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Introduction

The view that all humans descend from a single ancestor couple prevailed during centuries until
Africa and later America were discovered and colonized. In the 18th and 19th centuries, the most
abominable and pseudoscientific theories emerged to justify the exploitation of peoples considered
to be inferior human races, which happened even before Charles Darwin, who surprisingly was a
monogenist. His views nevertheless accelerated this emergence of scientific racism as Darwin held
that there were hierarchically distinct races due to natural selection, even though he distanced himself
from slavery (Cohen 1980 ch. 8; Jackson & Weidman 2004 chs. 2-3).

Around the same time, in 1868, the first fossil bones of modern humans, dated to around 30 ka, were
found in Cro-Magnon (France), which is why our species is often named after this site. Subsequently,
other fossils were unearthed, predominantly in Europe but later also elsewhere, which led to a wide
spectrum of evolutionary proposals (Sykes 2001 p. 114; Klein 2009 pp. 617-619). According to the
multi-regionalists, our ancestor Homo erectus evolved independently into different modern humans
on different continents, thus producing different races (Reichholf 1998 p. 13). However, the oldest
fossils dated to around 200 ka were subsequently excavated in eastern Africa, which eventually led
to the out-of-Africa theory, standing in contradiction to these views favoring multi-regionalism (Klein
2009 p. 738-739; Bréauer 2015 pp. 2300-2307).

In support of this date and origin, Cann et al. (1987) showed that all modern humans descend from
one African mother who lived about 200°000 years ago. The article led to a heated debate as it was a
blow for the then still predominant view of multi-regionalism. Their results were confirmed by other
genetic studies based on mitochondrial DNA, which is only inherited from the maternal part (Klein
2009 pp. 615, 631-638). In the following years, the view that modern humans emerged only in Africa
and replaced Homo erectus on the whole planet was finally adopted. Our African ancestor was even
nicknamed mitochondrial Eve, although evolutionary biologists distance themselves from this
sobriquet inspired by Genesis.



However, the concept of polygenism was not abolished at all (Brown 1990 ch. 3; Henke & Tattersall
2015 p. 2303). In fact, there is the consensus among scholars that it is very unlikely that mitochondrial
Eve was the only original mother of our species, arguing that during her lifetime there may have been
thousands of other mothers who were just as modern, but that their lineages died out (Brown 1990
pp. 108-111; Ayala 1995; Foley 1995 p. 129; Reichholf 1998 p. 20; Sykes 2001 p. 277; Sykes 2003
pp. 136-138; Klein 2009 p. 634; Dawkins & Wong 2017 p. 60).

As reported by Callaway (2017), fossils from Jebel Irhoud (Morocco) were discovered and dated to
about 40 ka in 1960 and the following year. They were then considered to belong to an African form
of Neanderthals. However, when excavations in 2017 at the same site by another team allowed a new
dating to about 315 ka, Hublin et al. (2017) assigned them to H. sapiens, thus shifting the origin of
our species about 100 thousand years into the past. Jean-Jaques Hublin and colleagues support the
view that the emergence of H. sapiens was gradually and not restricted to a small region (like eastern
Africa) but involved the whole African continent, Callaway citing Hublin:

Until now, the common wisdom was that our species emerged probably rather quickly
somewhere in a ‘Garden of Eden’ that was located most likely in sub-Saharan Africa. I would
say the Garden of Eden in Africa is probably Africa — and it’s a big, big garden.

So here we see resurfacing the old concept of polygenism, to which still many other
paleoanthropologists adhere (Gibbons 2017; Stringer & Galway-Witham 2017; Scerri et al. 2018).
However, Meneganzin et al. (2022) argue that, according to Ernst Mayr (1954 pp. 157-180) speciation
is most likely to occur in small populations and thereby reject the Pan-African multi-regional
hypothesis of Hublin et al. (2017). They also hold that speciation is not gradual but a rapid process,
referring to the punctuated equilibrium concept of Gould and Eldredge, and criticize the assignment
of the Jebel Irhoud material to modern humans as the skull is visibly elongated like that of a
Neanderthal. The same is criticized by Maria Martinon-Torres, a paleoanthropologist at University
College London, stressing that the remains from Jebel Irhoud lack features that characterize our
species, such as a prominent chin and forehead. Also, Jeftfrey Schwartz of the University of Pittsburgh,
Pennsylvania, objects that too many different-looking fossils have been lumped together with our
species (Callaway 2017).

