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ABSTRACT: According to various studies on mitochondrial DNA, which is only inherited via the 
maternal part, all modern humans are descended from a primordial mother who lived in East Africa 
around 200,000 years ago, earning her the nickname “mitochondrial Eve”. This concept of 
monogenism stands in opposition to most evolutionary biologists, claiming that it is very unlikely 
that mitochondrial Eve was the only mother of our species, in other words, that polygenism is the 
more likely scenario. Here, I verify this claim using probability theory and empirical data about 
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Introduc�on 
The view that all humans descend from a single ancestor couple prevailed during centuries until 
Africa and later America were discovered and colonized. In the 18th and 19th centuries, the most 
abominable and pseudoscientific theories emerged to justify the exploitation of peoples considered 
to be inferior human races, which happened even before Charles Darwin, who surprisingly was a 
monogenist. His views nevertheless accelerated this emergence of scientific racism as Darwin held 
that there were hierarchically distinct races due to natural selection, even though he distanced himself 
from slavery (Cohen 1980 ch. 8; Jackson & Weidman 2004 chs. 2-3).  

Around the same time, in 1868, the first fossil bones of modern humans, dated to around 30 ka, were 
found in Cro-Magnon (France), which is why our species is often named after this site. Subsequently, 
other fossils were unearthed, predominantly in Europe but later also elsewhere, which led to a wide 
spectrum of evolutionary proposals (Sykes 2001 p. 114; Klein 2009 pp. 617-619). According to the 
multi-regionalists, our ancestor Homo erectus evolved independently into different modern humans 
on different continents, thus producing different races (Reichholf 1998 p. 13). However, the oldest 
fossils dated to around 200 ka were subsequently excavated in eastern Africa, which eventually led 
to the out-of-Africa theory, standing in contradiction to these views favoring multi-regionalism (Klein 
2009 p. 738-739; Bräuer 2015 pp. 2300-2307).  

In support of this date and origin, Cann et al. (1987) showed that all modern humans descend from 
one African mother who lived about 200’000 years ago. The article led to a heated debate as it was a 
blow for the then still predominant view of multi-regionalism. Their results were confirmed by other 
genetic studies based on mitochondrial DNA, which is only inherited from the maternal part (Klein 
2009 pp. 615, 631-638). In the following years, the view that modern humans emerged only in Africa 
and replaced Homo erectus on the whole planet was finally adopted. Our African ancestor was even 
nicknamed mitochondrial Eve, although evolutionary biologists distance themselves from this 
sobriquet inspired by Genesis. 
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However, the concept of polygenism was not abolished at all (Brown 1990 ch. 3; Henke & Tattersall 
2015 p. 2303). In fact, there is the consensus among scholars that it is very unlikely that mitochondrial 
Eve was the only original mother of our species, arguing that during her lifetime there may have been 
thousands of other mothers who were just as modern, but that their lineages died out (Brown 1990 
pp. 108-111; Ayala 1995; Foley 1995 p. 129; Reichholf 1998 p. 20; Sykes 2001 p. 277; Sykes 2003 
pp. 136-138; Klein 2009 p. 634; Dawkins & Wong 2017 p. 60).  

As reported by Callaway (2017), fossils from Jebel Irhoud (Morocco) were discovered and dated to 
about 40 ka in 1960 and the following year. They were then considered to belong to an African form 
of Neanderthals. However, when excavations in 2017 at the same site by another team allowed a new 
dating to about 315 ka, Hublin et al. (2017) assigned them to H. sapiens, thus shifting the origin of 
our species about 100 thousand years into the past. Jean-Jaques Hublin and colleagues support the 
view that the emergence of H. sapiens was gradually and not restricted to a small region (like eastern 
Africa) but involved the whole African continent, Callaway citing Hublin:  

Until now, the common wisdom was that our species emerged probably rather quickly 
somewhere in a ‘Garden of Eden’ that was located most likely in sub-Saharan Africa. I would 
say the Garden of Eden in Africa is probably Africa — and it’s a big, big garden. 

So here we see resurfacing the old concept of polygenism, to which still many other 
paleoanthropologists adhere (Gibbons 2017; Stringer & Galway-Witham 2017; Scerri et al. 2018). 
However, Meneganzin et al. (2022) argue that, according to Ernst Mayr (1954 pp. 157-180) speciation 
is most likely to occur in small populations and thereby reject the Pan-African multi-regional 
hypothesis of Hublin et al. (2017). They also hold that speciation is not gradual but a rapid process, 
referring to the punctuated equilibrium concept of Gould and Eldredge, and criticize the assignment 
of the Jebel Irhoud material to modern humans as the skull is visibly elongated like that of a 
Neanderthal. The same is criticized by María Martínon-Torres, a paleoanthropologist at University 
College London, stressing that the remains from Jebel Irhoud lack features that characterize our 
species, such as a prominent chin and forehead. Also, Jeffrey Schwartz of the University of Pittsburgh, 
Pennsylvania, objects that too many different-looking fossils have been lumped together with our 
species (Callaway 2017).  

