
ECE264 Fall 2019 Exam 3

8-9 PM, November 20

Please keep the answer sheet clean. Do not use the
answer sheet as your scratch space. The answer sheet

should contain only the answers.

Do not write anything that is not the answers.
Otherwise, you may lose points.

Please use DARK ink. If your pen is too light, your
answer may not be graded.

Please write at the center of each box.

1

1 Construct Binary Trees

In HW 15, your program constructs binary trees using in-order and post-order traversals.
Please be aware that a binary tree is not necessarily a binary search tree.

1.1 Tree Construction

Choose every correct statement.
If a statement is correct and you do not choose it, you lose points for that statement.
If a statement is incorrect and you choose it, you lose points for that statement.
This question asks you the condition when a binary tree can be uniquely constructed. The
emphasis is “uniquely”.

1. Given the in-order and the post-order of a binary tree, the tree can be uniquely con-
structed.

2. Given the in-order and the pre-order of a binary tree, the tree can be uniquely con-
structed.

3. Given the in-order and the post-order of a binary tree, the tree can be uniquely con-
structed only if the tree is a binary search tree. If it is not a binary search tree,
in-order and post-order cannot decide a unique binary tree.

4. The last value in the post-order is the root of the binary tree.
5. Given the pre-order and the post-order of a binary tree, the tree can be uniquely

constructed.

1.2 Pre-Order and In-Order

If a binary tree has n nodes and it has the same pre-order and in-order. What is the largest
possible value of n?
Hint: Your answer may be 0, 1, 2, 3, ... , or infinity. You can write ∞ if you prefer.

1.3 Pre-Order and Post-Order

If a binary tree has n nodes and it has the same pre-order and post-order. What is the
largest possible value of n?
Hint: Your answer may be 0, 1, 2, 3, ... , or infinity. You can write ∞ if you prefer.

1.4 Ambiguity of Construction

Given the pre-order and the post-order of a binary tree with n nodes, it is possible that the
tree cannot be uniquely constructed. In other words, it is possible that two different trees
have the same pairs of pre-order and post-order. What is the smallest possible value of n
that has at least two different trees with the same pre-order and post-order?

2

Hint: Your answer may be 0 (pre-order and post-order uniquely decides every binary tree),
1, 2, 3, ... , or infinity. You can write ∞ if you prefer. Please notice that this question does
not ask you the situation when a tree’s pre-order is the same as its post-order.

1.5 Tree Shape

Figure 1: Different shapes of binary trees with three nodes.

Define NL(r) as the number of nodes on the left side of node r; NR(r) is the number of
nodes on the right side of node r. Two trees T1 and T2 have same shape if

• NL(r1) is the same as NL(r2); NR(r1) is the same as NR(r2). Here, r1 and r2 are the
roots of T1 and T2 respectively.

• The left side of r1 has the same shape as the left side of r2.

• The right side of r1 has the same shape as the right side of r2.

Please notice that this definition is recursive. Figure 1 shows four different shapes of binary
trees, each with three nodes.
If a binary tree has n nodes and it has the same in-order and post-order, what is the largest
possible number of shapes?
Answer:

1. 1 2 4: choosing 1, 2, 4 receiving one point each; not chosing 3, 5 receiving one point
each

2. infinity or ∞: if every node has only right child. -2 if any finite value; -3 if zero; -5 if
n (the question asks “What is the largest possible value of n?”)

3. 1. -2 if the answer is 0 or 2

4. 2. -1 point if the answer is 3; -2 points if the answer is 4; -3 if the answer is 1

5. 1: if every node has only left child. -1 if the answer is 0 or 2. -3 any answer with n or
infinity or 3 or 4.

3

2 Binary Search Tree

Consider the following binary search tree.

Figure 2: A binary search tree.

Every question starts from this tree.

2.1 Add Nodes

Add 14 to the binary search tree shown in Figure 2. Consider the pre-order traversal. What
is the sum of the fifth and the sixth values?