This brief overview shows that evolutionary biologists often base their conclusions on their biased
intuition, favoring the Darwinian concept of polygenism, which is indeed a corollary to the theory of
natural selection as a species-forming mechanism. Francisco J. Ayala (1995), for instance, links
monogenism to the probability of a bottleneck in human evolution, leaving behind a single ancestor
pair, which is indeed very unlikely. In other words, if there were several lineages in the beginning, it
would be very likely that all present humans descend from several lineages, since their extinction in
a bottleneck is very unlikely. Now, if Ayala had an unbiased intuition, he would arrive to the
complementary conclusion that it is very unlikely that there have been several lineages in the
beginning, knowing that at present there is only one lineage.

Whether there has been a bottleneck or not is the incorrect question to ask because this presupposes
that a bottleneck is the only possibility in order for humanity to stem from single parents. We are
going to see that monogenism can indeed also emerge from a large population. So the right question
to ask is how likely it is that the whole of humanity stems from a single ancestor pair, knowing that
all present humans stem from a single mother. Together with an estimate of the possible population



size in the region and at the time of the mitochondrial Eve, this is the only knowledge we have at our
disposal.

The basic mathematical problem is as follows: let ¢ be the total number of women who lived in Africa
at the time when modern humans are supposed to have diverged from our ancestors. It is not necessary
to know the extend of this region, nor the time of divergence and whether the whole population was
in reproductive contact or not, which is why the region could in principle be extended to the whole
planet and the number ¢ to its whole population. Let then be 7 the hypothetical number of maternal
lineages from which humanity is supposed to descend. The claim from evolutionary biologists is that
this number might be greater than one because the possibility exists that »—1 of them died out up to
the present. So this number lies in the interval 1<n<¢.

Now, in the absence of any knowledge except an approximate ¢, every number n has equal probability.
This can be compared to a police lineup of ¢ persons among whom are n suspected criminals. From
the point of view of the aligned persons, they exactly know whether they are guilty or not. From the
point of view of the witness behind the one-way mirror, not every person is equally suspicious because
he/she knows something about the alleged criminals, possibly having seen their faces or heard their
voices. For someone who only knows their number, the probability that a certain person is a criminal
is n/t (if all suspected are guilty) because n is the number of outcomes and ¢ the total number of
outcomes. From the point of view of the police, the situation is still different because it does not know
with certainty whether all n suspected are guilty. But for someone who knows nothing about the ¢
persons, every number # is equally probable. This shows that probability is not absolute but depends
on the knowledge of someone who calculates it.

The situation of complete ignorance except for the number ¢ can be compared to throwing a die. Each
number n of ¢ =6 possible numbers rolled is just as likely as any other. In other words:

P(n) :% for all n between 1 and =6

Let now be the event 4 = “n lineages existed in the beginning”, which is short for “the existence of
n maternal lineages in the beginning of modern humans’ divergence from their ancestors”. If our
knowledge is insufficient to attribute a higher or lower probability to a certain number of lineages,
the situation is analog to throwing a dice:

P(An)=;V1SnSt (1)
So this is a uniform probability distribution. Let now be B, = “m lineages have survived after v
generations”. This knowledge changes the probability of 4, , in other words, P(4,)# P(4,|B,). As
m =1 in present times, we will be able to calculate P(4, | B,) from this and compareitto P(4,., |B,)
within the limits of 7, which is what we want to know in the end. The 4, are a complete system of
mutually incompatible events as “i lineages were present” AND j lineages were present” cannot
occur at the same time, supposing that i # j. This implies that

S P(4,)=1



which is effectively the case because of equation 1. It is evident that B, can only occur if previously
A, has occurred, under the condition that 0 <m < n. This is a necessary condition for the law of total
probability, according to which we have

ZP P(B,|4,)

With equation 1 and the condition 0 <m < n, this becomes
1 t
P(B,)=+3P(B,14,) @

What we finally want to know, we get from Bayes’ theorem using equations 1 and 2:

P(4,)P(B,14,) _ iP(BlA) P(B,14,)

P(8,) *Z P(B,|4) 2;=n,P(Bm | 4,)

P(4,|B,)=

3)

So what we have to calculate for this purpose is P(B, | 4,), which will be done in the following
sections.

