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Abstract

Developing computer-assisted ligand design tools is key to accelerating drug discovery and
studying molecular interactions. The article presents two complementary systems:
LigandDesigner - HomelLab, optimized for laboratories with limited computational
resources, and LigandDesigner - HPC, designed for high-performance supercomputing
environments. Both systems use advanced machine learning models (LSTM, GAN) and
integrate molecular dynamics, pharmacophore generation, and chemical validation techniques.
The article presents the system architecture, predicted performance test results, and potential
applications in life sciences.
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INTRODUCTION
The discovery and development of new drugs require significant time and financial resources.
In recent years, computational technologies have become a key element in accelerating these
processes, particularly in ligand design. Ligand design develops molecules capable of
interacting with binding sites in proteins that can act as therapeutic targets. A key challenge is
predicting potential ligands' chemical, pharmacological, and physical properties.
The development of machine learning (ML) techniques and the increased availability of
computing infrastructure have opened new opportunities in this field. Generative models, such
as GAN and LSTM, allow the design of new chemical structures from existing data, and
molecular dynamics simulations allow a detailed analysis of their interactions with receptors
(Gbmez-Bombarelli et al., 2018; (Kadurin et al., 2017).17). Molecular dynamics simulations
play a key role in the analysis of ligand-receptor interactions, and their integration with
machine learning opens new opportunities in research (Hollingsworth & Dror, 2018; Noé et
al., 2019). Recent advances in deep learning, including graph neural networks and
reinforcement learning, have shown significant promise in predicting molecular interactions
and accelerating MD simulations (Zhang et al., 2018).
Previous work indicates that activation of the EDAR/XEDAR pathway by administration of
appropriate ligands may be an effective therapeutic strategy in breast cancer (Wisniewski,
2024). To realize this concept, developing a tool to design specific ligands is necessary. This
paper presents LigandDesigner, which uses generative models and molecular simulations to
support ligand design. The diversity of working environments - from simple laboratories to
supercomputers - means no universal solution exists. In response to this need, two
complementary systems have been developed:

» LigandDesigner - HomeLab - a system for smaller teams and labs to work in a limited

computing environment.
» LigandDesigner - HPC - a tool dedicated to large projects requiring high throughput
and scalability in HPC environments.


https://github.com/SlawomirWisniewski73/LigandDesigner

This paper presents these systems as an example of the synergy between simplicity,
accessibility, and advanced computing architecture.

SYSTEMS ARCHITECTURE

LigandDesigner - HomeLab
LigandDesigner - HomelLab is a tool optimized for environments with limited hardware
resources:

« Components: Analysis of binding sites using pharmacophores. Ligand generation
using conformational optimization and predictive models. Validation of ligands in the
chemical and synthetic range.

» Technologies: Python, RDK:it, scikit-learn. Optional GPU support for performance-
sensitive computing.

» Applications: Local ligand design. Studies of the mechanisms of protein binding to
ligands.

LigandDesigner - HPC
LigandDesigner - HPC uses a supercomputing infrastructure to perform large-scale computing:
« Components: Generative models (LSTM and GAN) for designing new chemical
compounds. The GAN and LSTM models in LigandDesigner - HPC build upon the
foundation laid by previous works, demonstrating the ability of Al to generate realistic
and chemically valid ligand structures (Behler & Parrinello, 2007; Gémez-Bombarelli
et al., 2018). Parallel molecular dynamics simulation (MPI). Distributed workflow
management with support for ML, molecular docking, and result analysis.
« Technologies: PyTorch, OpenMPI, CUDA. Optimization of communication between
GPU nodes using NCCL.
» Applications: High-throughput research in the search for ligands. Collaboration with
cloud platforms and HPC clusters.

Workflow and Applications (Fig. 1 — A, B)

Both systems are based on a similar workflow, which includes:

1. Binding site analysis: LigandDesigner - HomeLab uses pharmacophores to identify key
features of the binding site. LigandDesigner - HPC additionally integrates real-time
molecular simulations.

2. Ligand generation: GAN models create new 3D structures using chemical constraints.
LSTM models allow for the generation of pharmacophore-matched chemical sequences.
The use of Al-enhanced MD simulations is inspired by approaches such as deep potential
molecule dynamics and Boltzmann generators, which balance computational efficiency with
guantum-level accuracy (Zhang et al., 2018; Noé et al., 2019).

3. Optimization and validation: Conformation optimization is the key for both systems.
Integrating pharmacophore modeling and chemical property prediction is based on
established tools such as RDKit and machine learning models for ADMET predictions
(Landrum, 2013; Chan et al., 2019). Chemical validation and ML predictions (e.g., logP,
toxicity) will be more detailed in LigandDesigner - HomeLab, while LigandDesigner - HPC
will focus on high-throughput binding assays.

Predicted performance results

LigandDesigner - HPC achieves scalability comparable to state-of-the-art distributed
computing frameworks, leveraging optimized GPU communication protocols like NCCL
(Gropp, 2014). The prediction demonstrates the potential of Al-driven MD simulations to



achieve quantum mechanical accuracy, as supported by works like SchNet and Deep Molecular
Dynamics (Schiitt et al., 2018).

LigandDesigner - HomelLab

Assuming tests on hardware with a CPU and a single GPU (NVIDIA RTX 3060):
e The generation time of a single ligand: ~2-3 min.
e GPU memory consumption: 2-3 GB.
e Pharmacological validation: <1 min/ligand.

LigandDesigner - HPC

Assuming testing on a cluster (Xeon Platinum 8268, NVIDIA V100, 8 GPU nodes):
e Generation of 10,000 ligands: ~4 hrs.
e Scaling efficiency in 8 nodes: ~92%.
e Molecular dynamics (50 ns): ~6 hrs.

DISCUSSION

Using artificial intelligence to predict ADMET properties and synthetic feasibility aligns with
the vision of using data-driven models for drug discovery (Vamathevan et al., 2019). The
projected performance test results of LigandDesigner - HomeLab and LigandDesigner - HPC
assume their complementarity in diverse research environments. LigandDesigner - HomeLab
will be helpful in labs with standard hardware, such as multi-core processors and single GPU
cards. Thanks to its flexibility and ease of installation, it can be used in academic research,
teaching, and the initial stages of drug design.

On the other hand, LigandDesigner - HPC, run on high-performance clusters, will provide the
high throughput needed for projects requiring the generation and analysis of tens of thousands
of ligands. The efficiency of scaling across multiple GPU nodes makes it ideal for scientific
consortia and industrial projects where speed and accuracy are required. LigandDesigner - HPC
complements tools such as AlphaFold and Deep Potential MD by focusing on ligand-receptor
interactions and high-throughput ligand generation (Jumper et al., 2021).

Comparing the two systems, the key factor in choosing a tool is the availability of computing
infrastructure and the project's specifics. In the case of LigandDesigner - HomeLab, the main
limitation is computation time, which increases significantly with a more significant number
of ligands. In contrast, LigandDesigner - HPC, while powerful, requires specialized hardware
and knowledge of cluster configuration.

CONCLUSIONS
» LigandDesigner - HomeLab fills a gap in access to advanced ligand design tools for
laboratories with limited resources.
» LigandDesigner - HPC supports large-scale research projects, enabling scalable
computing on supercomputers.
Future directions for both systems include integrating cloud computing and developing Al
modules to predict pharmacological properties. Special attention should be paid to aligning
both systems with requirements related to regulatory issues, such as compliance with the
International Council for Harmonization (ICH) guidelines and the ability to export results in
formats supported by open-access platforms.
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