or
environmental?

Al. Syntactic: at program invocation time or when an e: command
is processed anywhere in the program. Semantic: when the in-
terpreter fails to correctly process a supported TEA Instruction.
Environmental: if access to some external resources (such as
with w: or z:) fail or meet with run-time errors.

Can u trace the running of a TEA program? How?

Al. A TEA program invoked using the tttt command on the command-
line can readily be traced by leveraging an invocation of the kind
such as:

tttt -fc problematic_program.tea -d 2>&1 | tee trace.txt

Q8

Q9

Q10

Q11

In this case, the TEA program to be thus debugged is held in
the script problematic_program.tea, which is passed to the
TEA interpreter via the “-fc” flag, and then, using the special
Linux utility tee, we are able to ensure that even when the
problematic program is interactive (such as when it contains
blocking, input-prompting commands such as i:), we are able to
have normal program input/output on the terminal, but while
all the associated output — whether to STDOUT or STDERR
are likewise echoed into the file we designate for capturing the
program’s trace; in this case the file “trace.txt”

How is logging done in TEA?

Al.

A2.

Manually: such as when a developer manually uses i: to display
some program state or variables during normal execution or by
having the TEA runtime printing the final output at the end
of some computation (which output could contain several pieces
of information constructed from several variables or instructions
before the program terminates).

Automatically: as when the TEA program is run in DEBUG
MODE (more on this later) — also, refer to previous question.

Can TEA programs log errors without polluting the program’s
output (like by writing to STDERR instead of STDOUT)?

Al.

No. Currently the TEA RI runtime doesn’t [yet] support out-
put to STDERR or any other output stream other than STD-
OUT (unless, with clever use of external effects such as with
special external-environment accessing TEA commands such as
w: — Web, or z: — Zap, — which might write to some exter-
nal resource such as the network or some system data sink via
non-TEA commands or protocols, this is thus accomplished).

Can TEA programs control the logging based on severity of issue
(INFO, DEV, EXCEPTION level, etc)?

Al.

A2.

No. Currently, only one TEA logging level is supported in au-
tomatic logging via the “-d” flag.

But clever programs can use conditional processing (such as cre-
ative use of the f: — [conditionally] Fork, or q: — [conditionally]
Quit commands and other flow-control TEA commands such as
with j: — [unconditionally] Jump) to conditionally determine
what is logged or processed based on program state.

Can users of the TEA runtime inspect its internal state at run-

time?

Al.

Yes. Whatever the TEA runtime allows to be introspected in
DEBUG MODE (more about this in Section [2.2)

Q12 How do users/developers of TEA programs contact TEA lan-
guage engineers for assistance?

Al.

A2.

Via project’s Git Repo: https://bit.ly/projtea — via which
one can leverage pull-requests, comments, etc.

Via official TEA implementer contacts made public — refer to
the official manuals that come with the tttt Linux package: man
tttt, or consult the TEA official documentation — part of the
official TEA RI repository|6].

Q13 How is Python useful in simplifying debugging of the TEA run-

time?

Al.

Because the TEA runtime (tttt) RIis implemented using Python
exclusively [2], thus any debugging facilities that Python sup-
ports or offers (such as output mechanisms to STDOUT, but
also to the Filesystem — though, that is hardly exploited at the
moment), as well as control of logging level and ability to log
to STDERR could be utilized in future generations of the TEA
runtime.

Q14 How to debug a TEA program without relying on low-level run-
time features (basically, strictly from TEA level)?

Al

A2.

Manually: use i: command creatively or the expected TEA
program’s final output to inspect earlier or final program/system
state and outputs from any other TEA command(s) and not just
from i:.

Automatically: use DEBUG MODE — with the “-d” flag to
tttt, to automatically dump system and program state and out-
puts at each instruction (before and after) and at the program’s
ultimate end.

2.2 Practical Debugging of Programs in the TEA RI
2.2.1 Simple TEA Programs and The TEA DEBUGGING MODE

The tttt utility which is the official interpreter and runtime for TEA language
programs allows for tracing and introspection of both the TEA programs and the
TEA runtime via the “-d” — DEBUG flag, at a program’s invocation time|6].
This is currently the only, and officially sanctioned method of engaging the TEA
SOE’s debugger or debugging tool.

To appreciate the difference running a TEA program with or without DE-
BUG MODE does, consider the following basic example of a TEA program that
is meant to merely print the message “Hello World” and return:

https://bit.ly/projtea

Listing 1: A Simple Hello World in TEA

i:{Hello World}

That basic program, when invoked on the commandline shall behave as show
in Figure

"i:{Hello World}"

elloc World

Figure 1: A Simple Hello World in TEA

However, invoking that same exact simple program in Listing [1| with DE-
BUG MODE turned ON shall behave as shown in Figure

& c:\Program Files\WindowsApps\MicroseftCorporationl wsSubsystemForLinux_2.0.9.0_x64_Swekyb3dabbweiwsl.ace - O X

cit INPUT found, u

Figure 2: The Simple Hello World in TEA run in DEBUG MODE

That simple example does bring several things to light. However, before we
delve into what exactly happens when a program is run in DEBUG MODE, let
us look at a more involved example.

