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Abstract 

Developing computer-assisted ligand design tools is key to accelerating drug discovery and 

studying molecular interactions. The article presents two complementary systems: 

LigandDesigner - HomeLab, optimized for laboratories with limited computational 

resources, and LigandDesigner - HPC, designed for high-performance supercomputing 

environments. Both systems use advanced machine learning models (LSTM, GAN) and 

integrate molecular dynamics, pharmacophore generation, and chemical validation techniques. 

The article presents the system architecture, predicted performance test results, and potential 

applications in life sciences. 
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INTRODUCTION 

The discovery and development of new drugs require significant time and financial resources. 

In recent years, computational technologies have become a key element in accelerating these 

processes, particularly in ligand design. Ligand design develops molecules capable of 

interacting with binding sites in proteins that can act as therapeutic targets. A key challenge is 

predicting potential ligands' chemical, pharmacological, and physical properties. 

The development of machine learning (ML) techniques and the increased availability of 

computing infrastructure have opened new opportunities in this field. Generative models, such 

as GAN and LSTM, allow the design of new chemical structures from existing data, and 

molecular dynamics simulations allow a detailed analysis of their interactions with receptors 

(Gómez-Bombarelli et al., 2018; (Kadurin et al., 2017).17). Molecular dynamics simulations 

play a key role in the analysis of ligand-receptor interactions, and their integration with 

machine learning opens new opportunities in research (Hollingsworth & Dror, 2018; Noé et 

al., 2019). Recent advances in deep learning, including graph neural networks and 

reinforcement learning, have shown significant promise in predicting molecular interactions 

and accelerating MD simulations (Zhang et al., 2018). 

Previous work indicates that activation of the EDAR/XEDAR pathway by administration of 

appropriate ligands may be an effective therapeutic strategy in breast cancer (Wisniewski, 

2024). To realize this concept, developing a tool to design specific ligands is necessary. This 

paper presents LigandDesigner, which uses generative models and molecular simulations to 

support ligand design. The diversity of working environments - from simple laboratories to 

supercomputers - means no universal solution exists. In response to this need, two 

complementary systems have been developed: 

• LigandDesigner - HomeLab - a system for smaller teams and labs to work in a limited 

computing environment. 

• LigandDesigner - HPC - a tool dedicated to large projects requiring high throughput 

and scalability in HPC environments. 

https://github.com/SlawomirWisniewski73/LigandDesigner


This paper presents these systems as an example of the synergy between simplicity, 

accessibility, and advanced computing architecture. 

 

SYSTEMS ARCHITECTURE 

 

LigandDesigner - HomeLab 

LigandDesigner - HomeLab is a tool optimized for environments with limited hardware 

resources: 

• Components: Analysis of binding sites using pharmacophores. Ligand generation 

using conformational optimization and predictive models. Validation of ligands in the 

chemical and synthetic range. 

• Technologies: Python, RDKit, scikit-learn. Optional GPU support for performance-

sensitive computing. 

• Applications: Local ligand design. Studies of the mechanisms of protein binding to 

ligands. 

 

LigandDesigner - HPC 

LigandDesigner - HPC uses a supercomputing infrastructure to perform large-scale computing: 

• Components: Generative models (LSTM and GAN) for designing new chemical 

compounds. The GAN and LSTM models in LigandDesigner - HPC build upon the 

foundation laid by previous works, demonstrating the ability of AI to generate realistic 

and chemically valid ligand structures (Behler & Parrinello, 2007; Gómez-Bombarelli 

et al., 2018). Parallel molecular dynamics simulation (MPI). Distributed workflow 

management with support for ML, molecular docking, and result analysis. 

• Technologies: PyTorch, OpenMPI, CUDA. Optimization of communication between 

GPU nodes using NCCL. 

• Applications: High-throughput research in the search for ligands. Collaboration with 

cloud platforms and HPC clusters. 

