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Plant silicon defences suppress herbivore performance extensively, but mode of feeding is key
Fig. S1. PRISMA flow diagram
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Fig. S2. Impacts of plant silicon on variance (lnVR) in herbivore performance depending on herbivore feeding guild. The orchard plot shows the meta-analytic mean (mean effect size – empty black circle) with its 95% confidence interval (thick horizontal whisker line) and 95% prediction interval (thin horizontal whisker line), with individual observed effect sizes as coloured circles scaled by their precision (1/SE). The four most represented feeding guilds (> 15 observations) are shown (see Fig. 2A and B for overall values across al guilds). The number of effect sizes is denoted as k. Lowercase letters indicate significant differences between groups.
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Fig. S3. Comparing impacts of silicon defences on the change in variance (lnVR) in arthropod fluid-feeding and chewing herbivores performance when feeding on (A) Poaceae versus non-Poaceae, (B) annual versus perennial plants and (C) and in terms of herbivore diet breadth (specialist versus generalist). The orchard plot shows the meta-analytic mean (mean effect size – empty black circle) with its 95% confidence interval (thick horizontal whisker line) and 95% prediction interval (thin horizontal whisker line), with individual observed effect sizes as coloured circles scaled by their precision (1/SE). The number of effect sizes is denoted as k.
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Explanatory Notes for the PRISMA-EcoEvo Checklist
6.2. The searches were conducted by two people, with one person conducting the screening.
7.4. In the case of missing data or results alluded to in text, but not reported, the corresponding author was contacted. For performance responses derived from repeated measures (e.g. population size), the mean of the repeated measures was used unless these were cumulative in which case the final value was used. In studies with multiple rates of silicon application, performance on plants receiving the highest treatment was used for the ‘high’ (+Si) response. Where studies included more than one plant cultivar, a single value was obtained by taking a mean value of performance across cultivars.
7.5. The data was collected by Scott N. Johnson (SNJ).
7.6. Extractions by SNJ were verified / checked for accuracy for four studies by Jamie M. Waterman (JMW).
8.4. Units of replication varied depending on response variable being reported; they were either for individuals or populations 
Table S1. Summary of Tables in the Appendix A
	Table
	Description / Legend
	Interpretation, further information and related Figure(s)

	Dataset and calculations of effect sizes and variance

	Extended
Data Table 1
	The meta-analytic dataset of this study
	Also incorporates tables providing sample sizes and missing data patterns


	Table E1 
	Overall effects (meta-analytic means), 95% confidence intervals (CIs) and 95% prediction intervals (95%)
	Relates to how plant silicon affects the mean change and variability in herbivore performance (see Fig. 2A and 2B)  

	Table E2 
	Variance components (V) and heterogeneity, I2 from the metafor model. Note that in these models, I2[total] is the sum of variance components of plant phylogeny, plant species, herbivore phylogeny, study and effect (within study). 

	Relates to how plant silicon affects the variance in herbivore performance 

	Table E3 
	Overall effects (meta-analytic means), 95% confidence intervals (CIs) and 95% prediction intervals (95%).

	Relates to the mean change and variability in silicon content in high silicon plants relative to low silicon plants (see Fig. 2C and 2D)  

	Table E4
	Variance components (V) and heterogeneity, I2 from the metafor model. Note that in these models, I2[total] is the sum of variance components of plant phylogeny, plant species and study.

	Relates to the variance in silicon content in high silicon plants relative to low silicon plants

	Meta-regression the individual effects of the four predictors 

	Table E5
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnRR comparing Poaceae and Non–Poaceae plants 
	How plant silicon affects the mean change in herbivore performance when feeding on plants belonging to either the Poaceae or non-Poaceae (see Fig. E3 upper panel)

	Table E6
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnVR comparing Poaceae and Non–Poaceae plant
	How plant silicon affects the variance in herbivore performance when feeding on plants belonging to either the Poaceae or non-Poaceae (see Fig. E3 lower panel)