2.2.2 Advanced TEA Programs and Program Debugging via The
TEA DEBUGGER

The program in Listing [2| is a basic TEA program meant to draw a simple
textbox around some text the user provides — either at invocation time or at
run-time.

00~ O U W N -

e el el
DU W~ OO

Listing 2: A Textbox Drawing Program in TEA

f!:°$:1NOPROMPT: 1PROMPT
1:1PROMPT

i!:Enter some text: |i:
1:1NOPROMPT

v:vIN

rx!:vIN:.:-

X:—-—|x':--

v:vBTOP

v:VSTART:

v:vBLR:{I|}

g*:{ }:vBLR:vIN:vBLR
v:vIN

gx:{_ }:vSTART:vBTOP:vIN:vBTOP
h'!:_

r!:_:|

In Scenario 1, let us look at what happens when that program from Listing
is invoked with an explicit input text specified at invocation time — refer to
Figure (3] in which case the user invokes the program’s script with the explicit
input as the string “sample input text”.

('_'I Ch\Program Files\WindowsApps\MicrosoftCorporationll. WindowsSubsystemForlinux_2.0.9.0_x64_ 8wekyb... — [m| X

i "sample input

Figure 3: A Textbox Drawing Program in TEA with Explicit Invocation-time
Input

We see, by looking at the provided screenshot, that the program indeed
obeys the logic in the TEA program — refer to Line #2 in Listing [2| which
controls the TEA program thus; in case the program at that moment — which,
given this is the first instruction in the program; happens immediately after the
TEA program’s code starts to be interpreted/processed — happens to have some
non-empty value in the active memory — what in TEA is called the “Active
Input”, or rather “AI” (refer to the TEA TAZ for details |3]), and this because
the instruction uses the condition ~$ — a regular expression matching an empty
string, to test for whether the Al is NOT empty — because of the ! qualifier

applied to the f: — [conditionally] Fork TEA command, then, we jump to the
location/sector in the TEA program under the label INOPROMPT since we
need not prompt for an input then. However, if there was no explicit input
provided — meaning Al is empty at the instruction on Line #2, then we jump
to the sector or code-block under the label IPROMPT. As can be seen in the
screenshot in Figure 4] invoking the same program in Listing |2| without an
explicit input shall result in the TEA runtime prompting for user input as per
the [two] instructions on Line #4.

('_\ Ch\Program Files\WindowsApps\MicrosoftCorporationll. WindowsSubsystemForlinux_2.0.9.0_x64_ 8wekyb... — [m| X

prompt .tea

Enter some text:My Own Sample In

Figure 4: A Textbox Drawing Program in TEA WITHOUT Explicit Invocation-
time Input

So, to appreciate how TEA DEBUGGING works, let us take a moment to
look at yet another version of the program in Listing

The version of the Textbox Drawing Program shown in Listing [3|is meant
to improve on the one in Listing [2| by doing just one extra thing: Drawing
an extra textbox below the one with the input text, merely showing
the basic statistic of “how many characters” were found in the input
text; e.g. for the input string “Hello”, it should draw a textbox containing that
word alone, and then a second one below that, containing just the information
“5 CHARS”.

0O Ui Wi+

e I R R I I T N T N T N N Sy S S S S G g
RE,OOXTJOTNEWNR, O WOOW-IOU R WNR O ©

Listing 3: A Textbox Drawing Program in TEA with STATISTICS

f!:7$:1NOPROMPT: 1PROMPT
1:1PROMPT

i!':Enter some text: |[i:
1:1NOPROMPT

v:vIN

rx!:vIN:.:-

X:--|x!:--

v:vBTOP

v:VSTART:

v:vBLR:{I|}

g*:{ }:vBLR:vIN:vBLR
v:vIN

g*x:{_ }:vSTART:vBTOP:vIN:vBTOP

v:vTXTBOX

v!:vIN

x!:{ CHARS}

v:vIN_STATS

g*:{_ }:vIN_STATS:vBTOP
v:vIN_STATS_BOX

g*x:{_ }:vTXTBOX:vIN_STATS_BOX

h!:_
r!:_

When we attempt to run the TEA program in Listing [3] with the explicit
input “Hello” as introduced above, we see that the program then produces the

output shown in Figure

You shall immediately notice that this screenshot in Figure [5|doesn’t seem
to produce the result we expect; in particular, the input that was provided, is
the string “Hello”, which by basic enumeration of the characters it contains, is
expected to report a CHARACTER COUNT equivalent to “5” — not

the reported “3 CHARS”.

