
Data and Code Instruction

The resources mainly include three folders: data and preprocessing, representation
learning and change detection, validation. This document provides a detailed
introduction to the experimental steps of the research and the implementation process
for tables and figures in the manuscript.

Running Environment:

• Python 3.8

• PyTorch 1.13

Framework:

The framework consists of three parts: data and preprocessing, representation learning
and change detection, validation.

1.Data and Preprocessing

Running Code: KG2id.py

Input Data:

Located in data and preprocessing/input, including:

- CSV files storing structured triples

- TXT files storing street view imagery(SVI) captions

- JPG files storing very high resolution(VHR) images

Output Data:

Results are stored in data and preprocessing/sample data, including:

-Multimodal data vectors：emb.npy

- Entity mapping IDs: entity2id.txt

- Relation mapping IDs: relation2id.txt

- Split training/validation/test datasets: train2id.txt, valid2id.txt, text2id.txt



Description:

It converts knowledge graph from structured triples, text and image formats into
entity and relation ID mappings, while splitting data into training/validation/test sets
in preparation for subsequent model training and change detection.

2. Representation Learning and Change Detection

This section contains modules (1) and (2), which provide step-by-step instructions for
reproducing the results in Table 3 and Figure 8.

(1)Representation learning framework：

Running Code: Train.py

Input Data:

Located in data and preprocessing/sample data, including:

-Multimodal data vectors：emb.npy

- Entity mapping IDs: entity2id.txt

- Relation mapping IDs: relation2id.txt

- Split training/validation/test datasets: train2id.txt, valid2id.txt, text2id.txt

Output Data:

Results are stored in representation learning and change detection/outputdata,
including:

- entity2vector.pickle: entity embedding vectors

- relation2vector.pickle: relation embedding vectors

Description:

Train.py defines training parameters and evaluation metrics, conducts training based
on knowledge graph data, and validates model accuracy (Table 3). The models
compared with our proposed representation learning model in the table are all
open-source. For easier reference, we have provided hyperlinks to these models.

It integrates three modules:

- readTrainingData.py: Reads training data

- generatePosAndCorBatch.py: Processes knowledge graph triples



- DCKRL.py: The proposed multimodal fusion representation learning framework
based on dual cross-attention mechanism and TransE module

Result Analysis:

By running train.py, we can obtain the accuracy results of representation learning
(Table 3).

（2）Change detection：

Running Code: Run emb.py first, then change_calculate.py.

Input Data:

Located in representation learning and change detection/outputdata, including:

- entity2vector.pickle: entity embedding vectors

- relation2vector.pickle: relation embedding vectors

Output Data:

Results are stored in changerate.csv, containing 102 columns:

- Grid entity similarities: Normalized cosine similarity in the first column are
quantified on a 10-point scale (0-9)

- Vector representations：Columns 2 to 101 contain the vector representations of grid
area

- Change rates：Change rates are quantified on a 10-point scale (0-9) in column 102,
where each value corresponds to a 10% interval. Specifically, 0 represents 0-10%
change, 1 represents 10-20%, and so on, with 9 representing the highest change rate
interval of 90-100%.

Description:

- emb.py: Outputs knowledge graph vector representations to CSV format files for
further change rate calculations

- change_calculate.py: Calculates normalized cosine similarity and change rate
between grid entity vectors from 2017 and 2023, outputting results to changerate.csv

Result Analysis:

Calculates the degree of change for each grid between 2017 and 2023 running
change_calculate.py. Results can be linked with Qinhuai district grid data in ArcGIS



to produce Figure 8.

3.Validation

This section mainly focuses on two parts: the impact of multimodal data on change
detection and the comparison between knowledge graph-based change detection and
traditional methods, corresponding to Figure 10 and Table 4 respectively.

Running Code: validate.py

Input Data:

validation/validation.csv, containing:

- Change detection results using different data combinations

- Expert annotation results: Data columns:1. Results using VHR only; 2. Results
using VHR+SVI; 3. Results using VHR+POI; 4. Results using VHR+POI+SVI; 5.
Expert annotations (5-point scale); 6. Expert annotations (binary: 1 and -1)

Output Data:

Evaluation metrics including: Accuracy, Precision, Recall, F1 score

Description:

Run validate.py to validate change detection effects using multiple metrics.

Result Analysis:

Run validate.py to compare results using different data with expert annotations
(column 5 in validation.csv) to obtain measurement results for various metrics. Import
change detection results based on knowledge graphs with different data combinations
into ArcGIS for visualization. Then create bar charts showing the count of each
category. With these steps, Figure 10 is completed.

We run validate.py to compare the change detection results from various traditional
change detection models with the proposed knowledge graph-based change
detection results against the annotated results in column 6 of validation.csv. All
traditional change detection models used for comparison are open-source. For easier
reference, we have provided hyperlinks to these models. With theses steps, Table 4 is
completed.