	Table E7
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnRR comparing plant lifespan (annual versus perennial).
	Mean change in performance comparing annual or perennial plant lifespans (see Fig. E4 upper panel) – see above

	Table E8
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnVR comparing plant lifespan (annual versus perennial).
	Variance in performance comparing annual or perennial plant lifespans (see Fig. E4 lower panel) – see above

	Table E9
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnRR comparing diet breadth (specialist or generalist).
	Mean change in performance comparing diet breadth (specialist or generalist) (see Fig. E5 upper panel)

	Table E10
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnVR comparing diet breadth (specialist or generalist).
	Variance in performance comparing diet breadth (specialist or generalist) (see Fig. E5 lower panel)

	Table E11
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnRR comparing herbivore feeding guild (all 7 groups).
	Mean change in performance comparing the herbivores’ feeding guild (all 7 groups: fluid-feeding arthropods, chewing arthropods, boring arthropods, mammalian chewers, cell-feeding arthropods, leaf-mining arthropods and rasping / grazing invertebrates) (see Fig. E6 upper panel)

	Table E12
	Regression coefficients (estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] = 0.87% from the meta-regression of lnVR comparing herbivore feeding guild (all 7 groups).
	Variance in performance comparing the herbivores’ feeding guild (as above) (see Fig. E6 lower panel)

	Interaction effects exploring whether chewing and fluid-feeding arthropods are affected differently depending on the four predictors 

	Table E13
	Regression coefficients (estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) = 3.85% from the meta-regression of lnRR with Lifespan_guild.
	Mean change in herbivore performance comparing chewing and fluid-feeding arthropods when feeding on annual or perennial plant species (See Fig. 4B in the main text)


	Table E14
	Table E14: Regression coefficients (estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) = 2.27% from the meta-regression of lnVR with Lifespan_guild.
	As above but for variance in herbivore performance (See Fig. S2B in Appendix B)

	Table E15
	Regression coefficients (estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) = 3.17% from the meta-regression of lnRR with Poaceae_guild.
	Mean change in herbivore performance comparing chewing and fluid-feeding arthropods when feeding on plant species belonging to the Poaceae or non-Poaceae (See Fig. 4A in the main text)


	Table E16
	Regression coefficients (estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) = 1.47% from the meta-regression of lnVR with Poaceae_guild.
	As above but for variance in herbivore performance (See Fig. S3A in Appendix B)

	Table E17
	Regression coefficients (estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) = 3.37% from the meta-regression of lnRR with Diet_guild.
	Mean change in herbivore performance comparing chewing and fluid-feeding arthropods with contrasting diet breadth (generalist or specialist feeders) (See Fig. 4C in the main text)


	Table E18
	Regression coefficients (estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) = 1.06% from the meta-regression of lnVR with Diet_guild.
	As above but for variance in herbivore performance (See Fig. S3C in Appendix B)

	Model selection multi-predictor model

	Table E19
	The top 2 models (out of 16 possible models) within the ΔAIC difference of 2, and which 4 variables: Plant_lifespan, Poaceae_or_Non, Herbivore_diet_breadth, and Feeding_guild were included (indicated by +); model weights (for the 4 models) and the sum of weights for each of the variables (from the 16 models) are included.
	Selection for lnRR

	Table E20
	The average estimates for regression coefficients (Estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) from the 4 best meta-regression models.
	Averaging for lnRR

	Table E21
	The top 6 models (out of 16 possible models) within the ΔAIC difference of 2, and which 4 variables: Plant_lifespan, Poaceae_or_Non, Herbivore_diet_breadth, and Feeding_guild were included (indicated by +); model weights (for the 6 models) and the sum of weights for each of the variables (from the 16 models) are included.
	Selection for lnVR

	Table E22
	The average estimates for regression coefficients (Estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) from the 4 best meta-regression models.
	Averaging for lnVR

	Publication Bias Analysis

	Table E23
	Regression coefficients (Estimate), 95% confidence intervals (CIs), P values, variance explained, R2[marginal] (R2) from the meta-regression with sqrt (Effective_N).
	Egger regression to test for publication bias in lnRR without predictors (univariate) – see Fig. E8