To establish whether indeed we are dealing with a potential BUG in that

10

Figure 5: A Textbox Drawing Program in TEA with STATISTIC for Explicit
Input “Hello”

program, we might invoke it again with a different input string — for exam-
ple, with the longer string “Hello World” — which we expect to tally to “11
CHARS”. So, looking at what happens when we invoke the program in Listing
with such an explicit input — see Figure [6] we surely find that instead
of the Expected Output of “11 CHARS”, this program AGAIN reports the
erroneous output “3 CHARS”.

('_\ Ch\Program Files\WindowsApps\MicrosoftCorporationll. WindowsSubsystermForlinux_2.0.9.0_x64_ 8wekyb... — [m| s

wprompt_stats.tea -i "Hello World"

Figure 6: A Textbox Drawing Program in TEA with STATISTIC for Explicit
Input “Hello World”

2.2.3 The Debugging Process in TEA

Because software debugging is not just about identifying a problem in the soft-
ware but also resolving it (see Definition [1) [1], a good way to approach debug-
ging problems then must also include a sane dose of how to understand the na-
ture and root-cause of the problem thus identified, so as to eventually eliminate
it. To use the terminology and philosophy of other researchers and authorities
on the subject; in debugging software, we must begin by clearly understand-
ing what exactly is going on; so-called fault localization |7] — which basically is
about identifying where in the problematic source-code of the program the error
seems to originate from. That attempt to localize the bug might be approached
by careful attempts to reproduce the error or bug [8], while eliminating invalid
hypotheses of where it is that the error is originating from in the system. We

11

must then proceed to fault understanding 7], which basically deals with getting
to understand the root-cause of the problem/bug thus identified — and this,
we realize might proceed by careful stripping down of the original program into
smaller or more manageable instances or perhaps leveraging more focused “test
cases” for the bug, so that we eventually arrive at a clearer, closest-to-root-cause
understanding of the problem [8]. Thereafter, and also finally, we must apply
some remedial actions — so-called fault correction, so that a means to “fix” the
program’s source-code; basically, eliminating the problematic behavior from the
program by modifying it as necessary, is conducted, and thus the root-cause of
the bug is thus eliminated. That is essentially what debugging is about [7].

With the above theoretical insights to aid our approach to debugging in
TEA, we can then return to our example debugging task in Section and
deal with the bug we have seen manifest in the outputs of running the TEA
program in Listing

As of this moment in our debugging process, we are still trying to locate
where exactly the bug is originating from — fault localization, however, we
also wish to understand exactly what this bug is so we can clearly pinpoint
where it is in the program. Thus, to better clarify on what the bug is, we must
add to the two tests we’ve already run in the cases illustrated in Figure [5| and
Figure [6} one with the explicit input “Hello”, the other with “Hello World”.

First, to pinpoint where the bug is originating from, we note — since we have
some good understanding of the TEA language semantics|3], that the potentially
erroneous section of the problematic program should be around the section
where we approach the computation of the length of the input text. Thus,
revisiting our program in Listing we note that the problematic sections
should be the Lines #22-#27; the section dealing with both computing and
presenting the statistic of interest.

To test whether this is where the problem is actually originating from, we
note that in particular, the instruction at Line #23 seems to be where the
problem is. Why? Perhaps because, we know that whatever happens past that
instruction — such as in instruction on Line #24 where we construct the text
reporting the statistic; using the x!: — Xenograft TEA primitive with the !
qualifier which then implies we wish to affix the provided suffix “ CHARS”
to AI — where it is understood that Al, the Active Input, shall at that moment
contain just a number — the computed length of the text we wish to report the
length for.

To test whether indeed we are looking at the right section in the code, we
might conduct two more tests;

1. We might instead run the same program but with the input to be processed
obtained using a different method; for example, instead of the explicit,
command-line input argument approach shown in Figure [5| and Figure
[6] we could let the program prompt for a run-time user-provided input so
we see if we might obtain the correct or a different statistic in the result.

2. Alternatively, we might forego all user input, and inject an explicit input
for which we know the exact length, right before we compute the input’s

12

length, and thus determine if the problem is either with our program logic
or perhaps with the underlying TEA language semantics or runtime.

So, starting with Test Case #1 above, we run the same, unmodified program
from Listing [3] however, this time, not providing an explicit invocation-time
input, and instead letting the program proceed to prompt for a user input
(see instructions on Lines #9; the first being the prompt, the other the one
capturing the input the user provides). We can see an instance of this test
running in a screenshot in Figure in which case the run-time input we
provide is still “Hello World”.

('_\ Ch\Program Files\WindowsApps\MicrosoftCorporationll. WindowsSubsystemForlinux_2.0.9.0_x64_ 8wekyb... — [m| X

_wprompt_stats.tea

Enter some text:Hello world

Figure 7: Testing the TEA Textbox Drawer’s STATISTIC with Run-Time User
Input “Hello World”

Having run this 3rd test case, and still finding that instead of the expected
“11 CHARS” the program, despite having used an input provided in a different
way still reports the erroneous “3 CHARS”, we seem to now be getting closer
to the actual source of the problem.

