
Appendix A Proofs

A.1 Proof of Lemma 1

Consider M positive definite (d× d) covariance matrices Ωm, m = 1, ...,M and suppose B is any

invertible (d×d) matrix such that B−1ΩmB
′−1 are diagonal matrices with strictly positive diagonal

entries. It follows that B−1Ω1B
′−1 = Λ−1

m B−1ΩmB
′−1 for some (d × d) diagonal matrices Λ−1

m ,

m = 2, ...,M , that have strictly positive diagonal entries. Elementary matrix algebra then shows

that these identities are equivalent to BΛm = ΩmΩ
−1
1 B, m = 2, ...,M . Thus, the matrices B

and Λm solve the eigenvalue problem of ΩmΩ
−1
1 with the diagonal of Λm = diag(λm1, ..., λmd)

containing the strictly positive eigenvalues and the columns of B being the related eigenvectors.

Since this holds for any invertible (d×d) matrix B that simultaneously diagonalizes the covariance

matrices, it is also a necessary property of a time-varying B-matrix Bt.

Suppose also BA solves the eigenvalue problems of ΩmΩ
−1
1 , m = 2, ...,M , for some invertible

(d×d) matrix A. That is, BAΛm = ΩmΩ
−1
1 BA which is equivalent to AΛmA

−1 = B−1ΩmΩ
−1
1 B.

But since B−1ΩmΩ
−1
1 B = Λm, this implies that AΛmA

−1 = Λm, which is equivalent to AΛm =

ΛmA. Thus, λmiaij = λmjaij where aij is the ijth element of A. It follows that aij = 0 if

λmi ̸= λmj for some m, implying that A is diagonal matrix under Assumption 1, and BA multiplies

each of the columns of B by a scalar. It is well known that eigenvalues of a matrix are unique (up

to order), but since the diagonal elements of Λm can be in any order, so can the related eigenvectors

that are the columns of B. That is, B is unique up to scalar multiples and ordering of its columns.

Since the above holds for any appropriate B-matrices B and BA, it holds also for a time-varying

B-matrix Bt at each t.■
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A.2 Proof of Proposition 1

Lemma 1 shows that the B-matrix Bt is unique up to scalar multiples and reordering of its columns.

Suppose the conditional covariance matrix of the structural error is normalized to a constant diag-

onal matrix with strictly positive diagonal entries, say C. That is,
∑M

m=1 αm,tB
−1
t ΩmB

′−1
t = C,

which is equivalent to
∑M

m=1 αm,tΩm = BtCB′
t. Suppose that this identity also holds with an-

other B-matrix, BtEt, where Et is a possibly time-varying, invertible (d × d) matrix. We have∑M
m=1 αm,t(BtEt)

−1Ωm(BtEt)
′−1 = C, which is equivalent to

∑M
m=1 αm,tΩm = (BtEt)C(BtEt)

′.

Thus, BtCB′
t = (BtEt)C(BtEt)

′. By Lemma 1, the B-matrix is unique up to scalar multiples and

reordering of its columns, so with a given ordering of the columns, Et is a diagonal matrix. It then

follows from BtCB′
t = (BtEt)C(BtEt)

′ that C = EtCEt, which in turn implies ci = e2t,ici, where

ci and et,i are the ith diagonal elements of C and Et, respectively. Therefore, et,i = ±1, implying

that with a given ordering of the columns, (for each t) Bt is unique up to changing all signs in a

column. Therefore, Bt is unique up ordering of its columns and changing all signs in a column.■

A.3 Proof of Proposition 2

Let Ω1, ...,ΩM be positive definite covariance matrices. We consider the decomposition Ω1 =

WW ′ and Ωm = WΛmW
′, m = 2, ...,M, where Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, .., d),

contains the eigenvalues of ΩmΩ
−1
1 in the diagonal and the columns of the nonsingular W are the

related eigenvectors. The decomposition always exists when M = 2 (see, e.g., Muirhead, 1982,

Theorem A9.9) but not necessarily when M ≥ 3. In the following, we assume the covariance

matrices satisfy the decomposition.