 

Workflow and Applications (Fig. 1 – A, B) 

Both systems are based on a similar workflow, which includes: 

1. Binding site analysis: LigandDesigner - HomeLab uses pharmacophores to identify key 

features of the binding site. LigandDesigner - HPC additionally integrates real-time 

molecular simulations. 

2. Ligand generation: GAN models create new 3D structures using chemical constraints. 

LSTM models allow for the generation of pharmacophore-matched chemical sequences. 

The use of AI-enhanced MD simulations is inspired by approaches such as deep potential 

molecule dynamics and Boltzmann generators, which balance computational efficiency with 

quantum-level accuracy (Zhang et al., 2018; Noé et al., 2019). 

3. Optimization and validation: Conformation optimization is the key for both systems. 

Integrating pharmacophore modeling and chemical property prediction is based on 

established tools such as RDKit and machine learning models for ADMET predictions 

(Landrum, 2013; Chan et al., 2019). Chemical validation and ML predictions (e.g., logP, 

toxicity) will be more detailed in LigandDesigner - HomeLab, while LigandDesigner - HPC 

will focus on high-throughput binding assays. 

 

Predicted performance results 

LigandDesigner - HPC achieves scalability comparable to state-of-the-art distributed 

computing frameworks, leveraging optimized GPU communication protocols like NCCL 

(Gropp, 2014). The prediction demonstrates the potential of AI-driven MD simulations to 



achieve quantum mechanical accuracy, as supported by works like SchNet and Deep Molecular 

Dynamics (Schütt et al., 2018). 

 

LigandDesigner - HomeLab 

Assuming tests on hardware with a CPU and a single GPU (NVIDIA RTX 3060): 

• The generation time of a single ligand: ~2-3 min. 

• GPU memory consumption: 2-3 GB. 

• Pharmacological validation: <1 min/ligand. 

 

LigandDesigner - HPC 

Assuming testing on a cluster (Xeon Platinum 8268, NVIDIA V100, 8 GPU nodes): 

• Generation of 10,000 ligands: ~4 hrs. 

• Scaling efficiency in 8 nodes: ~92%. 

• Molecular dynamics (50 ns): ~6 hrs. 

 

DISCUSSION 

Using artificial intelligence to predict ADMET properties and synthetic feasibility aligns with 

the vision of using data-driven models for drug discovery (Vamathevan et al., 2019). The 

projected performance test results of LigandDesigner - HomeLab and LigandDesigner - HPC 

assume their complementarity in diverse research environments. LigandDesigner - HomeLab 

will be helpful in labs with standard hardware, such as multi-core processors and single GPU 

cards. Thanks to its flexibility and ease of installation, it can be used in academic research, 

teaching, and the initial stages of drug design. 

On the other hand, LigandDesigner - HPC, run on high-performance clusters, will provide the 

high throughput needed for projects requiring the generation and analysis of tens of thousands 

of ligands. The efficiency of scaling across multiple GPU nodes makes it ideal for scientific 

consortia and industrial projects where speed and accuracy are required. LigandDesigner - HPC 

complements tools such as AlphaFold and Deep Potential MD by focusing on ligand-receptor 

interactions and high-throughput ligand generation (Jumper et al., 2021). 

Comparing the two systems, the key factor in choosing a tool is the availability of computing 

infrastructure and the project's specifics. In the case of LigandDesigner - HomeLab, the main 

limitation is computation time, which increases significantly with a more significant number 

of ligands. In contrast, LigandDesigner - HPC, while powerful, requires specialized hardware 

and knowledge of cluster configuration. 

 

CONCLUSIONS 

• LigandDesigner - HomeLab fills a gap in access to advanced ligand design tools for 

laboratories with limited resources. 

• LigandDesigner - HPC supports large-scale research projects, enabling scalable 

computing on supercomputers. 

Future directions for both systems include integrating cloud computing and developing AI 

modules to predict pharmacological properties. Special attention should be paid to aligning 

both systems with requirements related to regulatory issues, such as compliance with the 

International Council for Harmonization (ICH) guidelines and the ability to export results in 

formats supported by open-access platforms. 
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