This brief overview shows that evolutionary biologists often base their conclusions on their biased 
intuition, favoring the Darwinian concept of polygenism, which is indeed a corollary to the theory of 
natural selection as a species-forming mechanism. Francisco J. Ayala (1995), for instance, links 
monogenism to the probability of a bottleneck in human evolution, leaving behind a single ancestor 
pair, which is indeed very unlikely. In other words, if there were several lineages in the beginning, it 
would be very likely that all present humans descend from several lineages, since their extinction in 
a bottleneck is very unlikely. Now, if Ayala had an unbiased intuition, he would arrive to the 
complementary conclusion that it is very unlikely that there have been several lineages in the 
beginning, knowing that at present there is only one lineage. 

Whether there has been a bottleneck or not is the incorrect question to ask because this presupposes 
that a bottleneck is the only possibility in order for humanity to stem from single parents. We are 
going to see that monogenism can indeed also emerge from a large population. So the right question 
to ask is how likely it is that the whole of humanity stems from a single ancestor pair, knowing that 
all present humans stem from a single mother. Together with an estimate of the possible population 



3 

size in the region and at the time of the mitochondrial Eve, this is the only knowledge we have at our 
disposal.  

The basic mathematical problem is as follows: let t be the total number of women who lived in Africa 
at the time when modern humans are supposed to have diverged from our ancestors. It is not necessary 
to know the extend of this region, nor the time of divergence and whether the whole population was 
in reproductive contact or not, which is why the region could in principle be extended to the whole 
planet and the number t to its whole population. Let then be n the hypothetical number of maternal 
lineages from which humanity is supposed to descend. The claim from evolutionary biologists is that 
this number might be greater than one because the possibility exists that 1−n  of them died out up to 
the present. So this number lies in the interval 1 ≤ ≤n t .  

Now, in the absence of any knowledge except an approximate t, every number n has equal probability. 
This can be compared to a police lineup of t persons among whom are n suspected criminals. From 
the point of view of the aligned persons, they exactly know whether they are guilty or not. From the 
point of view of the witness behind the one-way mirror, not every person is equally suspicious because 
he/she knows something about the alleged criminals, possibly having seen their faces or heard their 
voices. For someone who only knows their number, the probability that a certain person is a criminal 
is /n t  (if all suspected are guilty) because n is the number of outcomes and t the total number of 
outcomes. From the point of view of the police, the situation is still different because it does not know 
with certainty whether all n suspected are guilty. But for someone who knows nothing about the t 
persons, every number n is equally probable. This shows that probability is not absolute but depends 
on the knowledge of someone who calculates it.  

The situation of complete ignorance except for the number t can be compared to throwing a die. Each 
number n of 6=t  possible numbers rolled is just as likely as any other. In other words: 

1( )
6

=P n  for all n between 1 and 6=t  

Let now be the event =nA  “n lineages existed in the beginning”, which is short for “the existence of 
n maternal lineages in the beginning of modern humans’ divergence from their ancestors”. If our 
knowledge is insufficient to attribute a higher or lower probability to a certain number of lineages, 
the situation is analog to throwing a dice: 

( ) 1 1= ∀ ≤ ≤nP A n t
t

  (1) 

So this is a uniform probability distribution. Let now be =mB  “m lineages have survived after v 
generations”. This knowledge changes the probability of nA , in other words, ( ) ( )|≠n n mP A P A B . As 

1=m  in present times, we will be able to calculate ( )1 1|P A B  from this and compare it to ( )1 1|>nP A B
within the limits of t, which is what we want to know in the end. The nA  are a complete system of 
mutually incompatible events as “i lineages were present” AND “j lineages were present” cannot 
occur at the same time, supposing that ≠i j . This implies that 

1
( ) 1

=

=∑ n

t

n
P A  
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which is effectively the case because of equation 1. It is evident that mB  can only occur if previously 
nA  has occurred, under the condition that 0 m n≤ ≤ . This is a necessary condition for the law of total 

probability, according to which we have 

( ) ( ) ( )
1

|
=

= ∑
t

m n m n
n

P B P A P B A   

With equation 1 and the condition 0 m n≤ ≤ , this becomes 

( ) ( )1 |
=

= ∑
t

m m n
n m

P B P B A
t

  (2) 

What we finally want to know, we get from Bayes’ theorem using equations 1 and 2:  

( ) ( ) ( )
( )

( )

( )
( )

( )

1 || |
| 1 || ==

= = =
∑∑

m n
n m n m n

n m tt
m m kk mm kk m

P B AP A P B A P B AtP A B
P B P B AP B A

t

  (3) 

So what we have to calculate for this purpose is ( | )m nP B A , which will be done in the following 
sections.  