Repeating some of the proof in Lanne, Lütkepohl, and Maciejowska (2010, p. 130; see also the

proof of Theorem A9.9 in Muirhead, 1982) for convenience, suppose that we also have Ω1 =

DD′ and Ωm = DΛmD
′, m = 2, ...,M , for some nonsingular (d × d) matrix D. Because

D−1WW ′D′−1 = D−1Ω1D
′−1 = Id, the matrix Q′ ≡ D−1W is orthogonal, and hence, D = WQ
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and ΛmQ = QΛm. It follows that λmiqij = λmjqij where qij is the ijth element of Q. Thus, qij = 0

if λmi ̸= λmj for some m. Assuming that this (Condition (1)) is satisfied by the last d1 ∈ {1, ..., d}

eigenvalues, it follows that Q is a block-diagonal matrix with two blocks in the diagonal. Denoting

d0 ≡ d− d1, the first block is a (d0 × d0) matrix and the second one is a (d1 × d1) diagonal matrix

with qd0+1,d0+1, ..., qd,d in the diagonal (if d1 = d, Q simply reduces to a diagonal matrix).

As the blocks in the diagonal of an orthogonal block-diagonal matrix are orthogonal and the real

eigenvalues of a diagonal orthogonal matrix are ±1, it follows that the real eigenvalues of the

second block in the diagonal of Q are ±1. Then, because the eigenvalues of a block-diagonal

matrix are the eigenvalues of the blocks in the diagonal, and eigenvalues of a diagonal matrix are

its diagonal elements (and Q is real), it must be that qd0+1,d0+1, ..., qd,d are ±1.

Thus, because D = WQ, the last d1 columns of W are unique up to changing all signs in a

column for given Λm, m = 2, ...,M . Since Λm are unique up to ordering of the diagonal elements

and Condition (2) fixes a unique ordering for the last d1 columns of W and hence also for the

related eigenvalues λmi, i > d0, the last d1 columns of the B-matrix (3.5) (in the main paper) are

uniquely identified up to changing all signs in a column. Finally, Condition (3) fixes the signs

in the last d1 columns of W and consequently of Bt, implying that the last d1 columns of the

B-matrix are (globally) unique for given mixing weights α1,t, ..., αM,t. Moreover, if d1 = d, the

decomposition (3.4) (in the main paper) of Ω1, ...,ΩM is (globally) unique.■

A.4 Proof of Proposition 3

Consider the matrix decomposition of Ωm, m = 1, ...,M , of Proposition 1. It is shown in the

proof of Proposition 1 that any (d× d) matrix D that also satisfies Ω1 = DD′ and Ωm = DΛmD
′,

m = 2, ...,M , can be presented as D = WQ where Q is orthogonal and qij = 0 when λmi ̸= λmj

for some m. Then, observe that the jth column of WQ is a linear combination of the columns of

W , with the multiplier of the ith column given by qij . Denoting d0 ≡ d − d1, it follows that if
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λmi = λmj for i ̸= j > d0 and all m, but for all l ̸∈ {i, j}, λml ̸= λmj for some m, the jth column

of WQ is a linear combination of the ith and jth columns of W . But if the jth column (of W and

WQ) obeys a zero restriction where the ith column obeys a strict sign restriction (Condition (4)),

the multiplier qij must be zero. That is, under the conditions of Proposition 3, with j = d0 + 1 and

i < j, we have ql,d0+1 = 0 for all l ̸= d0 + 1 and qlk = 0 for all l, k = d0 + 2, .., d such that l ̸= k.

By the above discussion, when d1 > 1, Q is a block-diagonal matrix with two blocks in the

diagonal: the first one being a (d0 + 1× d0 + 1) matrix

Q̃ ≡


q1,1 · · · q1,d0 0

... . . . ...
...

qd0,1 · · · qd0,d0 0
qd0+1,1 · · · qd0+1,d0 qd0+1,d0+1

 (A.1)

and the second one a (d1 − 1 × d1 − 1) diagonal matrix with qd0+2,d0+2, ..., qd,d in the diagonal.