We then attempt a better localization of the fault, by proceeding to imple-
ment the Test Case #2 specified above; we basically modify the program in
Listing [3] as shown in Listing [4]

13

0O Ui Wi+

e I R R I I T N T N T N N Sy S S S S G g
RE,OOXTJOTNEWNR, O WOOW-IOU R WNR O ©

Listing 4: A MODIFIED Textbox Drawing Program in TEA with STATISTICS

f!:7$:1NOPROMPT: 1PROMPT
1:1PROMPT

i!':Enter some text: |[i:
1:1NOPROMPT

v:vIN

rx!:vIN:.:-

X:--|x!:--

v:vBTOP

v:VSTART:

v:vBLR:{I|}

g*:{ }:vBLR:vIN:vBLR
v:vIN

g*x:{_ }:vSTART:vBTOP:vIN:vBTOP

v:vTXTBOX

v!:"ABCDEFG"

x!:{ CHARS}

v:vIN_STATS

g*:{_ }:vIN_STATS:vBTOP
v:vIN_STATS_BOX

g*x:{_ }:vTXTBOX:vIN_STATS_BOX

h!:_
r!:_

In particular, looking at the altered program in Listing [4] we particularly
note that the modified instruction — see Line #23: effectively, the new in-
struction being v!:"ABCDEFG", injects the explicit string “ABCDEFG” of 7
characters in length, and indeed, as we see in the screenshot after running this
modified program — see Figure [8] we notice that now, given the same [run-
time] input — “Hello World”, of 11 characters, as we’ve used in the tests shown
in Figure [6] and Figure [7| we then see our new test case present a different
result; “7 CHARS” it says, which is exactly proving our hypothesis that the
code/instruction(s) computing the input’s length must be where the problem

14

has been stemming from.

('_\ Ch\Program Files\WindowsApps\MicrosoftCorporationll. WindowsSubsystemForlinux_2.0.9.0_x64_ 8wekyb... — [m| X

prompt injectior

Figure 8: Testing the MODIFIED Textbox Drawing Program with INJECTED
Input “ABCDEFG”

At this point then, we must bring the TEA DEBUGGER into context once
more; given that we have an idea where the problematic code is within the
program — in particular, having noticed that modifying Line #23 seems to
be causing alterations in the error/bug, we can then use the DEBUG MODE of
tttt, to ascertain what exactly is going on both in our program as well as the
TEA runtime when this bug manifests.

For this case, we shall invoke the same program as in Listing |4l but with
the addition of the “-d” flag to the TEA interpreter when we invoke it. Also,
this time, we shall return to passing an explicit invocation-time input parameter
as in the case demonstrated in Figure [6] The invocation we are to make is:

tttt -fc box_text_wprompt_stats-injection.tea -d -i "Hello World"

And making this call, we notice as captured in the TEA debugger dumlﬂ
for this test as captured in a Github Gist, that indeed, around Lines #165-
#168, also shown [with long lines truncated with ellipses] in Listing [5| — see
Lines #6-#10, that indeed, the debugger reports that the instruction we just
modified is in fact computing the length of the string “ABCDEFG” and not our
input “Hello World” as we had originally intended.

Thttps://gist.github.com/mcnemesis/3ad5345cb0ed8aa39193£777878545ab

15

https://gist.github.com/mcnemesis/3ad5345cb0ed8aa39193f777878545ab

0O Ui Wi+

— = e e
=W N = OO

Listing 5: Excerpt of TEA debugger Trace Dump

Executing Instruction

Processing Instruction: v:vTXTBOX

PRIOR MEMORY STATE: (=_ --------------- _ | Hel...
-- [INFO] Wrote VAULT[vTXTBOX = [_ ----------- .
RESULTANT MEMORY STATE: (=_ --------------- [...
Executing Instruction

Processing Instruction: v!:"ABCDEFG"

PRIOR MEMORY STATE: (=_ --------------- _ | Hel...
[INFO] Returning Length of string [ABCDEFG]
RESULTANT MEMORY STATE: (=7, VAULTS:{’vIN’: ’]|...
Executing,Instruction#17,(out 0f,24)

Processing Instruction:x!:{, CHARS}

PRIOR_ MEMORY_ STATE: (=7, VAULTS:{’vIN’:,’| Hel...
RESULTANT MEMORY STATE: (=7 CHARS, VAULTS:{’vI...

Thus, we are done with our fault localization, and have also enhanced our
fault understanding. Now, we must embark on fault correction!

