
Empowering HPC Education with SYCL:
Open-Source Modules for Modern Supercomputers

Erik Pautsch
Loyola University Chicago

Chicago, IL USA
epautsch@luc.edu

Álvaro Vázquez-Mayagoitia
Argonne National Laboratory

Lemont, IL USA
vama@alcf.anl.gov

Jorge Velez
University of Illinois Urbana-Champaign

Champaign, IL USA
jorgev2@illinois.edu

Silvio Rizzi
Argonne National Laboratory

Lemont, USA
srizzi@anl.gov

Raymundo Hernandez-Esparza
Argonne National Laboratory

Lemont, IL USA
rhernandezesparza@anl.gov

George K. Thiruvathukal
Loyola University Chicago

Chicago, IL USA
gthiruvathukal@luc.edu

Abstract—This paper explores SYCL as a versatile tool for
high-performance computing (HPC), providing practical guid-
ance tailored for educators and students. SYCL’s portability
across a wide range of hardware platforms positions it as a
compelling alternative to CUDA, especially within modern super-
computers featuring diverse accelerators. By developing open-
source tutorial modules, this work seeks to democratize HPC
education, making these resources accessible in workshops and
to underserved communities, including those in Latin America.

Building on the foundational work of UnoAPI [1], our project
explores SYCL’s potential to enrich HPC education through
three targeted modules: addressing a traditional graph problem,
generating volumetric data on particle electron density, and
visualizing data with the marching cubes algorithm [2], [3]. These
modules showcase SYCL’s versatility across varied computational
tasks, empowering learners with the skills needed to excel in
heterogeneous computing environments.

For access to the repository containing the
example projects and more information, visit:
https://github.com/SYCLTutorials/Intro2024

I. INTRODUCTION

High-performance computing is evolving rapidly with
the integration of heterogeneous environments that combine
GPUs, FPGAs, and other specialized processors. As these
systems become more complex, the need for portable and
efficient code across diverse hardware platforms is increasingly
critical. SYCL offers a solution by providing a vendor-neutral
programming model that allows developers to write code once
and run it across multiple types of accelerators, making it an
attractive alternative to CUDA [4].

However, teaching parallelism in such environments
presents significant challenges, particularly when traditional
educational resources do not address the nuances of different
programming models. Our research aims to overcome these
obstacles by developing open-source educational materials that
are accessible to a global audience, including underserved
regions. Building on the work of unoAPI [1], we have created
tutorial modules that demonstrate SYCL’s practical applica-
tions in high-performance computing, from traditional graph
problems to advanced scientific visualization.

Figure 1. Flow of SYCL tutorial modules: Starting with a traditional
HPC problem (Shortest Path), progressing through a scientific computation
(Electron Density), and culminating in a visualization example (Marching
Cubes). The modular design allows for future expansion into additional
models and applications.

This paper presents three module developed as part of
this effort. The first module addresses a traditional graph
problem – finding the shortest path – commonly used in
HPC education. The second module demonstrates SYCL’s
capabilities in scientific computing by generating volumetric
data based on particle electron density. The third module
focuses on porting the marching cubes algorithm from CUDA
to SYCL [2], [3], illustrating how SYCL can be applied
to visualization techniques. These resources are designed to
empower the next generation of computer scientists with the
tools and knowledge they need to succeed in an increasingly
heterogeneous computational landscape.

II. METHOD

Module 1: Porting Familiar Computer Science Codes

The first module introduces a classic HPC problem – finding
the shortest path in a graph. This problem is well-suited for
demonstrating parallelism and serves as an accessible entry
point for educators and students new to SYCL. The module
begins by exploring the implementation of this problem using
basic SYCL constructs. We highlight how SYCL handles
parallelism in a manner similar to CUDA, yet with the added
flexibility of running across different hardware platforms [4].

https://github.com/SYCLTutorials/Intro2024


This module serves as a foundational example, helping
students build confidence in using SYCL before moving on
to the more complex scientific and visualization tasks.

Module 2: Porting a Scientific Code for Particle Electron
Density

The second module focuses on generating volumetric data
based on particle electron density, a task commonly en-
countered in scientific computing fields such as computa-
tional chemistry and physics. This module was designed to
demonstrate SYCLS’s capabilities in handling complex, data-
intensive computations.