When d1 = 1, we simply have Q = Q̃ where Q̃ is as in (A.1). Consequently, for k > d0 the kth

column of WQ equals to the kth column of W multiplied by qk,k. It then remains to show that

qk,k = ±1 for all k = d0 + 1, ..., d, after which global uniqueness of the last d1 columns of the

B-matrix can be concluded with arguments similar to the proof of Proposition 2.

Because only the last element of the last column of Q̃ is nonzero, the minors of the elements

qd0+1,1, ...., qd0+1,d0 are singular. Therefore, it follows from the cofactor presentation of the inverse

of Q̃ (e.g., Muirhead, 1982, Appendices A4 and A5) that only the last element in the last column

of the inverse of Q̃ is nonzero. Since Q̃ is orthogonal, as it is the upper-left block of the block-

diagonal orthogonal matrix Q, its transpose is also its inverse. Hence, only the last element in the

last column of the transpose of Q̃ is nonzero. Also, by the definition of Q̃, only the last element in

last row of the transpose of Q̃ is nonzero. That is, the transpose is of the form

Q̃′ =


q1,1 · · · qd0,1 0

... . . . ...
...

q1,d0 · · · qd0,d0 0
0 · · · 0 qd0+1,d0+1

 , (A.2)
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implying that

Q̃ =


q1,1 · · · q1,d0 0

... . . . ...
...

qd0,1 · · · qd0,d0 0
0 · · · 0 qd0+1,d0+1

 . (A.3)

The matrix Q is therefore an orthogonal block-diagonal matrix with two blocks in the diagonal.

The first block is the upper-left (d0 × d0) submatrix of Q̃ and the second block is the (d1 × d1)

diagonal matrix with qd0+1,d0+1, ..., qd,d in the diagonal. Now reasoning similar to the proof of

Proposition 2 shows that qk,k = ±1 for k = d0 + 1, ..., d.■

Appendix B A Monte Carlo study

This section presents the results from the small scale Monte Carlo study studying the estimator’s

finite sample performance on estimating the structural parameters. Because estimation of our

SVAR model can be tricky and computationally demanding, we assume the following simplistic

setup. We consider two-dimensional SVAR models with two volatility regimes and autoregressive

order p = 1. That is, the following model is employed:

yt = ϕ0 + A1yt−1 +W (α1,tId + α2,tΛ2)
1/2et, (B.1)

where et (2 × 1) is the structural error (which has a mixture normal distribution), Λ2 = diag(λ2)

and αm,t, m = 1, 2 are the mixing weights defined in Equation (2.3) in the main paper.

We use the parameter values ϕ0 = (0, 0), vec(A1) = (0.3, 0.1, 0.1, 0.3), and α1 = 0.6 throughout

and consider three different sets of parameter values for vec(W ) and λ2. In the first model (Model 1

in Table 1 below), we specify vec(W ) = (1.0,−0.5, 0.5, 0.80) and λ2 = (0.8, 1.8) as example of

parameter values with nonzero elements of the impact matrix and eigenvalues λ21, λ22 that are

not very close to each other. In the second model (Model 2 in Table 1), the upper-right element

of W is set to zero. Other than that, parameter values identical to Model 1 are used in order to
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study how the estimation accuracy changes when the impact matrix satisfies a recursive structure

but it is not imposed in the estimation. Finally, in the third model (Model 3 in Table 1), we set

λ2 = (1.5, 1.8) but use the same values in W as in Model 2 to study how the estimation accuracy

changes if the eigenvalues are close to each other. Model 3 is interesting because the parameters are

not identified if the eigenvalues are exactly equal to each other, unless (for instance) the recursive

structure is imposed in the estimation.

For each specification of vec(W ) and Λ2, we simulated 500 samples of lengths 250, 500’ 1000,

and 2000 from the SVAR process. For each sample, we then estimated the reduced form VAR,

p = 1,M = 2, model, decomposed the covariance matrices as in Equation (3.4) of the main

paper, and compared the estimates to the true parameter values. Because the model identifies only

up to the ordering of the regimes and ordering and signs of the columns of W , we compared the

estimates obtained from each ordering and signs to the true parameter values. Then, we chose

the ordering and signs that minimized the sum of the absolute values of the differences between

the true parameter values and the estimates (which is a standard procedure in the literature, e.g.,

Gouriéroux, Monfort, and Renne, 2017).