Fer�lity Rate 
The first quantity we need is the probability ib  that a woman will give birth to i daughters of 
reproductive age during her lifetime. For this purpose, we will use the data of Bentley et al. (1993) 
about hunter-gatherers because our ancestors are likely to have adopted this way of life. However, 
these data indicate the fertility rate, including both girls and boys. So we still need to transform this 
rate into a rate limited to girls. Let’s label the fertility rate related to both sexes kx  and start with 0i =
. For briefness, I will refer to kids rather than children and girls rather than daughters. The probability 
that a woman has no girls is 

0f =  P( 
   the woman has 0 kids or she has 1 kid and it is a boy or… or 
   the woman has k kids and they are all boys or… or 

   the woman has d kids and they are all boys) 
0

d

k
k

a
=

= ∑   

with  

ka  = P(the woman has k kids and they are all boys) 
 = P(the woman has k kids) P(they are all boys) k

kx y=  

using the relation ( and ) ( ) ( | )=P A B P A P B A . This is a general formula for an arbitrary event B 
depending on A. In the current context, A = “the woman has k kids” and B = “they are all boys”, which 
depends on the number k of kids of the mother. This relation will be used extensively below but 
without being mentioned every time for the sake of briefness. On the other hand, y is the sex ratio at 
birth, which varies from one nation to another and through history, depending on many factors. So 
this is a somewhat arbitrary parameter, but it doesn’t significantly influence the end results, as we are 
going to see. Here it is taken 
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105boys 0.51
100girls

y = ≈   

according to Coale 1972 p. 15. So 

0 0
10

d d
k k

k k
kk

f x y x x y
==

= = +∑ ∑   

With this formula, 0x  is not multiplied with y in the special case “the woman has 0 kids”, as required. 
Then, 

1f =  P( 
   the woman has 1 kid and it is a girl or… or 
   the woman has k kids and among them is a girl or… or 

   the woman has d kids and among them is a girl)
1

d

k
k

a
=

= ∑  

with  

ka  = P(the woman has k kids and among them is a girl) 
 = P(the woman has k kids) P(among them is a girl) 

where  

P(among them is a girl) 
 = P(the 1st kid is a girl and all others boys or… or 
   the ith  kid is a girl and all others boys or… or 
   the kth  kid is a girl and all others boys) 
 = k P(1 of k kids is a girl and all others boys) 
 = ( ) 11 kk y y −−   

Therefore 

( ) 1
1

1 1

1
d d

k
k k

k k

f a k x y y −

= =

= = −∑ ∑   

Analogously  

2f =  P( 
   the woman has 2 kids and they are 2 girls or… or 
   the woman has k kids and among them are 2 girls or… or 

   the woman has d kids and among them are 2 girls)
2

d

k
k

a
=

= ∑  

with  

ka  = P(the woman has k kids and among them are 2 girls) 
 = P(the woman has k kids) P(among them are 2 girls) 

where 
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P(among them are 2 girls) 

 
2
k 

=  
 

 P(2 of k kids are girls and the others boys) 

 ( )2 21
2

kk
y y − 

− =
 

  

and  

( )
!

2 2! 2 !
k k

k
 

=  − 
  

is the number of all combination to choose 2 girls out of k. Therefore 

( )2 2
2

2 2

1
2

d d
k

k k
k k

k
f a x y y −

= =

 
= = − 

 
∑ ∑   

From this, the general formula can easily be guessed:  

( )1
d

i k i
i k

k i

k
f x y y

i
−

=

 
= − 

 
∑   (4) 

Now, the normalized data from Bentley et al. (1993 p. 274) are reproduced in figure 1. They are based 
on a reduced sample, therefore lacking some smoothness. As we need an integer k for the probability 

kx  that during her lifetime a woman brings to birth k children reaching the reproduction age, it is 
necessary to average the bars. In order to keep the central peak, I will sum the bars at 5.75 and 6.25, 
the middle of which is 6. The bars at the left and the right of the peak are merged analogously. The 
bars at the outer left and right keep the same height but get the fertility rates of 3 and 10, respectively. 
This will smooth the data a bit and one gets integers for TF. 

 
Figure 1: Percentage distribution of the total fertility (TF) of natural fertility populations (reproduced 

from Bentley et al. (1993 p. 274)).  

Next, I will try to find a probability distribution that fits the data approximately. This will allow us to 
guess the probabilities for the rates 0, 1 and 2 on the left as well as for the rates 11 and 12 on the right. 
I have tried out several distributions. It seems that a Cauchy distribution comes closest to the data. As 
the original data are normalized only over the interval from 3.25 to 9.25, including the guessed rates 
on the left and right will necessitate renormalizing all data. The result can be seen in figure 2.  
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Figure 2: The smoothed Bentley data (blue points) approximated by a Cauchy distribution (red curve). 

