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* EEG recording
 # of subjects N = 16 (healthy)
* Single EEG channel recording (bipolarly from Oz relative to Pz with ground at FPz)

* Preprocessing:
e Butterworth bandpass filter (2 and 40Hz)
e Extracting EEG trials, removing the DC value
* Dividing data to train set and test set with a designed cross-validation strategy
(different number of training data, but the same number of test data)

* Different classifiers:
 Template Matching (TM): Traditional classifier for c-VEP BCls
e Support Vector Machine (SVM): With Radial Basis Function kernel
 Random Forest (RF): # of trees=500
* Naive Bayes (NB): alpha=1
e K-Nearest Neighbours (KNN): # of neighbours= 0.18 x number of training data
e Extreme Gradient Boost (XGB): # of trees=100
* Deep Neural Network (DNN): 3 hidden layers with 128, 128, and 64 nodes
* Convolutional Neural Network (CNN): 2 convolution layers (64 and 32 channels),
one linear layer (128 nodes)
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* Both the Ensemble and Circular-Shift approaches show increasing trends, with the Ensemble
approach having a steeper slope

e Even though all classifiers improved in accuracy, the improvement rate gradually diminished

* Among the classifiers, DNN exhibited the highest sensitivity to increased EEG training data

Qhe TM and NB were the least sensitive to changes in the amount of EEG training data
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* Using traditional data augmentation techniques to increase the EEG training data
 Utilize generative models to synthesize additional EEG training data for augmentation
* Apply transfer learning to augment each subject’s EEG data using data from other subjects

* Apply regression techniques to predict the amount of EEG training data needed for 1
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