The results from the Monte Carlo study are summarized in Table 1. The first column shows the true

parameter values and rest of the four columns show the estimation results for the samples of length

250, 500, 1000, and 2000, respectively. In each of the four columns, the biases, i.e., the means of

the estimates over the Monte Carlo repetitions minus the true parameter values are presented first,

and next to the biases are the standard deviations of the estimates in parentheses. The results show

that estimation accuracy is reasonable, although there is some finite sample bias. The estimates,

nevertheless, become more accurate as the sample size increases. There is no noticeable difference

in the estimation accuracy between Model 1 and Model 2, which is expected, as the zero impact

response was not imposed in the estimation. Comparison to the results for Model 3, in turn, shows

that having the true λ21 and λ22 close to each other seems to decrease the estimation accuracy.

Particularly λ21 and λ22 are imprecisely estimated at small samples. The estimation accuracy of
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(vec(W ), λ2) T = 250 T = 500 T = 1000 T = 2000
Model 1

1.00 −0.04 (0.28) −0.03 (0.23) −0.02 (0.20) −0.01 (0.13)
−0.50 0.11 (0.42) 0.08 (0.36) 0.06 (0.30) 0.02 (0.20)
0.50 −0.10 (0.38) −0.06 (0.34) −0.06 (0.28) −0.03 (0.19)
0.80 0.00 (0.25) 0.00 (0.22) −0.01 (0.18) −0.02 (0.13)
0.80 −0.14 (0.63) −0.07 (0.57) −0.07 (0.37) −0.03 (0.32)
1.80 0.02 (1.25) 0.04 (1.08) 0.13 (0.83) 0.13 (0.66)

Model 2
1.00 −0.10 (0.27) −0.06 (0.19) −0.03 (0.13) −0.02 (0.12)

−0.50 0.01 (0.44) 0.01 (0.34) 0.02 (0.27) 0.02 (0.19)
0.00 −0.04 (0.38) −0.01 (0.33) −0.02 (0.25) −0.01 (0.17)
0.80 −0.05 (0.26) −0.03 (0.23) −0.02 (0.17) −0.02 (0.12)
0.80 −0.21 (0.59) −0.15 (0.48) −0.08 (0.35) −0.04 (0.26)
1.80 0.05 (1.15) 0.10 (1.07) 0.16 (0.84) 0.15 (0.67)

Model 3
1.00 −0.02 (0.19) −0.04 (0.18) −0.06 (0.16) −0.08 (0.12)

−0.50 0.07 (0.45) 0.08 (0.41) 0.06 (0.39) 0.06 (0.33)
0.00 −0.06 (0.44) −0.06 (0.43) −0.04 (0.41) −0.02 (0.37)
0.80 0.01 (0.26) −0.02 (0.24) −0.05 (0.25) −0.06 (0.22)
1.50 −0.43 (0.97) −0.31 (0.83) −0.15 (0.67) −0.03 (0.45)
1.80 −0.18 (1.24) −0.02 (1.07) 0.11 (1.02) 0.14 (0.55)

Table 1: Results from the Monte Carlo study on the estimator’s finite sample performance of
estimating the structural parameters. The first column shows the true parameter values and rest
of the four columns show the estimation results for samples of length 250, 500, 1000, and 2000,
respectively. In each column, the biases, i.e., the means of the estimates over the 500 Monte
Carlo repetitions minus the true parameter values are presented first, and next to the biases are the
standard deviations of the estimates in parentheses.

the parameters in W decreases less, but the standard deviations of the estimates are relatively large

also with the samples of length 2000.

Appendix C Details on the empirical application

C.1 Model selection and adequacy

The maximum likelihood (ML) estimation of the models, quantile residual diagnostics, estimation

of impulse response functions are carried out with the CRAN distributed R package gmvarkit

(Virolainen, 2018) that accompanies this paper. The R package gmvarkit also contains the dataset
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studied in the empirical application to facilitate reproduction of our results. The estimation is based

on the exact log-likelihood function.