The kx  are finally obtained using the data points of the fitted Cauchy distribution and normalizing 
them in the interval from 0 to 12. Putting these kx  into formula 4, one finds the mean value 

1

d

i
if i f

=

= ∑   

From this mean, one finds the p f d=  for the binomial distribution 

( )1 d ii
i

d
b p p

i
− 

= − 
 

  (5) 

because its mean value is b d p= . As can be seen from figure 3, the data thus obtained (red points) 
fit very well the if  (blue points). Now, as can been also is that the probabilities of the rates 10 to 12 
are almost 0. Since we are interested to keep d as small as possible because the time to calculate 
formula 12 increases exponentially with increasing d, we can reduce d from 12 to 9 without 
significantly altering the accuracy because the original data are also approximate, not only because 
they are derived from a small population sample but also because we don’t exactly know under what 
conditions our first ancestors lived. What matters is that the data form some kind of a bell instead of 
a uniform distribution.  

 
Figure 3: The Bentley data approximated by a Cauchy distribution yield the xk, which are put into 

formula 4. The data thus obtained (blue points) fit very well a binomial distribution (red points). Here, TF 
is the total fertility rate limited to the birth of girls.  
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This reducing can be done in different ways. I prefer to sum the rates from 9 to 12, which then yields 
the probability that a woman brings about 9 to 12 children. However, after this transformation, we 
don’t have anymore a binomial distribution. So it must then be converted back into such a distribution 
by determining a slightly different p from the mean value in the same way as explained above. The 
reason why it is advantageous to have a binomial distribution is because  

( )
1

1
i

r
d r ss

s
S i

d r
s

b p p −

=

 
= − 

 
∑∏  

if the ib  are a binomial distribution of the same p and d as in formula 5. This relation will be used in 
formula 7 and allow for a much faster calculation. It is given without proof. The reader can try it out 
by putting in some values to verify its correctness (see codes.nb).  

One Lineage 
The calculation of ( | )m nP B A  in equation 3 has to be done in two steps. First, I will suppose that there 
was only one original mother and then apply this result to the case of several mothers in the next 
section. I will elaborate the probability vP  that this only lineage dies out at generation v and the 
probability ,v sQ  that the lineage has s girls after v generations, s being greater than zero. Indeed, 

,0=v vP Q  but this is a special case that has to be distinguished from 0>s . I also label sb  the 
probability that a woman brings about s girls during her lifetime, under the condition that they reach 
the age of reproduction. As discussed in the previous section, the sb  are a binomial distribution based 
on empirical data about hunter-gatherers. The maximal possible number of daughters will be labeled 
d. From this follows that  

1 0=P b  and 1, =s sQ b  (6) 

For 1>v , let’s proceed step by step and consider the next case 2=v , labeling r the number of girls 
of the preceding generation and s the number of girls of the actual generation: 

2 =P  P( 
   the mother has 1 girl and this girl has 0 girls or… or 
   the mother has r girls and these girls have together 0 girls or… or 

   the mother has d girls and these girls have together 0 girls)
1=

= ∑
d

r
r

a  

where 

ra  = P(the mother has r girls and these girls have together 0 girls) 
 = P(the mother has r girls) P(these girls have together 0 girls) 

and 

P(the mother has r girls) 1,= =r rb Q  

according to equation 6, while 

P(these girls have together 0 girls) 
 = P(the 1st girl has no girl and… and the rth girl has no girl) 0= rb   
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So 

2 1, 0
1 1= =

= = ∑∑
dd

r
r r

r r

QP a b   

The probability that the 2nd generation has together 1 girl is 

2,1 =Q  P( 

    the mother has 1 girl and this girl has 1 girl or… or 
    the mother has r girls and these girls have together 1 girls or… or 

    the mother has d girls and these girls have together 1 girls)
1=

= ∑
d

r
r

a  

where 

ra  = P(the mother has r girls and these girls have together 1 girls) 
 = P(the mother has r girls) P(these girls have together 1 girls) 
 = 1,rQ P(these girls have together 1 girls) 

with 

P(these girls have together 1 girl) 
 = P(the 1st girl has 1 girl and the other 1−r  have none or… or 
   the rth girl has 1 girl and the other 1−r  have none) 1

1 0
−= rr b b   

So  

1
2,1 1, 1 0

1 1

−

= =

= =∑ ∑
d d

r
r r

r r

Q a Q r b b  

Things get more complicated in the general case where the girls of the mother have together s girls. 
We get again 

2,
1=

= ∑
d

s r
r

Q a  

analogously to the former case but with 

ra  = P(the mother has r girls and these girls have together s girls) 
 = P(the mother has r girls) P(these girls have together s girls) 
 = 1,rQ P(these girls have together s girls) 
 = 1,rQ P(the 1st girl has 1s  girls and… and the rth girl has rs  girls or… or) 

 = 1,
1=

∑∏ i

r

r s
S i

Q b  

where 

{ }1| ... ; 0= ∈ + + = ≤ ≤ i r iS s s s s s d  

Thereby 
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2, 1,
1 1 1

i

dd r

s r r s
r r S i

Q a Q b
= = =

= =∑ ∑ ∑∏  

To better understand this formula, let’s illustrate it with the example 2=d  and 1=s . Since r is 
iterated from 1 to d, we have 2 cases: 