	Table E24
	Regression coefficients (Estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) from the meta-regression with sqrt(Effective_N), Plant_lifespan, Poaceae_or_Non, & Feeding_guild.
	Egger regression to test for publication bias in lnRR with predictors (multivariate) – see Fig. E9

	Table E25
	[bookmark: _Hlk137720769]Regression coefficients (Estimate), 95% confidence intervals (CIs), and variance explained, R2[marginal] (R2) from the meta-regression with effective sample size (N).
	Egger regression to test for publication bias in lnRR in terms of effective sample size N.

	Table E26 
	Regression coefficients (Estimate), 95% confidence intervals (CIs), P value and variance explained, R2[marginal] (R2) from the meta-regression with Year.

	Time-lag bias tests of lnRR without predictors (univariate) – See Fig. E10

	Table E27 
	Regression coefficients (Estimate), 95% confidence intervals (CIs), P values, and variance explained, R2[marginal] (R2) from the meta-regression with Year, `Plant_lifespan, Poaceae_or_Non, & Feeding_guild.
	Time-lag bias tests of lnRR with predictors (multivariate)




Table S2. Summary of Figures in the Extended Data section (Appendix A)
	Figure
	Description / Legend
	Interpretation, further information and relevant Table

	Fig. E1
	Mean-variance relationships for (A and B) herbivore performance and (C and D) silicon content in experimental (i.e. Si supplemented) and control plants.
	

	Fig. E2
	Phylogenetic trees for plants (left panel) and herbivores (right panel).
	

	Meta-regression: the individual effects of the four predictors

	Fig. E3
	Mean change (lnRR) and change in SD (lnVR) in herbivore performance when feeding on Poaceae and non-Poaceae plants. The orchard plot shows the meta-analytic mean (mean effect size) with its 95% confidence interval (thick line) and 95% prediction interval (thin line), with observed effect sizes based on sample sizes.
	How plant silicon affects the mean change and variance in herbivore performance when feeding on plants belonging to either the Poaceae or non-Poaceae (see Tables E5 and E6)

	Fig. E4
	Mean change (lnRR), and change in SD (lnVR) in herbivore performance when feeding on annual or perennial plants. The orchard plot shows the meta-analytic mean (mean effect size) with its 95% confidence interval (thick line) and 95% prediction interval (thin line), with observed effect sizes based on sample sizes.

	How plant silicon affects the mean change and variance in herbivore performance when feeding on plants with either annual or perennial lifespans (see Tables E7 and E8)

	Fig. E5
	[bookmark: _Hlk124930174]Mean change (lnRR) and change in SD (lnVR) in herbivore performance comparing herbivore diet breadth (generalist or specialist). The orchard plot shows the meta-analytic mean (mean effect size) with its 95% confidence interval (thick line) and 95% prediction interval (thin line), with observed effect sizes based on sample sizes.
	How plant silicon affects the mean change and variance in herbivore performance comparing the herbivores’ diet breadth (generalist or specialist) (see Tables E9 and E10)

	Fig. E6
	[bookmark: _Hlk124930920]Mean change (lnRR) and change in SD (lnVR) in herbivore performance comparing herbivore feeding guild (all 7 groups). The orchard plot shows the meta-analytic mean (mean effect size) with its 95% confidence interval (thick line) and 95% prediction interval (thin line), with observed effect sizes based on sample sizes.
	How plant silicon affects the mean change and variance in herbivore performance comparing the herbivores’ feeding guild (all 7 groups) (see Tables E11 and E12)

Feeding guilds with fewer than 10 observations (cell-feeding and leaf mining arthropods and rasping / grazing invertebrates were removed for Fig. 3A and Fig. 3B in the main text.