Fertility Rate

The first quantity we need is the probability b, that a woman will give birth to i daughters of
reproductive age during her lifetime. For this purpose, we will use the data of Bentley et al. (1993)
about hunter-gatherers because our ancestors are likely to have adopted this way of life. However,
these data indicate the fertility rate, including both girls and boys. So we still need to transform this
rate into a rate limited to girls. Let’s label the fertility rate related to both sexes x, and start with i =0
. For briefness, I will refer to kids rather than children and girls rather than daughters. The probability
that a woman has no girls is

Jo=8(
the woman has 0 kids or she has 1 kid and it is a boy or... or
the woman has £ kids and they are all boys or... or

d
the woman has d kids and they are all boys) = Zak

k=0
with

= P(the woman has £ kids and they are all boys)
= P(the woman has k kids) P(they are all boys) = x, y*

using the relation P(A and B) = P(A)P(B| A). This is a general formula for an arbitrary event B
depending on A4. In the current context, 4 = “the woman has & kids” and B = “they are all boys”, which
depends on the number £ of kids of the mother. This relation will be used extensively below but
without being mentioned every time for the sake of briefness. On the other hand, y is the sex ratio at
birth, which varies from one nation to another and through history, depending on many factors. So
this is a somewhat arbitrary parameter, but it doesn’t significantly influence the end results, as we are
going to see. Here it is taken
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= 0.51
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according to Coale 1972 p. 15. So
d d
Jo =zxkyk =Xy +zxkyk
k=0 =1

With this formula, x, is not multiplied with y in the special case “the woman has 0 kids”, as required.
Then,

Ji=
the woman has 1 kid and it is a girl or... or

the woman has & kids and among them is a girl or... or
d

the woman has d kids and among them is a girl)= Zak
k=1

with
a, =P(the woman has k kids and among them is a girl)
= P(the woman has & kids) P(among them is a girl)
where
P(among them is a girl)
= P(the 1°' kid is a girl and all others boys or... or
the i™ kid is a girl and all others boys or... or

the & kid is a girl and all others boys)
=k P(1 of k kids is a girl and all others boys)

=k(l—y)yk’1

Therefore

d d
fi=>la,=> kx, (1-y)y*
k=1 k=1

Analogously
fr=H

the woman has 2 kids and they are 2 girls or... or
the woman has £ kids and among them are 2 girls or... or

d
the woman has d kids and among them are 2 girls) = Z a,
k=2

with
a, =P(the woman has k kids and among them are 2 girls)
= P(the woman has £ kids) P(among them are 2 girls)

where



P(among them are 2 girls)

k
= [J P(2 of k kids are girls and the others boys)

and

N

is the number of all combination to choose 2 girls out of k. Therefore

f=Ya =i(§]xk(1—y)2 ¥

k=2 k=2

From this, the general formula can easily be guessed:

d
fi= Z(ll{]xk (1-y) ¥ 4)

k=i
Now, the normalized data from Bentley et al. (1993 p. 274) are reproduced in figure 1. They are based
on a reduced sample, therefore lacking some smoothness. As we need an integer & for the probability
x, that during her lifetime a woman brings to birth & children reaching the reproduction age, it is
necessary to average the bars. In order to keep the central peak, I will sum the bars at 5.75 and 6.25,
the middle of which is 6. The bars at the left and the right of the peak are merged analogously. The
bars at the outer left and right keep the same height but get the fertility rates of 3 and 10, respectively.
This will smooth the data a bit and one gets integers for TF.

%
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L 3.25 3.75 4.25 4.75 525 575 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 TF

Figure 1: Percentage distribution of the total fertility (TF) of natural fertility populations (reproduced
from Bentley et al. (1993 p. 274)).

Next, [ will try to find a probability distribution that fits the data approximately. This will allow us to
guess the probabilities for the rates 0, 1 and 2 on the left as well as for the rates 11 and 12 on the right.
I have tried out several distributions. It seems that a Cauchy distribution comes closest to the data. As
the original data are normalized only over the interval from 3.25 to 9.25, including the guessed rates
on the left and right will necessitate renormalizing all data. The result can be seen in figure 2.
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Figure 2: The smoothed Bentley data (blue points) approximated by a Cauchy distribution (red curve).