1=r  yields the only combination ( )1 1 1,1 1 1 11= ⇒ = =s a Q b b b   

2=r  yields the combinations ( )1 20, 1= =s s  and ( )1 21, 0= =s s  

( )2 1,2 0 1 1 0 0 1 22⇒ = + =a Q b b b b b b b   

( )2,1 1 2 1 1 0 22⇒ = + = +Q a a b b b b  

So this yields the same result as if it were calculated with the formula above. One can show 
analogously that 

2

3 2, 0
1=

= ∑
d

r
r

r

P Q b  and 
2

3, 2,
1 1= =

= ∑ ∑∏ i

d r

s r s
r S i

Q Q b  

from which it is easy to guess the general recursive formulas 
1

1, 0
1

−

−
=

= ∑
vd

v v r
r

rP Q b  and 
1

, 1,
1 1

−

−
= =

= ∑ ∑∏
v

i

d r

v s v r s
r S i

Q Q b  

where 0,1 1=Q  because this is the probability that there is only one original mother, which by 
definition is 100% certain. On the other hand, 0, 1 0> =rQ  because there is only one original mother, 
but this case never occurs in the formulas. Under the special conditions 0d =  and 1v = , these 
formulas can be tested analytically. Without using the formula, one should get 1 1P =  because this is 
the probability that the first generation dies out, which is certain if the original mother is unable to 
bring about daughters. Using the formula, r goes from 1 to 00 , which is normally undetermined. 
However, it is only the exponent 1v −  that is exactly 0, while d must not imperatively be an exact 
integer because it is the maximal number of daughters a woman can bring about. In a hypothetical 
society being hit by some rare event, which would reduce the fertility to almost zero, it would be 
calculated by the number of women still capable of reproducing a single daughter divided by the 
number of all women between a certain age, which would yield a number close to but greater than 
zero. So it could also be just a very small real number. Thereby, 00  must be treated as 

0

0lim 1
d

d
→

= , 
which yields  

0

0, 0 0,1 0 0

1
1

1
1

1
d

r
r

rP Q b bQ b
=

=

= == =∑  as required.  

If 0d =  and 1v > , then one should get 1 0vP > =  because the first generation certainly has already diet 
out. So there can be no further generation. Using the formula in this case, r goes from 1 to 10 0v− = , 
in other words, the sum is equal to zero, which means that 1 0vP > =  as expected. For ,v sQ  one can 
argue similarly: if 0d =  and 1v = , then one should obtain 1, 0sQ =  because the original mother is 
unable to reproduce. Using the formula, one gets 

0 1 1

1, 0, 0,1
1

1

1 1 1
i i i

r

s r s s s
r S i S i S i

d

Q Q b Q b b
= = = =

=

= = =∑ ∑∏ ∑∏ ∑∏  
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with { }1S s s= = . But 1 0s =  because of 10 s d≤ ≤ , which is why one gets 1,0 0 1Q b= = . This seems 
to be in contradiction with the requirement that 1, 0sQ = . However, 1,0Q  is not the probability that the 
lineage survives but dies out, in other words, 1,0 1Q P= , so this amounts to the same as above. For 

1v > , 1, 0sQ =  because r goes from 1 to 0, as explained above.  

For a given r of the previous generation, the maximal number of s of the actual generation is equal to 
d r . Therefore if s d r> , {}S =  and thereby 0

isb =∑∏ . So there is no need to calculate these 
cases. To exclude them, we set  

ss d r r
d

≤ ⇒ ≥   

As this does not always yield an integer, it has to be rounded up, finally getting 
1

, 1,
1

v

i

d r

v s v r s
r s d S i

Q Q b
−

−
= =  

= ∑ ∑∏  (7) 

The maximal number of daughters at generation v is vd . Therefore, the probability that a lineage 
survives, in other words, that there is at least one daughter present at generation v, is 

,
1

v

v v s

d

s
Q Q

=

= ∑  (8) 

Let now X v=  be the random event “the lineage dies out at generation v”, which can take any positive 
integer. Therefore, 

( ) ( ) ( ) ( ) ( )
1

1 1
v

P X v P X v P X v P X v P X v
∞

=

= = = ≤ + > ⇒ > = −∑    

where ( )P X v>  is the probability that the lineage does not die out at the 1st generation nor at the 
2nd… nor at the vth. In other words, ( ) QvP X v> = . On the other hand, ( )P X v≤  is the probability 
that the lineage dies out at the 1st generation or at the 2nd… or at the vth. In other words, 

( ) kP X v P≤ = ∑ , from which one gets the more rapid alternative formula 

1
1

v

kv
k

Q P
=

= − ∑  

It will be interesting to test equation 3 in the case where the 1 ( 1)ib u d= = +  are a uniform 
distribution  ( )P i u=  for 0 to d. Its mean value is 