Of course, when it comes to fixing the bugs thus identified in a software sys-
tem such as we are currently looking at, one could leverage several things as far
as addressing the identified error is concerned; by manipulating the problematic
program as through experimentation, the identified [and/or visible] problem
with a system might be eliminated — but, this doesn’t necessarily imply that
the underlying cause of the problem has been addressed[7]. But also, knowledge
— both via experience as well as that of the problem domain and technicalities
of the system under development can help the software engineer or developer to
arrive at a sufficient solution for the problem at hand once it has been identified
and well understood.

In our case, since we have isolated the instruction causing the problem in
our target program, we can look at it critically, and with knowledge of what it
is we originally intended to achieve versus what is actually happening, and then
proceed to try out some potentially effective solutions. In particular, looking at
the problematic instruction (Line #23 in Listing [3)) in the original program
before we modified it:

v!:vIN

We notice the following telling problems:

1. First of all, we notice that, the instruction was meant to actually compute
the length of a string stored in a vault — essentially, a kind of pointer,
however, based on the known semantics of TEA instructions, we can tell

16

with sufficient knowledge that this instruction signature isn’t possibly do-
ing the right thing. Why?

(a) We know that the convention in TEA is that vault-accessing instruc-
tions use the * qualifier against the TEA primitive command of inter-
est so as to make it clear they are meant to manipulate some pointer
[3]. However, this instruction’s signature, though it is qualified with
!, which for the v: command also maps to length-computation oper-
ations, is missing the expected * qualifier!

(b) By looking at the semantics of the vi — Vault TEA command in
the TEA TAZ, we find that indeed, the correct variant of this com-
mand for the computation of the length of a string held in a vault is
the command with the signature: v*!:vNAME — which is defined as
“Return the length of what is stored in the vault vNAME. Without
vNAME, is like v!.”

2. Further, by looking at the evidence we amassed while testing around this
bug in the cases above, we see that, before we modified the instruction
— such as in Listing 7 the program was reporting the length of the
input as “3 CHARS”, which, looking at the above problematic instruction
signature as well as what we just uncovered concerning the computation
of the length of strings held in TEA vaults, is enough to explain why
the result was always “3 CHARS” irrespective of the input passed to the
program; basically, as it was, the instruction on Line #23 in Listing
was treating the provided instruction argument vIN as an explicit string
and not as the pointer to the vault with the name “vIN”! And so, it was
correct to return the length of the string as 3, because that’s how many
characters are in that instruction’s argument when treated as a literal
string!

Thus, armed with the above context and potential theories for why the bug
was manifesting, we can then embark on a hunt for a potentially final solution
thus: we shall go back to the program of interest in Listing modify it so
as to eliminate the wrong instruction on line Line #23, and make any other
necessary modifications so as to fix the error.

Solution#1: First of all, by merely correcting the instruction signature in
that program on Line #23 to the following:

vk!:vIN

We notice that re-running the program with that fix now starts to produce
meaningful outputs as shown in the screenshot in Figure[9} in particular, notice
that the reported statistics now somewhat correspond to the expected values
— see Table [T

17

CI C\Pregram Files\WindowsApps\MicrosoftCorporationll.WindowsSubsystemForLinux_2.0.9.0_x64_ 8wekyb3d8bbwe\wsl.exe

tttt -fc box_text_wprompt-fixl.tea -i "Hello"

tttt -fc box_text_wprompt-fixl.tea -i "Hello World"

tttt -fc box_text_wprompt-fixl.tea -i "v

IN®

tttt -fc box_text_wprompt-fixl.tea -i "ABCDEFG"

Figure 9: Testing Solution#1 of the Textbox Drawing Program with VARIOUS

inputs
Table 1: Results from Testing Solution#1
INPUT EXPECTED REPORTED ERROR
STAT STAT
Hello 5 CHARS 9 CHARS 4
Hello World 11 CHARS 15 CHARS 4
vIN 3 CHARS 7 CHARS 4
ABCDEFG 7 CHARS 11 CHARS 4

Thus we see that despite the solution having addressed the lack of variance
in the computed input statistic as was the case in the problematic program in
Listing |3 and yet, still with this solution, we haven’t yet obtained the exact
solution we originally set out to accomplish — but we are somewhat closer to a

solution.

A further scrutiny of the original program, together with this newly intro-
duced solution shall reveal some other problems such as:

1. We notice that, now that we are correctly referencing the input in the
modified instruction on Line #23, and yet, the discrepancy in the input

lengths computed as shown in Table [1] begs for an explanation!