Since the autoregressive dynamics are linear, we use residuals for studying remaining autocorre-

lation by employing the standard (adjusted) Portmanteau test. However, because the standardized

residuals are not the empirical counterparts of the standardized reduced form shocks, we also em-

ploy the multivariate quantile residuals proposed by Kalliovirta and Saikkonen (2010) to further

study the adequacy of our model (see also the related paper by Kalliovirta, 2012, for discussion on

quantile residual based model diagnostics in a univariate setting). For a correctly specified model,

the empirical counterparts of the quantile residuals are asymptotically independent with multivari-

ate standard normal distributions and can hence be used for graphical analysis in a similar manner

to the conventional standardized Pearson residuals (Kalliovirta and Saikkonen, 2010, Lemma 3).

We start by estimating linear Gaussian VARs with the autoregressive orders p = 1, ..., 12. BIC is

minimized by the order p = 1, HQIC by the order p = 2, and AIC by the order p = 3, suggest-

ing that the appropriate autoregressive order is likely relatively small. The (adjusted) Portmanteau

test for remaining autocorrelation in the residuals taking into account 20 lags obtains the p-value

0.432, suggesting that the autocorrelation structure of the data is adequately captured by the linear

VAR p = 3 model. In order to assess whether the residuals are heteroskedastic, we apply the Port-

manteau test to the squared (standardized) residuals and obtain a very small p-value (0.00002). To

investigate further, Figure 1 depicts the auto- and crosscorrelation functions of the squared (stan-

dardized) residuals, which clearly show that there is heteroskedasticity remaining in the residuals.

The conclusion of clearly heteroskedastic residuals is not sensitive to the order p nor to using un-

standardized residuals (the Portmanteau test applied for squared residuals obtains a p-value that is

very small for orders p = 1, 2, ..., 12; graphical diagnostic figures are not shown for brevity for

other orders than p = 3).

Hence, we estimate SVAR(p) models with two volatility regimes (M = 2) and p = 1, ..., 4. BIC,

HQIC and AIC are by the order p = 2. The adequacy of model with autoregressive order p = 2 is,
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Model Log-lik BIC HQIC AIC
p = 1,M = 1 −4.597 9.816 9.576 9.416
p = 2,M = 1 −4.435 9.824 9.457 9.211
p = 3,M = 1 −4.363 10.012 9.517 9.185
p = 4,M = 1 −4.312 10.242 9.620 9.202
p = 1,M = 2 −3.743 8.336 8.009 7.789
p = 2,M = 2 −3.540 8.262 7.808 7.503
p = 3,M = 2 −3.495 8.504 7.922 7.531
p = 4,M = 2 −3.495 8.836 8.127 7.650
p = 4,M = 3 −3.216 8.381 7.632 7.129

Table 2: The log-likelihoods and values of the information criteria divided by the number of ob-
servations for the discussed models.

however, rejected by the Portmanteau test (p-value 0.007). The Portmanteau test also rejects the

adequacy of the model with autoregressive order p = 3 with the 5% level of significance (p-value

0.038). The model with autoregressive order p = 4, however, passes the Portmanteau test with the

5% level of significance (p-value 0.065), so it is preferred over the lower order model despite of the

higher values of the information criteria (presented in Table 2 together with the log-likelihoods).

In terms of information criteria, the SVAR(4) model with two volatility regimes is, nonetheless,

clearly superior to the linear one-regime models.

In order to further study the adequacy of our two-regime SVAR(4) model, we examine the quan-

tile residual time series, sample auto- and crosscorrelation functions of the quantile residuals and

squared quantile residuals, and normal quantile-to-quantile plots. The sample auto- and crosscor-

relation functions (presented in Figure 2) show that there is not much auto- or crosscorrelation in

the quantile residuals. A moderate sized autocorrelation coefficients (ACC) at the lag 11 sticks out

for the producer price index. There are also some other moderate sized coefficients, but given that

in total of 316 correlation coefficients are presented, some of them are expected to be moderate

sized for an IID process as well.