( ) ( ) ( ) ( )
0 1

1 11
2 1 2 2

d d

i i

d d d d di P i i P i u
d= =

+ +
= = = =

+∑ ∑  

whereas the mean for the binomial distribution is close to 3 according to figure 3. So 6d =  is a 
realistic value when comparing results using both distributions. With this, one gets 

1
i

r
r

s
i

b u
=

=∏  

On the other hand, 
S
∑  will still sum over { }1| ... ; 0= ∈ + + = ≤ ≤ i r iS s s s s s d , but there is the 

formula 
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( )
1

0

( 1)
, , ( 1)

1

s

i
d

i

r r s d i
f r s d

i r

 
 + 

=

+ − +  
= −   −  

∑   

that calculates the number of these combinations directly. In addition, there is also a recursive function 
that is still faster. These formulas are given without proof. The reader can just verify them by trying 
out with some arbitrarily chosen parameters (see codes.nb). With this formula we finally get 

1

1,
1

vd
r

v v r
r

P Q u
−

−
=

= ∑  and ( )
1

, 1, , ,
vd

r
v s v r

r s d

Q f rQ s d u
−

−
=  

= ∑  (9) 

These formulas can be tested numerically with Mathematica. When using a uniform distribution for 
the ib , this can be done for different d. As shown by figure 4, there is neat agreement between the 
numerical values and the analytical results. What can be observed also is that vP  rapidly converges 
to zero for increasing v. This convergence is all the more rapid as d increases. This comes as no 
surprise because the probability that a lineage dies out is only likely for the first generations. Once a 
population has reached a certain size after some generations, it is nearly impossible that it dies out by 
a bottleneck. When low fertility rates are used (low d), the probability that the lineage dies out is 
higher, implying a slower convergence. For vQ , we have the inverse situation. For increasing d, it is 
no surprise that the likelihood that the lineage survives increases and also rapidly converges to certain 
values. 

  
Figure 4: There is neat agreement between the numerical results (black points) and the analytical 

solutions (colored joined points), using a uniform distribution for Pv and Qv. 

Using a binomial distribution for the ib , the behavior is almost the same as for a uniform distribution 
in the case 6d = , as shown by figure 5, even though here the probability of survival is somewhat 
higher.  Another result we will need is as follows: let vA =  “a lineage has survived until generation 
v” and vB =  “the lineage dies out at generation v”, getting 

( ) ( ) ( )1 1 1and |v v v v v vP P A B P A P B A− − −= = ⇒   

( ) ( )
( )
1

1
1 1

an
|

dv v v
v v

v v

P A B PP B A
P A Q

−
−

− −

= =   (10) 

Analogously, one has 
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( ) ( ) ( )1 1 1and |v v v v v vQ P A A P A P A A− − −= = ⇒   

( ) ( )
( )
1

1
1 1

and
| v v v

v v
v v

P A A QP A A
P A Q

−
−

− −

= =   (11) 

 

   
Figure 5: Again a neat agreement between the numerical result (blue points) and the analytical solution 

(red joined points), using a binomial distribution for Pv and Qv. 

Several Lineages 
In this section, I will calculate the probability ,v mR  that 0 m n≤ ≤  lineages are still present at 
generation v, knowing that there were 1n ≥  in the beginning. As explained in the introduction, this is 
indeed the probability ( | )m nP B A  we are looking for. It is relabeled here for the sake of simplicity 
and clarity. Let’s proceed again step by step and begin with 1v =  and 0m = : 

1,0R  = P(the 1st mother has no girl and… and the nth mother has no girl) 

  = P(a mother has no girl)n
1
nP=   

With 1m =  one gets 

1,1R  = P(the 1st mother has at least 1 girl and the others none or…or 

    the nth mother has at least 1 girl and the others none)  
  = n P(any mother has at least 1 girl and the others none) 
  = n P(any mother has at least 1 girl) P( 1n −  mothers have no girl) 
  = 1

1 1
nnQ P −   

For 2m =  we have 

1,2R  = P(the 1st and 2nd mother have at least one girl and 2n −  none or… or 

    the 1st and the 3rd mother have at least one girl and 2n −  none or… or) 

  = 2 2
1 12

nn
Q P − 

 
 

  

From this it is easy to guess the formula for an arbitrary m and 1v = : 

1, 1 1
m n m

m

n
R Q P

m
− 

=  
 
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Let’s now proceed analogously for 2v = : 

2,0R  = P( 

    1 lineage of the 1st gen. has survived and dies out at the 2nd or… or 
    k lineages of the 1st gen. have survived and all die out at the 2nd or … or 

    n lineages of the 1st gen. have survived and all die out at the 2nd)
1

n

k
k

a
=

= ∑   

with 

ka  = P(k lineages of the 1st gen. have survived and all die out at the 2nd) 
 = P(k lineages of the 1st gen. have survived) P(all k die out at the 2nd) 
 = 1,kR P(all k lineages die out at the 2nd gen.) 
 = 1,kR P(any lineage dies out at the 2nd gen.)k 