2. A closer looks then, reveals that, despite the modified instruction refer-
encing the original vault holding the input value — which, we see being
set on Line #11 in Listing [3|in the instruction:

18

v:vIN

And yet, before we compute the length of the value in vIN on Line #23,
we notice that this value gets overridden by the instruction on Line #18;
basically, the following instruction that occurs before that:

g*:{ }:vBLR:vIN:VvBLR

Pads the actual input in vIN with 2 characters before and after as part of
the code for constructing the string that will be used to display the final
text in the textbox, thus the 4 extra characters we see being reported
in Table [T}

Thus we come to Solution#2: Basically, apart from what we have already
done in Solution#1, we shall also need to ensure that the original input value is
exactly what we are computing the length against, and not some later modifica-
tion of it. Thus, with this in mind, we arrive at the correct program as depicted
in Listing [6] and which we correctly see performing as shown in Figure
and which results are likewise depicted in Table

19

0O Ui Wi+

Listing 6: A Textbox Drawing Program in TEA with STATISTICS After SO-
LUTION#2

#!/usr/bin/tttt -fc

This version also displays some statistics:
how many characters were found in the

user provided text as "N CHARS"

£f!:°$:1NOPROMPT : 1PROMPT

1:1PROMPT

i!:Enter some text: |i:

1:1NOPROMPT

v:vIN | v:vIN_COPY # stash input copy for later use
r*x!:vIN:.:-

x:i-—|x!l:--

v:vBTOP

v:VvSTART:

v:vBLR: {2}

g*:{ }:vBLR:vIN:vBLR

v:vIN

draw the text in box

g*:{_ }:vSTART:vBTOP:vIN:vBTOP

draw the box with stats

v:vTXTBOX

v*!:vIN_COPY #compute stat against copy of input
x!:{ CHARS}

v:vIN_STATS

g*:{_ Y:vIN_STATS:vBTOP
v:vIN_STATS_BOX

draw both..

gx:{_ }:vTXTBOX:vIN_STATS_BOX
orig: end...

h'!:_

r!':_:|

Thus we come to the conclusion of a practical exploration of how software
debugging is conducted or approached in TEA, the TEA SOE or with the TEA
RI runtime. In the next section, we shall wrap it up with a quick summary of
all that TEA debugging does from a high-level.

20

CI C\Pregram Files\WindowsApps\MicrosoftCorporati

Il.WindowsSubsystemForLinux_2.0.9.0_x64_ 8wekyb3dBbbwe\wsl.exe

box_text_wprompt-fix2.tea -i "Hello"

box_text_wprompt-fix2.tea -i "Hello World"™

box_text_wprompt-fix2.tea -i "v

IN®

box_text_wprompt-fix2.tea -i "ABCDEFG"

Figure 10: Testing Solution#2 of the Textbox Drawing Program with VARIOUS

inputs
Table 2: Results from Testing Solution#2
INPUT EXPECTED REPORTED ERROR
STAT STAT
Hello 5 CHARS 5 CHARS 0
Hello World 11 CHARS 11 CHARS 0
vIN 3 CHARS 3 CHARS 0
ABCDEFG 7 CHARS 7 CHARS 0

2.3 Overview of Debugging in TEA

In general, we find that the TEA debugger, which can be engaged via the “-d”
flag of the tttt interpreter allows for:

1. Inspection of how a TEA program is being lexed and parsed — both syntax
validation at program start, as well as how each instruction is processed
later on during the program’s execution.

2. Inspection of a program’s Inputs and how these are processed; input sani-
tisation and parsing — especially noting that TEA programs understand
all input and data to merely be strings and only in special instances, reg-
ular expressions. Also, that strings in TEA can be delimited — such as
with “STR” or {STR} or not — such as with merely STR

3. Inspection of Instruction Execution Order and Precedence (Program Con-
trol Flow) — quite useful when a program involves jumps, forks and loop-

21

ing.

4. Inspection of a program’s Memory Footprint — Vaults; Named Variable
Containers, Active Input; Default Input for Next Instruction, Secondary
Memory; The Unnamed Vault, Initial Program Input; y*: and any other
memory or storage quirks possible in TEA.

5. Inspection of Program Outputs — such as contents of the Default Vault,
Last Instruction’s Output and the Final Program Output.

It is also important to note that without the “-d” flag to tttt, the only
output one would get from running a TEA program is the program’s run-time
outputs (such as prompts with the it command) or the program’s final output
(or no output at all; if the program processed nothing or the final output
is empty and no intermediate instruction produced any displayable output).
Essentially, only i: can print while a TEA program is in a non-terminal state,
and this, only when used in blocking, prompt mode — see example in Listing
on Line #4 and in Figure

Finally, whether in DEBUG MODE or not, tttt doesn’t yet support output
to alternative streams other than default system output stream; STDOUT.

3 A Plan to Improve Debugging in the TEA
SOE

Before we conclude our discussions and explorations concerning debugging TEA,
let us take a moment to consider what the future of debugging in TEA might
or ought be like in case we make further enhancements of the language’s run-
time, debugger and support tools — essentially, if TEA evolves beyond what it
currently is.