	Publication bias analyses

	Fig. E7
	A residual funnel plot from the meta-regression model with Plant_lifespan, Poaceae_or_Non, & Feeding_guild; ‘residual value’ is on lnRR and ‘inverse standard error’ is precision 1/sqrt(varlnRR).
	Funnel plot to examine publication bias of lnRR including all four predictors

	Fig. E8
	A bubble plot showing a predicted regression line for the contentious variable sqrt (Effective_N), indicating 95% confidence regions (orange dotted lines) and 95% prediction regions (blue dotted lines), with observed effect sizes based on various sample sizes.
	Egger regression to test for publication bias in lnRR without predictors (univariate) – See Table E23

	Fig. E9
	A bubble plot showing a predicted loess line for the contentious variable sqrt(Effective_N) (given the values of the other 3 variables in the model), with their 95% confidence regions (orange dotted lines) and 95% prediction regions (blue dotted lines) with observed effect sizes based on various sample sizes. Note that the lines are not linear as these are based on multivariate predictions of the data points.
	Egger regression to test for publication bias in lnRR with predictors (multivariate) – See Table E24

	Fig. E10
	A bubble plot showing a predicted regression line for the contentious variable Year, indicating 95% confidence regions (orange dotted lines) and 95% prediction regions (blue dotted lines), with observed effect sizes based on various precisions (1/SE).
	Graphical depiction of time-lag bias tests of lnRR without predictors (univariate) – See Table E26

	Fig. E11
	A bubble plot showing a predicted loess line for the contentious variable Year (given the values of the other 3 variables in the model), with their 95% confidence regions (orange dotted lines) and 95% prediction regions (blue dotted lines) with observed effect sizes based on various sample sizes. Note that the lines are not linear as these are based on multivariate predictions of the data points.
	Graphical depiction of time-lag bias tests of lnRR with predictors (multivariate) – See Table E27



Table S3. Search strings used in Scopus and Web of Science as of 20 January 2023.
	Source, date
	Search string
	Number of records

	Scopus, 20 January 2023
	TITLE-ABS-KEY (silic* AND plant* AND (herbiv* OR  insect OR mammal  OR  invertebrate  OR  vertebrate)  AND NOT  ( silico ))
	903

	Web of Science Core Collection, 20 January 2023
	TS = (silic* AND plant* AND (herbiv* OR insect OR mammal OR invertebrate OR vertebrate) NOT (silico))
	693

	 
	Total
	1596

	 
	Total
	1077 (unique)

	Other sources (e.g., websites and online early notifications)
	handsearching
	12 (full-text)



Table S4. Studies that did not meet eligibility criteria.
	Principal reason for exclusion
	Number
	Studies

	Abstract only (no data)
	1
	(1)

	Duplicated data (elsewhere reported)
	4
	(2-5)

	Foliar silicon sprays
	5
	(6-10)

	Modelling study
	1
	(11)

	No control
	1
	(12-15)

	No sample size
	2
	(16, 17)

	No herbivore 
	31
	(18-48)

	No plant
	8
	(49-56)

	No silicon component
	3
	(57-59)

	No variance given (no standard error or standard deviation)
	42
	(60-101)

	Reviews (no original research reported)
	22
	(102-123)



References given at the end of Appendix B



















Table S5. Plant families and species used in the meta-analysis (Total observations = 721)
	Plant Family and Species
	Number of observations