P(any lineage dies out at the 2nd gen.) = 12P Q  according to equation 10 because it is a conditional 
probability, knowing that the lineage survived at the precedent generation, finally getting 

2
1,

1

k

k k
Pa R
Q

 
=  

 
 and 2

2,0 1,
1 1 1

kn n

k k
k k

PR a R
Q= =

 
= =  

 
∑ ∑  

For 1m =  we have 

2,1R  = P( 

    1 lineage of the 1st gen. has survived and also survives at the 2nd or… or 
    k lineages of the 1st gen. have survived and only the 1st survives at the 2nd or … or 
    k lineages of the 1st gen. have survived and only the kth survives at the 2nd or … o 
    n lineages of the 1st gen. have survived and only the 1st survives at the 2nd or … or 
    n lineages of the 1st gen. have survived and only the nth survives at the 2nd or … or)

 
1

n

k
k

a
=

= ∑  

with 

ka  = P( 
   k lineages of the 1st gen. have survived and only the 1st survives at the 2nd or … or 
   k lineages of the 1st gen. have survived and only the kth survives at the 2nd) 
 = k P(k lineages of the 1st gen. have survived) P(1 of k lineages survives at the 2nd) 
 = k 1,kR P(1 of k lineages survives, the others dying out at the 2nd gen.)  
 = k 1,kR P(1 lineage survives at the 2nd gen.) P(the others dying out at the 2nd gen.) 
 = k 1,kR P(1 lineage survives at the 2nd gen.) P(any lineage dies out at the 2nd gen.)k-1 

P(1 lineage survives at the 2nd gen.) and P(any lineage dies out at the 2nd gen.) are again conditional 
probabilities, knowing that all k lineages survived at the 1st generation, which are given by equations 
10 and 11, yielding  

1

2 2
1,

1 1

k

k k
Q Pk R
Q Q

a
−

 
 
 

=  and 
1

2 2
2,1 1,

1 11 1

kn n

k k
k k

Q PR a k R
Q Q

−

= =

 
= =  

 
∑ ∑   
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The case 2m =  is only slightly more complicated: 

2,2R  = P( 

    2 lin. have survived at the 1st gen. and those have survived at the 2nd gen. or… or 
    k lin. have survived at the 1st gen. and 2 of those have survived at the 2nd gen. or… or 

    n lin. have survived at the 1st gen. and 2 of those have survived at the 2nd gen.) 
2

n

k
k

a
=

= ∑  

with  

ka  = P(k lineages have survived at the 1st gen. and 2 of those have survived at the 2nd gen.) 
 = P(k lineages have survived at the 1st gen.) P(2 of k lineages have survived at the 2nd gen.) 
 = 1,kR P(2 of k lineages have survived at the 2nd gen. and 2k −  died out) 

 =
2 2 2 2

2 2 2 2
1, 2,2 1,

2 21 1 1 12 2

k kn n

k k k
k k

k kQ P Q PR R a R
Q Q Q Q

− −

= =

          
= =          

          
⇒ ∑ ∑  

From this, it is straightforward to guess the general formula for an arbitrary m: 

2 2
2, 1,

1 1

m k mn

m k
k m

kQ PR R
mQ Q

−

=

    
=     

    
∑  

From here, the general case for an arbitrary v is also evident: 

, 1,
1 1

m k mn
v v

v m v k
k mv v

kQ PR R
mQ Q

−

−
=− −

    
=     

    
∑   (12) 

where 0, 0mR =  for 0 m n≤ <  and 0, 1nR =  because there are certainly n original mothers in the 
beginning. Analogously 0 1Q =  because this is the probability that there is a single original mother. 
However, this formula is only valid for 0m > . For 0m = , we need to use the following formula to 
prevent that k starts with 0. 

,0 1,
1 1

kn
v

v v k
k v

PR R
Q−

= −

 
=  

 
∑  

,v mR  can be tested numerically for different d, using a uniform distribution (see codes.nb). The results 
for 4n =  can be seen in figure 6, which shows that if d is low, the probability that only one lineage 
survives is higher than the others for the first generations. This is because the likelihood of a lineage 
becoming extinct is high when d is low. Thereby, it is more likely that the lineages die out early. This 
situation slowly inverses for d increasing. What is also very well visible again is the convergence of 

,v mR  for increasing v.  

When using a binomial distribution, the disparity of ,v mR  from very low to very high is even more 
manifest such that a logarithmic plot must be used to distinguish the data. As shown by figure 7, if m 
is increased from 1 to 5n = , the highest probability occurs if m n=  (left). In other words, the 
likelihood of a bottleneck is very low for high fertility rates, as mentioned in the introduction. A 
similar behavior occurs if 1m =  and n is increased (right), having again the highest probability if 
m n= . 
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d = 1 

 

d = 2 

 
d = 3 

 

d = 4 

 
d = 5 

 

d = 6 

 
Figure 6: The probability Rv,m that m lineages survive after v generations, knowing that there were n = 4 
in the beginning and using a uniform distribution. The black points are the numerical results, while the 

colored joined points represent the analytical solution.  
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n = 5 

 

m = 1 

 
Figure 7: The probability Rv,m that m lineages survive after v generations, using a binomial distribution. 

