How to design a gamified class

1. Define the Central Theme: The chosen theme should be relevant to the course content
and engage students in a narrative related to the topics covered in the class.

Example: The chosen theme is “Software Development Mission for a Critical System".
Students take on the role of software engineers on a development team tasked with building
a critical system for a global company.

2. Develop the Narrative: he teacher should write the gamified lesson, following the phases
established by the process (Section \ref{processo GDS}) to create a learning experience
according to the indicated structu

(i) Introduction: In the Software Engineering class, students take on the role of
engineers from a fictitious company called TechCorps. The story begins with
TechCorps being hired to develop a crisis management system. The game's rules are
explained, such as the scoring system based on the quality of project deliverables,
team collaboration, and time limits for

(ii) Routine: Students, now part of the TechCorps development team, participate in
their first activities as software engineers. They are assigned to different departments
within the team, such as requirements gathering, architecture modeling, and module
implementation. Collaborative bonds between team members begin to form, and their
motivations for the project's success are outlined.

(iii) Event: In the TechCorps narrative, the “villain" appears in the form of a critical
problem with the client - constant changes in requirements and increasingly tight
deadlines. Students must deal with revisions and redesigns of the software project,
which challenges their adaptation and time management skills. They also face
technical obstacles, such as unexpected bugs and difficulties in system integration.

(iv) Call to Adventure: Students, now in the middle of the system development
journey, are summoned for specific missions to refine the project scope, improve the
proposed architecture, and perform unit and integration tests. Progress is monitored
by a phase map, where each completed mission unlocks the next stage of
development. With each success, students collect points and badges, such as
“"Architecture Specialist" or ““Tester Master".

(v) Daily Journey (three missions):




e Mission 1 - "Requirements Gathering". Students receive an initial set of
vague and incomplete requirements from the client. They must use elicitation
techniques to clarify the requirements, document them appropriately, and
define acceptance criteria.

e Mission 2 - Architectural Design". Based on the requirements gathered,
students must design the system architecture using UML (Unified Modeling
Language), ensuring that the solution meets the specified functional and
non-functional needs.

e Mission 3 - “Implementation and Testing". The student team is divided into
subgroups, each responsible for implementing a system module and
performing unit and integration tests.

(vi) Final Challenge: This occurs when the team must deliver the complete system
to the client in a final presentation. However, a critical problem arises: a bug in the
system during final testing threatens to compromise the delivery. Students must work
as a team to identify and resolve the problem before the deadline, applying the
testing and debugging concepts they have learned.

(vii) Finalization: With the TechCorps system successfully delivered, students are
awarded distinctions such as “Master of Software Development" and "“Project
Management Specialist". The narrative ends with the students returning to “*normal
life", reflecting on the lessons learned.

This structure provides a practical example of how a software engineering teacher can
develop each phase of the process, guiding students through a narrative journey while they
learn and apply concepts from the discipline.

After creating the story, the teacher can create slides and printed materials and use items
such as costumes, decorations, or any element that helps to make the class even more fun.