The x, are finally obtained using the data points of the fitted Cauchy distribution and normalizing
them in the interval from 0 to 12. Putting these x, into formula 4, one finds the mean value

_ d
f=211
i=1
From this mean, one finds the p = f/ d for the binomial distribution
bf{i]p’(l—p)d )

because its mean value is b =d p . As can be seen from figure 3, the data thus obtained (red points)
fit very well the f; (blue points). Now, as can been also is that the probabilities of the rates 10 to 12
are almost 0. Since we are interested to keep d as small as possible because the time to calculate
formula 12 increases exponentially with increasing d, we can reduce d from 12 to 9 without
significantly altering the accuracy because the original data are also approximate, not only because
they are derived from a small population sample but also because we don’t exactly know under what
conditions our first ancestors lived. What matters is that the data form some kind of a bell instead of
a uniform distribution.

P(TF)

0.25
0.20
0.15
0.10

0.05

1 2 3 4 5 6 7 8 9 10 11 12 TF

Figure 3: The Bentley data approximated by a Cauchy distribution yield the xx, which are put into
formula 4. The data thus obtained (blue points) fit very well a binomial distribution (red points). Here, TF
is the total fertility rate limited to the birth of girls.



This reducing can be done in different ways. I prefer to sum the rates from 9 to 12, which then yields
the probability that a woman brings about 9 to 12 children. However, after this transformation, we
don’t have anymore a binomial distribution. So it must then be converted back into such a distribution
by determining a slightly different p from the mean value in the same way as explained above. The
reason why it is advantageous to have a binomial distribution is because

! d’" r=s
211 =( ) JPS(I—p)"
1

S i=

if the b, are a binomial distribution of the same p and d as in formula 5. This relation will be used in
formula 7 and allow for a much faster calculation. It is given without proof. The reader can try it out
by putting in some values to verify its correctness (see codes.nb).

One Lineage

The calculation of P(B, | A,) in equation 3 has to be done in two steps. First, I will suppose that there
was only one original mother and then apply this result to the case of several mothers in the next
section. I will elaborate the probability P that this only lineage dies out at generation v and the
probability O = that the lineage has s girls after v generations, s being greater than zero. Indeed,
P, =Q,, but this is a special case that has to be distinguished from s>0. I also label b, the
probability that a woman brings about s girls during her lifetime, under the condition that they reach
the age of reproduction. As discussed in the previous section, the b, are a binomial distribution based
on empirical data about hunter-gatherers. The maximal possible number of daughters will be labeled
d. From this follows that

B =b, and O =b, (6)
For v>1, let’s proceed step by step and consider the next case v =2, labeling » the number of girls
of the preceding generation and s the number of girls of the actual generation:

B =

the mother has 1 girl and this girl has 0 girls or... or
the mother has r girls and these girls have together 0 girls or... or

d
the mother has d girls and these girls have together 0 girls) = Zar

r=1
where

a, =P(the mother has r girls and these girls have together 0 girls)
= P(the mother has r girls) P(these girls have together 0 girls)

and

P(the mother has r girls)=5b, =Q,,

according to equation 6, while

P(these girls have together 0 girls)
= P(the 1% girl has no girl and... and the 7" girl has no girl) = 5;



So
d d
})2 :Zar =ZQl,r b(;
r=1 r=1

The probability that the 2 generation has together 1 girl is

Qz,l =P(
the mother has 1 girl and this girl has 1 girl or... or
the mother has r girls and these girls have together 1 girls or... or

d
the mother has d girls and these girls have together 1 girls) = Z a

r=1

”

where

a, =P(the mother has r girls and these girls have together 1 girls)

= P(the mother has r girls) P(these girls have together 1 girls)
=0, P(these girls have together 1 girls)

with

P(these girls have together 1 girl)
= P(the 1% girl has 1 girl and the other »—1 have none or... or
the 7" girl has 1 girl and the other »—1 have none)=rb b,

So
d d .
Q2,1 = Zar = le,r rb by
r=1 r=1

Things get more complicated in the general case where the girls of the mother have together s girls.
We get again

analogously to the former case but with

a, = P(the mother has r girls and these girls have together s girls)

= P(the mother has r girls) P(these girls have together s girls)
=0, P(these girls have together s girls)