Left: n = 5 and m is increased. For m = 1, the numerical result (black points) is somewhat inaccurate 
because this case rarely occurs in the algorithm, which is why its relative frequency is approximate. In 

addition, the error is amplified because of the logarithmic plot. Right: m = 1 and n is increased.  

Results 
We are now able to calculate and discuss equation 3, that is, the probability ( )|n mP A B  that there 
have been n lineages in the beginning, knowing that there are m at present. As there is indeed only 
one lineage at present, 1m =  will always be tacitly used. I will first take a uniform distribution for 
the ib  because it is interesting to see how this probability behaves for different d, which is difficult to 
show if they are a binomial distribution. I will therefore label  

( ) ( )
( )

|
|

|
m n

n m t
m kk m

P B A
U P A B

P B A
=

= =
∑

 

where ( ) ,|m n v mP B A R=  according to equation 12, which depends on the parameters v, m, n, t and d. 
These are too numerous to be able to discuss every interdependence between them. Nevertheless, as 
can be seen from figure 8, a general trend valid for every d is that if v increases, vU  decreases for 
small n and increases for greater n. What can be observed too is that the vU  seem to converge to a 
limit for every n, which will be discussed using a binomial distribution. This convergence is all the 
more rapid for d increasing from 1 to more realistic values up to 6. The most important aspect is that 

1nU =  has the highest probabilities for every v and 2d > . Not only does it have the highest probabilities 
but it is also largely superior to 50%, which means that 1 1n nU U= >> . In other words, if it can be 
confirmed that the vU  really converge to a limit for increasing v, the probability that originally there 
was only 1 lineage is superior to the probability that there were more than 1 lineage. 

Now that we know that 1 50%nU = >  for 6d =  and 7t =  we can set 1n =  and check whether this is 
also the case for greater t. As shown by figure 9, U converges rapidly if t is increased from 2 to 8 for 
the same 6d = , the curves becoming almost indistinguishable for 4t > . Apparently, the convergence 
of ,v mR  if n is increased (fig. 7 right) also leads to the convergence of the sum in the denominator of 
U. What can also be seen from figure 9 is that U converges for increasing v, which is indeed a 
confirmation of what has been observed in the previous sections. This is very fortunate because a 
calculation of U over thousands of generations from the present of the mitochondrial Eve to today 
becomes unnecessary. In the contrary case, such a calculation would be impossible not only with a 
PC but also with a supercomputer.  
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d = 1 

 

d = 2 

 
d = 3 

 

d = 4 

 
d = 5 

 

d = 6 

 
Figure 8: The probability U that there were initially n lineages, knowing that at present there is only one 

and using a uniform distribution for the bi. 

Let us now see if this convergence regarding both t and v also occurs with a binomial distribution. In 
this case, I will label ( )|n mW P A B= , the letter W standing for a weighted distribution. As can be 
seen from figure 10, the convergence is even more rapid for both t and v, which allows for the 
conclusion that W is over 90%  for very great t and v. 
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Figure 9: U converges rapidly for increasing t and v in the case where d = 6 and n = 1. 

 
Figure 10: In the case of a binomial distribution, W also converges rapidly for increasing t and v, from 

which one can infer that W is over 90% for any t and v.  

So the final statement is that the unlikeliness of a mitochondrial Eve, as claimed by most evolutionary 
biologists, is clearly refuted. What still can be discussed is how it is biologically (not mathematically) 
possible that monogenism can apparently emerge from a very large population without having to go 
through a bottleneck, an extinction of the other lineages being very unlikely.  

When reasoning in evolutionary terms, one could resort to allopatric speciation theorized by Ernst 
Mayr (1954 pp. 157-180), according to which speciation cannot happen in a large population due to 
constant mixing up of the gene pool. Therefore, this concept predicts that only when a small group of 
individuals splits from the main group and remains separated for a long time due to a geographic 
barrier, it acquires enough genetic changes to become a new species. However, as I have shown 
(Utiger 2020), there is by far not enough time for even the most favorable case of such a scenario, 
that is, a single couple split from the main group.  

So something very special must have happened at the time of the mitochondrial Eve, something that 
cannot be understood in evolutionary terms, which seems to baffle many scholars, beating around the 
bush instead of putting a proper name to the mystery. Often, they stick to Gould and Eldredge’s 
“punctuated equilibrium”, as mentioned in the introduction. Tattersall (2009) calls it “a single change 
in gene regulation”, while Dawkins (2006 p. 230) correctly dares to declare that “the only alternative 
explanation… is divine creation”, only to reject his statement immediately in the next sentence, 
without giving further justifications… 
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