
ECE264 Spring 2018
Exam 3, 630-730PM, April 10, 2018

Name:

In signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while completing
it. I understand that, if I fail to honor this agreement, I will receive a score
of ZERO for this exam and will be subject to possible disciplinary action.

Signature:

You must sign here. Otherwise you will receive a 1-point penalty.

Read the questions carefully.
Some questions have conditions and restrictions.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No electronic device is allowed. You may not borrow books from other students.

This exam tests two learning objectives:
Recursion (Questions 1-4)
Dynamic Structure (Questions 2-4)
You must obtain 50% or more points in each of the corresponding question to pass the
learning objective.

Remove the top sheet.

Write your answers on page 2.

Return only the top sheet.

1



Contents

1 Shape of Binary Search Trees (20 points) 4

2 Binary Search Tree (20 points) 5

3 Insertion in Binary Search Tree (20 points) 6

4 Reverse Linked List (20 points) 8

5 Merge Two Linked Lists (20 points) 10

Q1 Q2 Q3
A

B

C

D

Q4 Q5
A

B

C

D

2



This page is blank.

3



1 Shape of Binary Search Trees (20 points)

The shape of a binary search tree depends on the order of data.

• If 1, 2, 3 are inserted in the order 1, 2, 3, the binary search tree is shown in Figure 1
(a).

• If the order is 3, 2, 1, the binary search tree is shown in Figure 1 (b).

• If the order is 2, 1, 3, the binary search tree is shown in Figure 1 (c). Please notice
that if the order is 2, 3, 1, the tree is the same.

• If the order is 3, 1, 2, the binary search tree is shown in Figure 1 (d).

(a) (b) (c) (d)

Figure 1: Different shapes of binary search trees.

A: There are 24 (4!) different orders of 1, 2, 3, 4. How many different binary search trees
will these different orders create?

B: There are 120 (5!) different orders of 1, 2, 3, 4, 5. How many different binary search
trees will these different orders create?

C: There are 720 (6!) different orders of 1, 2, 3, 4, 5, 6. How many different binary search
trees will these different orders create?

D: There are 5040 (7!) different orders of 1, 2, 3, 4, 5, 6, 7. How many different binary
search trees will these different orders create?

Answer:
14
42
132
429

4



2 Binary Search Tree (20 points)

Figure 2: Binary Search Tree of 10 Nodes.

A: Using pre-order traversal, what is the sixth number of the ouput?

B: Using post-order traversal, what is the sixth number of the ouput?

C: Assume the insertion function is correct. If 9, 20, 25, and 1 are inserted (in this order)
into the binary search tree shown in Figure 2, what is the tenth number of the output
when using pre-order traversal?

D: Assume the insertion function is correct. If 9, 20, 25, and 1 are inserted (in this order)
into the binary search tree shown in Figure 2, what is the tenth number of the output
when using post-order traversal?

Answer:
14 (15 12 7 4 6 14 33 22 29 37)
29 (6 4 7 14 12 29 22 37 33 15)
22 (15 12 7 4 1 8 9 14 33 22 20 25 29 37)
29 (1 9 8 4 7 14 12 25 20 29 22 37 33 15)

5



3 Insertion in Binary Search Tree (20 points)

Figure 3: Binary Search Tree of 10 Nodes. This is the same as the figure in Q2.

Use the following incorrect implementation of the insert function to insert 7, 14, 22, and 33
(in this order) to the binary search tree shown in Figure 3.

// treeinsert.c1
#include "tree.h"2
#include <stdlib.h>3
static TreeNode * TreeNode_construct(int val)4
{5

TreeNode * tn;6
tn = malloc(sizeof(TreeNode ));7
tn -> left = NULL;8
tn -> right = NULL;9
tn -> value = val;10
return tn;11

}12
13

TreeNode * Tree_insert(TreeNode * tn, int val)14
{15

if (tn == NULL)16
{17

// empty , create a node18
return TreeNode_construct(val);19

}20
// not empty21
if (val == (tn -> value ))22

{23

6



// do not insert the same value24
// <--- ERROR --->25
// should return tn;26
// but does not return anything27

}28
if (val < (tn -> value))29

{30
tn -> left = Tree_insert(tn -> left , val);31

}32
else33

{34
tn -> right = Tree_insert(tn -> right , val);35

}36
return tn;37

}38

A: Using pre-order traversal, what is the first number of the ouput?

B: Using pre-order traversal, what is the last number of the ouput?

C: Using post-order traversal, what is the first number of the ouput?

D: Using post-order traversal, what is the last number of the ouput?

Answer:
Pre-order: 15 12 7 4 8 7 14 14 33 22 29 22 37 33
Post-order: 6 4 7 7 14 14 12 22 29 22 33 37 33 15
A: 15
B: 33
C: 6
D: 15

7



4 Reverse Linked List (20 points)

This program asks you to write a function that reverses a linked list by reversing the in-
dividual links between the nodes. The function’s input argument is the head of the linked
list and returns the head of the reversed linked list. This function should not call malloc.
Figure 4 shows an example list and its reversed form.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4: (a) The original linked list. The list’s head points to A. (b) The reversed linked
list. The list’s head points to E. (c)-(g) Process for reversing a linked list.

8



Please fill the code.

Node * List_reverse(Node * head)1
{2

if (head == NULL)3
{4

// empty list , nothing to do5
return NULL;6

}7
Node * orighead = head;8
Node * revhead = NULL; // must initialize to NULL9
Node * origsec; // will be assigned before using10
while (orighead != NULL)11

{12
// ---> FIX ME <--- A13
// assign orighead ’s next to origsec14

15
16

// ---> FIX ME <--- B17
// assign revhead to orighead ’s next18

19
20

// ---> FIX ME <--- C21
// assign orighead to revhead22

23
// ---> FIX ME <--- D24
// assign origsec to orighead25

26
27

}28
return revhead;29

}30

Answer:

origsec = orighead -> next;

orighead -> next = revhead;

revhead = orighead;

orighead = origsec;

9



5 Merge Two Linked Lists (20 points)

This question asks you to merge two sorted linked lists into a single sorted linked list. An
example of two sorted lists are shown in the figure below.
Merging the two sorted list changes some links. Figure (a) shows an example of two sorted
linked lists. The modified links, as shown in Figure (b), are marked by thicker arrows. In
this example, two links are changed.

(a) (b)

This is another example of two sorted linked lists. Only one link needs to be modified.

(c) (d)

This is yet another example of two sorted linked lists. When they merge, five links need to
be modified.

(e) (f)

Consider two sorted linked lists storing distinct values (i.e., every value is unique).

A: If each list has 2 nodes, what is the minumum number of changed links?

B: If each list has 2 nodes, what is the maximum number of changed links?

C: If each list has 4 nodes, what is the minimum number of changed links?

D: If each list has 4 nodes, what is the maximum number of changed links?

10



Answer:
A: 1
B: 3
C: 1
D: 7

11