=0, P(the 1 girl has s, girls and... and the " girl has s, girls or... or)
:Ql,r szS‘
S =l
where
S:{si eN|s+..+5, =5,0<s, Sd}

Thereby



To better understand this formula, let’s illustrate it with the example d =2 and s=1. Since r is
iterated from 1 to d, we have 2 cases:

r =1 yields the only combination (s, =1) = a, =0, b, =b, b,

r =2 yields the combinations (s, =0,s, =1) and (s, =1,5, =0)
=a,=0, (bo b +b, bo) =2b,b, b,

= 0,,=a,+ta,=b (bl +2b, bz)

So this yields the same result as if it were calculated with the formula above. One can show
analogously that

2 a2 »
P = ZQZ,r by and Q3,s - ZQZ” ZHbs,.
p P s =l

from which it is easy to guess the general recursive formulas

d"! d! r
P = Z Qv—l,r by and Qv,s = ZQv—l,r ZHbs
r=1 r=1 S i=l

where (), =1 because this is the probability that there is only one original mother, which by
definition is 100% certain. On the other hand, Q,,., =0 because there is only one original mother,
but this case never occurs in the formulas. Under the special conditions d =0 and v=1, these
formulas can be tested analytically. Without using the formula, one should get £, =1 because this is
the probability that the first generation dies out, which is certain if the original mother is unable to
bring about daughters. Using the formula, r goes from 1 to 0°, which is normally undetermined.
However, it is only the exponent v—1 that is exactly 0, while d must not imperatively be an exact
integer because it is the maximal number of daughters a woman can bring about. In a hypothetical
society being hit by some rare event, which would reduce the fertility to almost zero, it would be
calculated by the number of women still capable of reproducing a single daughter divided by the
number of all women between a certain age, which would yield a number close to but greater than
zero. So it could also be just a very small real number. Thereby, 0° must be treated as }g% d’ =1,
which yields

d’=1
A= Z Oy, by =0y, by =b, =1 as required.
r=l1

If d =0 and v >1, then one should get P_, =0 because the first generation certainly has already diet
out. So there can be no further generation. Using the formula in this case, r goes from 1 to 0" =0,
in other words, the sum is equal to zero, which means that P, =0 as expected. For O, one can
argue similarly: if d =0 and v=1, then one should obtain O, =0 because the original mother is
unable to reproduce. Using the formula, one gets

d’=1 r 1 1
Ql,s = z Qo,r ZHbS,- = Q0,1 ZHbs,. = ZHbs,
=1 s i=l s i=l s i=l

10



with §={s, =s}.But s, =0 because of 0<s, <d, which is why one gets O, , =5, =1. This seems
to be in contradiction with the requirement that Q, | = 0. However, @, , is not the probability that the
lineage survives but dies out, in other words, Q,, = F,, so this amounts to the same as above. For
v>1, @, =0 because r goes from 1 to 0, as explained above.

For a given r of the previous generation, the maximal number of s of the actual generation is equal to
dr. Therefore if s>dr, §={} and thereby ZHZ)S_ =0. So there is no need to calculate these
cases. To exclude them, we set

K
s<dr=>r>—
d

As this does not always yield an integer, it has to be rounded up, finally getting

AR r

0.= 2 0..21h, (7)

r:|—s/d-| S i=

The maximal number of daughters at generation v is d’. Therefore, the probability that a lincage
survives, in other words, that there is at least one daughter present at generation v, is

0,=0, 8)

Letnow X =v be the random event “the lineage dies out at generation v”, which can take any positive
integer. Therefore,

1= P(X =v)= P(X <v)+ P(X >v) = P(X >v)=1-P(X<v)

where P(X >v) is the probability that the lineage does not die out at the 1% generation nor at the
2", nor at the v". In other words, P(X >v)=Q,. On the other hand, P(X <v) is the probability
that the lineage dies out at the 1% generation or at the 2"... or at the v In other words,
P(X <v)= ZPk , from which one gets the more rapid alternative formula

0,=1-Y P
k=1

It will be interesting to test equation 3 in the case where the b, =u=1/(d+1) are a uniform
distribution P(i)=u for 0 to d. Its mean value is
d d dd+1) 1 d(d+1) d