Since there is no remaining auto- or crosscorrelation in the quantile residuals, the auto- and cross-

correlation functions of the squared quantile residuals can be used to evaluate the model’s adequacy

to the capture the conditional heteroskedasticity in the series. The sample auto- and crosscorrela-

tion functions of the squared quantile residuals are presented in Figure 2. The GDP, GDP deflator,
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and PPI each have at least one large ACC in their autocorrelation functions, but ACCs of the interest

rate variable are reasonable. There is a moderate large coefficient at lag 12 in the crosscorrelation

function of the interest rate variable and GDP deflator. Notably, the very large ACC in the first

lag of the ACF of the squared quantile residuals of GDP appears to be due to the extreme volatil-

ity caused by the COVID-19 crisis, as it disappears when the COVID-19 period is excluded from

the quantile residuals (not shown). Our two-regime SVAR p = 4 model is therefore somewhat

inadequate to capture the conditional heteroskedasticity in the series.

The quantile residual time series (the top panels of Figure 4) also show some heteroskedasticity and

several outliers in the quantile residuals. There is a particularly large (marginal) quantile residual

of the GDP in the beginning of the COVID-19 crisis, when the COVID-19 lockdown caused a fast

and vast drop in the GDP growth. We do not view this large negative quantile residual of the GDP

as an inadequacy, however, as the COVID-19 drop is known to be caused by an exceptionally large

exogenous shock, and therefore a large (quantile) residual is expected for a correctly specified

model. The normal quantile-quantile-plots (the bottom panels of Figure 4) show that the marginal

quantile residual distributions have excess kurtosis but are quite symmetric. The quantile residuals

of GDP deflator seem slightly skewed to the right and GDP slightly to the left, however.

In our view, the overall adequacy of the model is decent enough for further analysis, although some

of the conditional heteroskedasticity of the series is not captured (largely due to the extreme volatil-

ity in the COVID-19 period). The model’s capability to capture the conditional heteroskedasticity

and marginal distribution of the series can be improved by adding a third regime, so we estimate

a three-regime SVAR p = 4 model. Introducing the third volatility regime to the model turns out

to improve the fit and decrease the values of the information criteria (presented in Table 2). Since

the matrix decomposition (Equation (3.4) in the main paper) assumed for the reduced form error

covariance matrices of the structural model does not necessarily exists for three-regime models,

we test its existence using the likelihood ratio test. The restrictions required for the decomposition

obtain the p-value 0.116 from the test and are not thereby rejected. The auto- and crosscorrela-
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Figure 1: Auto- and crosscorrelation functions of the squared standardized residuals of the fitted
linear Gaussian VAR p = 3 model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients
are omitted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 267 as the first p = 3 observations were used as the initial values) for autocorrelations of IID
observations.

tion functions of the squared quantile residuals, depicted in Figure 5, however, show that some of

the conditional heteroskedasticity is still not captured by the three-regime model. The adequacy

of the three-regime model is also rejected by the Portmanteau test for remaining autocorrelation

(p-value 0.0005). Moreover, since the three-regime model also induces a long-run price puzzle to

the impulse response functions (presented in Figure 6, dot-dashed line with plus signs), the more

parsimonious two-regime model of order p = 4 is preferred as the main specification.
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Figure 2: Auto- and crosscorrelation functions of the quantile residuals of the fitted two-regime
SVAR p = 4 model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are omitted,
as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T (T = 266 as

the first p = 4 observations were used as the initial values) for autocorrelations of IID observations.

Figure 3: Auto- and crosscorrelation functions of the squared quantile residuals of the fitted two-
regime SVAR p = 4 model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are
omitted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 266 as the first p = 4 observations were used as the initial values) for autocorrelations of IID
observations.

12



Figure 4: Quantile residual time series and normal quantile-quantile-plots of the fitted two-regime
SVAR p = 4 model.

Figure 5: Auto- and crosscorrelation functions of the squared quantile residuals of the fitted three-
regime SVAR p = 4 model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are
omitted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 266 as the first p = 4 observations were used as the initial values) for autocorrelations of IID
observations.
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Figure 6: The IRFs of the identified monetary policy shock for the alternative specifications consid-
ered. The IRFs of GDP (top left), GDP deflator (bottom left), and produced price index (top right)
are in 100×log-levels, whereas the IRFs of the interest rate variable (bottom right) is presented in
the original scale.