Specifically concerning the TEA debugger;

1. First of all, because we note that traditional debuggers typically allow for
some sort of interactive, step-through debugging as one of their very useful
features, and yet this is missing in TEA, we could improve debugging in
the TEA SOE by;

(a) Breakpoints: Implementing a breakpoint mechanism in TEA pro-
gram syntax (for example, the control flow mechanism of TEA labels,
I: might be extended for this... with breakpoints implemented using
unnamed labels of some special signature like:

1!: # look, no label name: this could be a breakpoint!

This would then allow the TEA runtime to halt in the program ex-
ecution at any point where such a breaking statement /instruction is

22

met in the TEA program while in DEBUG MODE; thus we real-
ize useful interrupts in TEA program execution; currently, attempts
to use the above syntax would only result in an exception or syntax
error.

(b) Willful State Dumps at Only Breakpoints: Basically, allowing
for some state dumping at each such breakpoint [when such break-
points are encountered during DEBUG MODE]. Already, TEA with
DEBUG MODE dumps state at each instruction met. But also, such
a mechanism could allow for finer control of when or how the dump-
ing or tracing of a TEA program happens — for example, by limiting
the dumping of system state and debugging information to only sec-
tions marked with such statements — could operate as [debugging]
sector delimiters in a manner similar to how current TEA label-
blocks work. This, so that state dumping or tracing only occurs at
moments in the program when it is turned ON/OFF by such break-
points. This would also allow for a feature similar to the “Watch”
facilities in other GPL environments.

(c) Modifying State at Breakpoints: Optionally, allow for the user/de-
veloper to not only watch the system state (such as program variables
and their current values, as at the breakpoint), but to also allow them
to be able to modify; change, overwrite or delete them before normal
execution of the program continues.

2. User-Controllable DEBUG MODE Levels: As it is currently, the
TEA debugger doesn’t make it any easy for the user or developer to control
how much information or what kind of information the DEBUG MODE
of tttt produces. So, in future generations of the runtime, such a prob-
lem could be resolved by allowing for perhaps the use of a “Debug Level”
parameter to the “-d” flag; something like -d [DII|W|E] or perhaps -d
[DEV|INFO|WARN|ERROR] or -d [0]1]2]3], such that invoking the debug-
ger with -d D would set the debugging level to DEV-level, at which level
everything; errors, warnings, info, debugging info, etc shows up; useful for
developers and engineers. While, invoking the debugger with -d E or -d
3 or -d ERROR sets the level to ERROR-level, at which moment only
critical, perhaps severe must-show only bits of information get to be dis-
played, otherwise the debugger remains silent. This feature could also be
linked to the matter of when or how to control the logging and verbosity
of the DEBUG MODE of the TEA runtime, as well as when to channel
information to perhaps STDERR as opposed to or only to STDOUT.

3. Enhanced DEBUG MODE Info: For example, we note that for some-
one a bit or entirely unfamiliar with the semantics of TEA or its syntax,
sometimes looking at a TEA program might be not only intimidating, but
perhaps also perplexing — especially when someone must make sense of
what is going on or why without access to the language’s manual or a TEA

23

expert. Thus, to help with clarifying things for both beginners and regu-
lar users of the language, the DEBUG MODE could be enhanced further
by including [more] insightful information about each TEA instruction
encountered in a program — basic things like tagging or annotating the
instruction with its formal name; e.g. upon encountering i:, tagging that
as “Input”, “Prompt for Input” or better, “Interact”, while i!: STR would
be tagged as “Unconditionally Set Input”, while i:STR would be “Condi-
tionally Set Input” — to help someone understand when which variant of
the It TEA primitive shall do or behave like what or why it is behaving
in a particular way in a problematic program. This feature, when ap-
plied to the seemingly small set of the 26 TEA Primitives; a: to z: —
and some newbies don’t even realize that TEA allows ALL-UPPERCASE
commands too — A: to Z:, shall really help some developers come to
appreciate and love this very neat and razor-sharp general-purpose pro-
gramming language.

Apart from the above list of potential enhancements to the TEA debugger
and the debugging experience in TEA, a few other matters also need to be
considered in future generations of the language, its runtime and debugging
facilities if not the entire TEA SOE. In particular, we can give attention to:

1. Introduction of a Static Code Analysis Mode of the TEA run-
time: Essentially, without even having to actually execute a TEA pro-
gram (basically, processing the program without producing effects), allow
for some mechanism similar to the “-d” flag of tttt — perhaps “-sa”?
— that would go through the provided TEA code or program script, and
merely check it for potential errors likely to lead to bugs, code patterns
likely to lead to security vulnerabilities, problems with the quality of the
code and issues that could make the code difficult to maintain in the
long-run.

This same feature could for example be responsible for issuing warnings
when a TEA program is found to be containing otherwise harmless code,
but which code is either useless or merely wasteful — such as instances
of INERT TEA statements. By combining this facility with the DEBUG
MODE — whether or not the static analysis is to be part of the debugger
or a separate facility in the TEA runtime or ecosystem shall be decided
later, but, the two mechanisms brought together, shall surely make the
identification, resolution and avoidance of mistakes, bugs and critical er-
rors in TEA software much more easier to manage.