2iP(i)=2iP(i)=u B T

whereas the mean for the binomial distribution is close to 3 according to figure 3. So d =6 is a

realistic value when comparing results using both distributions. With this, one gets

r

Hbs, =u'

i=1

On the other hand, Z will still sum over S={s, eN|s +..+s, =5;0<s, <d}, but there is the
formula §

11



& Y
f(r,s,d): Z (_l)i(r](r+sr£a;+l)lj

i

that calculates the number of these combinations directly. In addition, there is also a recursive function
that is still faster. These formulas are given without proof. The reader can just verify them by trying
out with some arbitrarily chosen parameters (see codes.nb). With this formula we finally get

dvfl dvfl

F, = ZQHJ u"and Q, = Z O, f(r.s,d)u ©)
r=l1 r=[s/d]

These formulas can be tested numerically with Mathematica. When using a uniform distribution for
the b,, this can be done for different d. As shown by figure 4, there is neat agreement between the
numerical values and the analytical results. What can be observed also is that P, rapidly converges
to zero for increasing v. This convergence is all the more rapid as d increases. This comes as no
surprise because the probability that a lineage dies out is only likely for the first generations. Once a
population has reached a certain size after some generations, it is nearly impossible that it dies out by
a bottleneck. When low fertility rates are used (low d), the probability that the lineage dies out is
higher, implying a slower convergence. For QO , we have the inverse situation. For increasing d, it is
no surprise that the likelihood that the lineage survives increases and also rapidly converges to certain
values.
P, Q

0.5

0.4

—_—d=1 d=2 d=3 =——d=4 =——d=5 ——d=6 —_—d=1 d=2 d=3 =——d=4 =——d=5 =———d=6

Figure 4: There is neat agreement between the numerical results (black points) and the analytical
solutions (colored joined points), using a uniform distribution for P, and Q..

Using a binomial distribution for the b,, the behavior is almost the same as for a uniform distribution
in the case d =6, as shown by figure 5, even though here the probability of survival is somewhat
higher. Another result we will need is as follows: let 4, = “a lineage has survived until generation
v’ and B, = “the lineage dies out at generation v”, getting

P =P(A_ and B,)=P(4,_)P(B,|4,)=
P(4 B
P(B,|4,,)= (4. andB) R (10)

P ( 4, ) 0,

Analogously, one has

12



0,=P(A_ and A)=P(4,_)P(4|4_)=
P(A_ and 4)) O

p— —_ vV
P(4,14,)=——— = (11)
( v—1 ) Qv—]
P
0.030V 097?V
0.025
0.970
0.020
0.969)
0.015
0.968
0.010
0.005] 0.967]
1 2 3 7 5V 0.966l 1 2 3 4 5 Vv

Figure 5: Again a neat agreement between the numerical result (blue points) and the analytical solution
(red joined points), using a binomial distribution for P, and Q..

Several Lineages
In this section, I will calculate the probability R, that 0<m<n lineages are still present at
generation v, knowing that there were n >1 in the beginning. As explained in the introduction, this is
indeed the probability P(B, | A,) we are looking for. It is relabeled here for the sake of simplicity
and clarity. Let’s proceed again step by step and begin with v=1 and m =0:

R, = P(the 1* mother has no girl and... and the n™ mother has no girl)
= P(a mother has no girl)"= B"
With m =1 one gets

R,, =P(the 1*" mother has at least 1 girl and the others none or...or

the n'™ mother has at least 1 girl and the others none)
=n P(any mother has at least 1 girl and the others none)
=n P(any mother has at least 1 girl) P(n—1 mothers have no girl)
=n Q] Plnfl

For m =2 we have

R, =P(the 1* and 2" mother have at least one girl and n—2 none or... or

the 1% and the 3™ mother have at least one girl and #—2 none or... or)

|n 2 pn-2
-, |oR

From this it is easy to guess the formula for an arbitrary m and v=1:
n m n—m
Rl,m = Ql Pl
m

13



Let’s now proceed analogously for v=2:

Rz,o =P(
1 lineage of the 1°! gen. has survived and dies out at the 2" or... or

k lineages of the 1% gen. have survived and all die out at the 2" or ... or

n lineages of the 1% gen. have survived and all die out at the 2"%)= Zak
k=1

with
a, = P(k lineages of the 1*! gen. have survived and all die out at the 2"%)

= P(k lineages of the 1% gen. have survived) P(all k die out at the 2°¢)
=R, , P(all k lineages die out at the 2™ gen.)