C.2 Robustness checks

As robustness checks, we consider several alternative model specifications. In each of the model

specifications, the monetary policy shock is identified as the shock that significantly moves the

interest rate variable. In the presence of several alternative such shocks, the one that moves output

or prices to the opposite direction from the interest rate variable deemed as the monetary policy

shock. In each case where the unrestricted estimate of the impact response of output or prices is

positive in response to a contractionary monetary policy shock, a zero restriction is imposed on the

impact response. The impulse response functions estimated for the alternative model specifications

are presented in Figure 6. The IRFs are scaled to correspond to a 25 basis point increase of the in-

terest rate variable. The IRFs of the GDP (top left), GDP deflator (bottom left), and produced price

index (top right) are presented in 100×log-levels, whereas the IRFs of the interest rate variable

(bottom right) is presented in the original scale.
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First, we consider the standard recursively identified linear Gaussian SVAR model with the mone-

tary policy shock ordered last (dashed line with circles). The same autoregressive order p = 4 as in

our benchmark model is preferred over the order p = 3 suggested by AIC, because the linear model

with p = 3 induces a long-run price puzzle, while the p = 4 model produces only a medium-run

price puzzle (prices finally decrease 9 years after the impact).

To investigate whether the results are sensitive to the choice of p in our SVAR with two volatility

regimes, we estimate IRFs for the model with the autoregressive order p = 3 (dotted line with

up-pointing triangles). The IRFs are very similar to our benchmark specification, but the response

of the GDP deflator is slightly positive from the second to the fourth quarter after the impact. To

study how robust our findings are to the number of volatility regimes, we estimate the IRFs for

our SVAR model with three volatility regimes (dot-dashed line with plus signs), and we find a

significant decrease in output but also a long-run price puzzle.

We check how the IRFs change when our identification is strengthened by placing a zero restriction

on the instantaneous response of the GDP deflator to the monetary policy shock (dashed line with x

symbols). Assuming the model is identified also without the zero restriction, it obtains the p-value

0.428 from a likelihood ratio test, so the restriction is not rejected. The IRFs are quite similar to our

benchmark specification with the exception that the zero constraint seems to induce a short-term

price puzzle. We also check whether our results are robust to excluding the COVID-19 period and

fit our two-regime SVAR model to the sub-sample that ends in 2019Q4 (dot-dashed line with tilted

squares). The resulting IRFs are otherwise quite similar to the benchmark specification except that

there is a short-term price puzzle.

In order to see how robust the results are to using alternative methods for detrending the log of the

GDP, we consider the backward-looking Hodrick-Prescott (HP) filter with the standard smoothing

parameter value of 1600 (dashed line with down-pointing triangles) and the linear projection filter

proposed by Hamilton (2018) (dotted line with stars). In both of these specifications, there is a

severe long-run price puzzle. The specification employing the linear projection filter also displays
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Figure 7: The data and time series of the identified monetary policy shocks covering the period
from 1979Q3 to 1982Q4.

a severe production puzzle, as the GDP increases in response to a supposedly contractionary mon-

etary policy shock. With the HP filter, the response of the GDP is negative and humped shaped but

relatively short-lived.

Finally, we study whether the monetary policy shock behaves consistently to its real history around

the Volcker recession in the early 1980’s. Since our model assumes linear autoregressive dynamics,

the reduced form errors and thereby also structural shocks can be recovered from the fitted model.

Figure 7 presents the time series of the identified monetary policy shock together with the four

variables of the data for the period from 1979Q3 to 1982Q4. The figure illustrates that prior to the

Volcker recession in 1979Q3 and 1979Q4 the monetary policy shocks were contractionary. During

the interest rate cuts in 1980 there were expansionary monetary policy shocks, which were fol-

lowed by a large contractionary monetary policy shock when the interest rate was vastly increased

again. Throughout the remainder of the Volcker recession, there were alternating expansionary and

contractionary monetary policy shocks.
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