Supporting Information
for the paper:
Where two are fighting, the third wins: Stronger selection facilitates greater
polymorphism in traits conferring competition-dispersal tradeoffs
Adam Lampert and Tsvi Tlusty

S1 Appendix: Calculating the thresholds

Here, we calculate (i) sq, the critical value of s above which ¢ = 1 is not dominant, and (ii) s,
the critical value of s above which the steady state population in our model becomes dimorphic
(Fig. 3). To calculate sg, note that if s = s, D(1) = 0. Therefore, it follows from Eq. (10) that
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Since Q_1(A) = Y50 Pu/(M+1) = +(1—e ), it follows from Eq. (5) that Q_ (aI'(q1)) =
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where
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Fig. S1 demonstrates that s, decreases with «, approaches infinity as o — 1, and approaches

Zero as & — Q.

At the second threshold, where s = s;, a mutant at ¢ = 1 has an equal per-capita growth-rate
as a ¢, individual, namely f(1,q.) = 0. In addition, since D(q.) = 0, it follows that, for

F(q) = —q,
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Finding q. is more complicated, but we calculate a higher bound for s, 51, by assuming that the
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branch at ¢ = 1 invades if and only if it can sustain by using empty patches that are not seeded
by any ¢.-seeder. Then, f(1,q.) = 0 implies aFPy(g.) = 1, which yield exp(—al'(¢.)) = 1/a.
Thus,
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and from Eq. (5) it follows that
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and therefore,
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Fig. S1 demonstrates that 5; approaches s; when « is large, and also that both s; and s;

approaches infinity either as & = 1 or as a — oo.
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