=R, , P(any lineage dies out at the 27 gen,)f

P(any lineage dies out at the 2™ gen.) = P, /O, according to equation 10 because it is a conditional
probability, knowing that the lineage survived at the precedent generation, finally getting

k k
P " " P

a, =R, (—ZJ and R,, = Zak = ZRL,( [—2]
Q k=1 k=1 Ql

1

For m =1 we have

Rz,l =P(
1 lineage of the 1°! gen. has survived and also survives at the 2" or... or
k lineages of the 1% gen. have survived and only the 1% survives at the 2" or ... or
k lineages of the 1% gen. have survived and only the k™ survives at the 2™ or ... o
n lineages of the 1 gen. have survived and only the 1% survives at the 2™ or ... or
n lineages of the 1% gen. have survived and only the n'" survives at the 2" or ... or)

= Z ak
k=1
with
a, =P(
k lineages of the 1% gen. have survived and only the 1% survives at the 2" or ... or
k lineages of the 1% gen. have survived and only the & survives at the 2°9)

=k P(k lineages of the 1% gen. have survived) P(1 of k lineages survives at the 2"%)
=kR,, P(1 of k lineages survives, the others dying out at the 2" gen.)

=kR,, P(1 lineage survives at the 2" gen.) P(the others dying out at the 2™ gen.)

=k R, P(1 lineage survives at the 2" gen.) P(any lineage dies out at the 2°¢ gen.)*!

P(1 lineage survives at the 2™ gen.) and P(any lineage dies out at the 2" gen.) are again conditional
probabilities, knowing that all & lineages survived at the 1% generation, which are given by equations
10 and 11, yielding

k=1 k-1
P, u u P,
a, =kRLk&(—2j and R, =Zak =&2kRLk E—zj
1 Q] k=1 1 k=1 Ql
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The case m =2 is only slightly more complicated:
Rz,z =P (
2 lin. have survived at the 1* gen. and those have survived at the 2™ gen. or... or

k lin. have survived at the 1% gen. and 2 of those have survived at the 2™ gen. or... or

n lin. have survived at the 1% gen. and 2 of those have survived at the 2" gen.) = z a,
k=2

with
a, = P(k lineages have survived at the 1*' gen. and 2 of those have survived at the 2™ gen.)

= P(k lineages have survived at the 1 gen.) P(2 of k lineages have survived at the 2" gen.)
=R, , P(2 of k lineages have survived at the 2" gen. and k—2 died out)

) kézilﬁz _n _&2”/( ikfz
‘R“(zj(QJ (QJ :Rz’”;“"‘(QJ ;[2%""(91)

From this, it is straightforward to guess the general formula for an arbitrary m:

NEAR kJ (P)
R2m_ - le -
&) E) (4

From here, the general case for an arbitrary v is also evident:

B Qv mo k] ( R} jkm
R == R, 12
v,m (Qv_l J ; (m v—1, Qv_l ( )

where R, =0 for 0<m<n and R;, =1 because there are certainly n original mothers in the
beginning. Analogously O, =1 because this is the probability that there is a single original mother.
However, this formula is only valid for m > 0. For m =0, we need to use the following formula to
prevent that & starts with 0.

k
L P
R,=)R_ -
0 ; b LQV—I j

R, can be tested numerically for different &, using a uniform distribution (see codes.nb). The results
for n =4 can be seen in figure 6, which shows that if d is low, the probability that only one lineage
survives is higher than the others for the first generations. This is because the likelihood of a lineage
becoming extinct is high when d is low. Thereby, it is more likely that the lineages die out early. This
situation slowly inverses for d increasing. What is also very well visible again is the convergence of

R, forincreasing v.

When using a binomial distribution, the disparity of R, , from very low to very high is even more
manifest such that a logarithmic plot must be used to distinguish the data. As shown by figure 7, if m
is increased from 1 to n=35, the highest probability occurs if m=n (left). In other words, the
likelihood of a bottleneck is very low for high fertility rates, as mentioned in the introduction. A
similar behavior occurs if m =1 and # is increased (right), having again the highest probability if
m=n.
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Figure 6: The probability R, ,, that m lineages survive after v generations, knowing that there were n =4
in the beginning and using a uniform distribution. The black points are the numerical results, while the

colored joined points represent the analytical solution.
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Figure 7: The probability R, . that m lineages survive after v generations, using a binomial distribution.
Left: n =5 and m is increased. For m = 1, the numerical result (black points) is somewhat inaccurate
because this case rarely occurs in the algorithm, which is why its relative frequency is approximate. In
addition, the error is amplified because of the logarithmic plot. Right: m = 1 and # is increased.