	Asteraceae
	22

	Dendranthema grandiflorum
	9

	Helianthus annuus
	11

	Zinnia elegans
	2

	Brassicaceae
	22

	Brassica napus
	3

	Brassica oleracea
	19

	Cucurbitaceae
	15

	Cucumis sativus
	15

	Euphorbiaceae
	2

	Euphorbia pulcherrima
	2

	Fabaceae
	22

	Glycine max
	12

	Medicago sativa
	2

	Phaseolus vulgaris
	8

	Haloragaceae
	1

	Myriophyllum spicatum
	1

	Lamiaceae
	6

	Solenostemon scutellarioides
	6

	Malvaceae
	12

	Gossypium hirsutum
	12

	Mixed
	7

	Mixed plant species
	7

	Moraceae
	3

	Ficus lyrata
	3

	Pinaceae
	11

	Picea sitchensis
	1

	Pinus taeda
	10

	Poaceae
	567

	Agrostis capillaris
	12

	Brachypodium distachyon
	37

	Brachypodium pinnatum
	12

	Bromus catharticus
	1

	Deschampsia cespitosa
	10

	Eleusine coracana
	3

	Festuca arundinacea
	6

	Festuca ovina
	27

	Festuca rubra
	3

	Lolium multiflorum
	4

	Lolium perenne
	29

	Miscanthus giganteus
	2

	Oryza sativa
	125

	Panicum virgatum
	4

	Phalaris aquatica
	8

	Poa annua
	13

	Saccharum officinarum
	4

	Saccharum spp.
	49

	Table S4. Continued

	Poaceae
	

	Sorghum bicolor
	14

	Stenotaphrum secundatum
	1

	Triticum aestivum
	105

	Zea mays
	98

	Rutaceae
	8

	Citrus latifolia
	7

	Citrus reticulata
	1

	Solanaceae
	21

	Capsicum annum
	3

	Solanum lycopersicum
	5

	Solanum melongena
	1

	Solanum tuberosum
	12

	Vitaceae
	2

	Vitis vinifera
	2





Table S6. Herbivore families and species used in the meta-analysis (Total observations = 721)
	Plant Family and Species
	Number of observations

	Artiodactyla
	11

	Ovis aries
	11

	 Lagomorpha
	1

	Oryctolagus cuniculus
	1

	Acari
	8

	Tetranychus urticae
	8

	Coleoptera
	22

	Dermolepida albohirtum
	9

	Diabrotica speciosa
	1

	Hylobius abietis
	1

	Lissorhoptrus oryzophilus
	2

	Listronotus bonariensis
	8

	Sericesthis geminata
	1

	Diptera
	1

	Liriomyza spp.
	1

	Gastropoda
	2

	Deroceras reticulatrum
	2

	Hemiptera
	269

	Acyrthosiphon pisum
	2

	Aleurocanthus woglumi
	1

	Aphis gossypii 
	1

	Bemisia tabaci
	35

	Blissus insularis
	1

	Brevicoryne brassicae
	4

	Cinara atlantica
	10

	Diaphorina citri
	7

	Diuraphis noxia
	16

	Macrosiphoniellas anborni
	1

	Mahanarva fimbriolata
	7

	Myzus persicae
	12

	Nephotettix virescens
	3

	Nilaparvata lugens
	25

	Planococcus citri
	9

	Rhopalosiphum maidis
	22

	Rhopalosiphum padi
	9

	Schizaphis graminum
	54

	Sitobion avenae
	42

	Sogatella furcifera
	6

	Trialeurodes vaporariorum
	2

	Lepidoptera
	351

	Acentria ephemerella
	1

	Busseola fusca
	4

	Chilo partellus 
	2

	Chilo suppressalis
	8

	Chlosyne lacinia saundersii
	11

	Cnaphalocrocis medinalis
	40

	Coenonympha pamphilus
	3

	Table S5. Continued.
	

	Diatraea saccharalis
	22

	Eldana saccharina
	18

	Epiphyas postvittana 
	2

	Helicoverpa armigera
	28

	Helicoverpa punctigera
	12

	Herpetogramma phaeopteralis
	4

	Parnara guttata
	1

	Plutella xylostella
	15

	Pseudaletia unipuncta
	6

	Scirpophaga incertulas
	18

	Sesamia inferens
	5

	Sesamia spp.
	5

	Spodoptera exempta
	47

	Spodoptera exigua
	1

	Spodoptera frugiperda
	98

	Orthoptera
	35

	Acheta domesticus
	7

	Oxya grandis
	2

	Schistocerca americana
	4

	Schistocerca gregaria
	22

	Rodentia
	17

	Cavia porcellus
	2

	Microtus agrestis
	15

	Thysanoptera
	4

	Fulmekiola serrata
	1

	Scirtothrips dorsalis
	3
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