2. Implement Floyd-Method Cut-Points: Lastly, and to especially as-
sist with automated program verification or the writing of logic proofs
in TEA — a kind of automated program verification, which might also
be useful in advanced forms of system debugging and testing of program
correctness, we could implement the so-called “FLOYD METHOD”
[1] that calls for the implementation of “cut-points” — somewhat simi-
lar to breakpoints, or perhaps the equivalent of assertion statements in

24

a TEA program. These then, would be useful such as in the testing of
some proof-conditions (e.g. that the AT is nonempty at some moment in
the program of interest), and which, if the condition isn’t passed/correct
at that moment in the program’s execution, the program halts with an
error or exception, and so that, a program that passes all such cut-points
without errors is expected to be logically correct as per the nature or con-
ditions of the tests embedded within the TEA program, and thus program
verification or validation can be done automagically.

However, as per the current TEA language semantics, looks like clever
or rather, creative use of the [conditional] Quit command — Q:, already
offers a facility very close to what such Floyd Cut-points would do —
without triggering run-time exceptions though, and only merely causing
the TEA program to quit/halt once some desired condition in the program
is unmet upon the processing of that particular instruction.

Acknowledgment

Despite the work on TEA having been going on independently over the years
since 2019, and especially in 2024 when it shifted into a full-fledged GPL target-
ing non-mobile environments — also when much of the work we see concerning
the TEA debugger got accomplished, this particular paper on the TEA debug-
ger and debugging in TEA was only recently inspired by friends - Prof. Michael
Coblenz (University of California San Diego) and his doctoral student, Hailey
Li whose [still-on-going] study on practical software debugging I got a chance
to recently participate in, and which then brought to my attention the need to
fill a knowledge gap in how the important matter of debugging is catered for
in the still young TEA programming language from my lab. The ideas in this
paper though, definitely are of use to researchers and practitioners of software
engineering and in particular software debugging in general.

References

[1] Dictionary of computing. 4th ed. Oxford University Press, 1996.

[2] Joseph Willrich Lutalo. “Software Language Engineering - Text Process-
ing Language Design, Implementation, Evaluation Methods”. In: Preprints
(Dec. 2024). URL: https://doi.org/10.20944/preprints202410.0636.
v2.

[3] Joseph Willrich Lutalo. TEA TAZ - Transforming Ezecutable Alphabet A:
to Z: COMMAND SPACE SPECIFICATION. 2024. URL: https://doi.
org/10.6084/m9.figshare.26661328|

[4] Joseph Willrich Lutalo. Thoughts & Ideas Behind Design of TEA Language.
v1.1. 2024. URL: https://doi.org/10.6084/m9.figshare.26363455.

25

https://doi.org/10.20944/preprints202410.0636.v2
https://doi.org/10.20944/preprints202410.0636.v2
https://doi.org/10.6084/m9.figshare.26661328
https://doi.org/10.6084/m9.figshare.26661328
https://doi.org/10.6084/m9.figshare.26363455

Joseph Willrich Lutalo, Odongo Steven Eyobu, and Benjamin Kanagwa.
“DNAP: Dynamic Nuchwezi Architecture Platform-A New Software Ex-
tension and Construction Technology”. In: (2020). URL: https://www .
techrxiv.org/doi/pdf/10.36227/techrxiv.13176365.v1l

mcnemesis. cli_tttt: Command Line Interface for TTTT. Accessed: 2024-
09-21. 2024. URL: https://github.com/mcnemesis/cli_tttt/.

Chris Parnin and Alessandro Orso. “Are automated debugging techniques
actually helping programmers?” In: Proceedings of the 2011 International
Symposium on Software Testing and Analysis. ISSTA *11. Toronto, Ontario,
Canada: Association for Computing Machinery, 2011, pp. 199-209. ISBN:
9781450305624. URL: https://doi.org/10.1145/2001420.2001445|

Diomidis Spinellis. “Modern debugging: the art of finding a needle in a
haystack”. In: Commun. ACM 61.11 (Oct. 2018), pp. 124-134. 1ssN: 0001-
0782. URL: https://doi.org/10.1145/3186278

26

https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.13176365.v1
https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.13176365.v1
https://github.com/mcnemesis/cli_tttt/
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/3186278

	TEA Debugging Preamble
	An Exploration of Debugging in TEA
	Quick Overview of TEA Debugging
	Practical Debugging of Programs in the TEA RI
	Simple TEA Programs and The TEA DEBUGGING MODE
	Advanced TEA Programs and Program Debugging via The TEA DEBUGGER
	The Debugging Process in TEA

	Overview of Debugging in TEA

	A Plan to Improve Debugging in the TEA SOE