Results
We are now able to calculate and discuss equation 3, that is, the probability P(An ]Bm) that there
have been n lineages in the beginning, knowing that there are m at present. As there is indeed only
one lineage at present, m =1 will always be tacitly used. I will first take a uniform distribution for
the b, because it is interesting to see how this probability behaves for different d, which is difficult to
show if they are a binomial distribution. I will therefore label

P(Bm ’An)

z;:mP(Bm | Ak )

according to equation 12, which depends on the parameters v, m, n, t and d.
These are too numerous to be able to discuss every interdependence between them. Nevertheless, as

U=P(4,]B,)=

where P(B, |4,)=R,,
can be seen from figure 8, a general trend valid for every d is that if v increases, U, decreases for
small » and increases for greater n. What can be observed too is that the U seem to converge to a
limit for every n, which will be discussed using a binomial distribution. This convergence is all the
more rapid for d increasing from 1 to more realistic values up to 6. The most important aspect is that
U, _, has the highest probabilities for every vand d > 2 . Not only does it have the highest probabilities
but it is also largely superior to 50%, which means that U,_ >U,_,. In other words, if it can be
confirmed that the U really converge to a limit for increasing v, the probability that originally there
was only 1 lineage is superior to the probability that there were more than 1 lineage.

Now that we know that U, _, >50% for d =6 and =7 we can set n=1 and check whether this is
also the case for greater ¢. As shown by figure 9, U converges rapidly if ¢ is increased from 2 to 8 for
the same d = 6, the curves becoming almost indistinguishable for ¢ > 4. Apparently, the convergence
of R,, if nis increased (fig. 7 right) also leads to the convergence of the sum in the denominator of
U. What can also be seen from figure 9 is that U converges for increasing v, which is indeed a
confirmation of what has been observed in the previous sections. This is very fortunate because a
calculation of U over thousands of generations from the present of the mitochondrial Eve to today
becomes unnecessary. In the contrary case, such a calculation would be impossible not only with a
PC but also with a supercomputer.
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Figure 8: The probability U that there were initially n lineages, knowing that at present there is only one
and using a uniform distribution for the b;.

Let us now see if this convergence regarding both # and v also occurs with a binomial distribution. In
this case, I will label W = P(An |Bm), the letter W standing for a weighted distribution. As can be
seen from figure 10, the convergence is even more rapid for both ¢ and v, which allows for the
conclusion that W is over 90% for very great ¢ and v.
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Figure 10: In the case of a binomial distribution, # also converges rapidly for increasing ¢ and v, from
which one can infer that W is over 90% for any # and v.

So the final statement is that the unlikeliness of a mitochondrial Eve, as claimed by most evolutionary
biologists, is clearly refuted. What still can be discussed is how it is biologically (not mathematically)
possible that monogenism can apparently emerge from a very large population without having to go
through a bottleneck, an extinction of the other lineages being very unlikely.

When reasoning in evolutionary terms, one could resort to allopatric speciation theorized by Ernst
Mayr (1954 pp. 157-180), according to which speciation cannot happen in a large population due to
constant mixing up of the gene pool. Therefore, this concept predicts that only when a small group of
individuals splits from the main group and remains separated for a long time due to a geographic
barrier, it acquires enough genetic changes to become a new species. However, as I have shown
(Utiger 2020), there is by far not enough time for even the most favorable case of such a scenario,
that is, a single couple split from the main group.

So something very special must have happened at the time of the mitochondrial Eve, something that
cannot be understood in evolutionary terms, which seems to baffle many scholars, beating around the
bush instead of putting a proper name to the mystery. Often, they stick to Gould and Eldredge’s
“punctuated equilibrium”, as mentioned in the introduction. Tattersall (2009) calls it “a single change
in gene regulation”, while Dawkins (2006 p. 230) correctly dares to declare that “the only alternative
explanation... is divine creation”, only to reject his statement immediately in the next sentence,
without giving further justifications...
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