During the implementation, we emphasized best practices
for memory management and data access within SYCL, ensur-
ing that the computational resources were managed efficiently.
This module also demonstrates how SYCL can be used to
solve problems typically associated with scientific research,
thus broadening the appeal and application of SYCL in edu-
cational settings [4].

The output of this module – volumetric data – can naturally
flow into the third module, where it serves as the input for
visualization using the marching cubes algorithm. This pro-
gression demonstrates to students how different computational
tasks can be integrated within a single framework.

Module 3: Porting the Marching Cubes Visualization Algo-
rithm

The marching cubes algorithm, widely used in scientific
visualizations and graphics [2], was selected as an effective
teaching tool for introducing SYCL. Initially, the SYCLomatic
tool was employed to automate the port from CUDA to SYCL,
providing a baseline implementation [3]. However, several
challenges emerged that required manual adjustments

SYCLomatic’s translation of CUDA’s block size and thread
count into ND-Range kernels led to unnecessary complexity
for educational purposes We simplified the implementation by
refactoring the code to use the ‘range‘ model instead, making
it more accessible for learners.

Additionally, SYCLomatic’s use of the DPCT namespace
caused compilation issues, which we resolved by switching to
the standard SYCL namespace. This change improved code
compatibility and aligned with best practices

Finally, SYCLomatic’s handling of texture objects
through unified shared memory was replaced with SYCL’s
buffer/accessor model. This adjustment provided a clearer
demonstration of SYCL’s memory management features, an
essential concept for students.

III. PORTABILITY AND EDUCATIONAL IMPACT

A. Portability Across Educational Settings

One of the key goals of our project is to ensure that
the educational modules are portable and adaptable across
different educational settings. By leveraging SYCL’s platform-
agnostic nature [4], these modules can be used on a wide range
of hardware, from local clusters to supercomputers, ensuring

that educators can incorporate them into their curriculum
regardless of their institution’s specific computing resources.

To maximize accessibility, all modules have been designed
with clear documentation and step-by-step instructions, en-
abling educators to adapt the materials to their specific teach-
ing needs. The open-source nature of the project further en-
hances its portability. We want to allow educators to customize
the modules or extend them with additional content as needed.

B. Inspiring Interest Through Non-Traditional Examples

While traditional HPC examples like graph problems are
important, we believe that showcasing non-traditional applica-
tions of parallelism can inspire greater interest and excitement
among students. By including modules that focus on scientific
computation and visualization, we demonstrate the broad
applicability of SYCL beyond conventional HPC tasks.

These non-traditional examples, such as the generation of
electron density data and the visualization of complex surfaces,
help to contextualize the importance of parallel computing in
a wide array of scientific and engineering fields. By exposing
students to these diverse applications, we hope to foster a
deeper understanding of the power and potential of parallel
computing, encouraging them to explore its use in their own
areas of interest.

ACKNOWLEDGMENT

This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE)
Office of Science user facility at Argonne National Laboratory
and is based on research supported by the U.S. DOE Office
of Science-Advanced Scientific Computing Research Program,
under Contract No. DE-AC02-06CH11357.ff

REFERENCES

[1] G. K. Thiruvathukal, “unoapi: A unified parallel computing api,” https:
//unoapi.org/, 2024, accessed: 2024-08-02.

[2] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” ACM SIGGRAPH Computer Graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[3] N. Corporation, “Marching cubes cuda implementation,” https://github.
com/NVIDIA/cuda-samples, 2024, accessed: 2024-08-02.

[4] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook,
and X. Tian, “Data parallel c++: Mastering dpc++ for programming
of heterogeneous systems using c++ and sycl,” Apress, 2021, iSBN:
978-1484275282. [Online]. Available: https://www.apress.com/gp/book/
9781484275282

https://unoapi.org/
https://unoapi.org/
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples
https://www.apress.com/gp/book/9781484275282
https://www.apress.com/gp/book/9781484275282

	Introduction
	Method
	Portability and Educational Impact
	Portability Across Educational Settings
	Inspiring Interest Through Non-Traditional Examples

	References