2.2 Delete Nodes

Delete 26 from the binary search tree shown in Figure 2. Consider the post-order traversal.
What is the sum of the fifth and the sixth values?

2.3 Delete Nodes using Incorrect Function

Consider the following incorrect function. Do not correct it.

// treedelete.c1
#include "tree.h"2
#include <stdlib.h>3
TreeNode * Tree_delete(TreeNode * tn, int val)4
{5

if (tn == NULL) { return NULL; }6
if (val < (tn -> value))7

{8
tn -> left = Tree_delete(tn -> left , val);9
return tn;10

}11

4

if (val > (tn -> value))12
{13

tn -> right = Tree_delete(tn -> right , val);14
return tn;15

}16
// v is the same as tn -> value17
if (((tn -> left) == NULL) && ((tn -> right) == NULL))18

{19
// tn has no child20
free (tn);21
return NULL;22

}23
if ((tn -> left) == NULL)24

{25
// tn -> right must not be NULL26
TreeNode * rc = tn -> right;27
free (tn);28
return rc;29

}30
if ((tn -> right) == NULL)31

{32
// tn -> left must not be NULL33
TreeNode * lc = tn -> left;34
free (tn);35
return lc;36

}37
// tn have two children38

39
// find the immediate successor40
// The following is correct. It is in a comment.41
// TreeNode * su = tn -> right; // su must not be NULL42
// The following is wrong. This is what is used.43
// DO NOT CORRECT THE MISTAKE.44

45
TreeNode * su = tn; // <-------- ERROR46

47
48

while ((su -> left) != NULL)49
{50

su = su -> left;51
}52

// su is tn ’s immediate successor53

5

// swap their values54
tn -> value = su -> value;55
su -> value = val;56
// delete su57
tn -> right = Tree_delete(tn -> right , val);58
return tn;59

}60

If 7 is deleted from the binary search tree shown in Figure 2. Consider the pre-order traversal.
What is the sum of the third and the fourth values?

2.4 Delete Nodes using Incorrect Function

Continue using the incorrect function shown earlier.
If 10 is deleted from the binary search tree shown in Figure 2. Consider the in-order traversal.
What is the sum of the first and the second values?

2.5 Delete Nodes using Incorrect Function

Continue using the incorrect function shown earlier.
If 16 is deleted from the binary search tree shown in Figure 2. Consider the post-order
traversal. What is the sum of the third and the fourth values?
Answer:

1. 30; -1 if 18 or 44; -2 if 9 or 56.

2. 69; -1 if 32 or 82; -2 if 26 or 65.

3. 18; -1 if 12 or 46; -2 if 29 or 57.

4. 17; -1 if 12; -2 if 9 or 26 or 23 or 18.

5. 32; -1 if 17 or 69; -2 if 9 or 82.

Explanaion of partial credits:

1. 30 = 16 + 14; -1 if 18 = 2 + 16 or 44 = 14 + 30; -2 if 9 = 7 + 2 or 56 = 30 + 26

2. 69 = 22 + 47; -1 if 32 = 10 + 22 or 82 = 47 + 35; -2 if 26 = 16 + 10 or 65 = 35 + 30

3. 18 = 2 + 16; -1 if 12 = 10 + 2 or 46 = 16 + 30; -2 if 29 = 19 + 10 or 57 = 22 + 35.
The bug is not triggered when deleting 7.

4. 17 = 10 + 7; -1 if 12 = 10 + 2; -2 if 9 = 7 + 2 or 26 = 10 + 16 or 23 = 7 + 16 or 18
= 2 + 16. The bug is triggered when deleting 10.

5. 32 = 10 + 22; -1 if 17 = 7 + 10 or 69 = 22 + 47; -2 if 9 = 2 + 7 or 82 = 47 + 35.
The bug is not triggered when deleting 16.

6

3 Infix and Postfix

3.1 Calculate Postfix Expression

What is the result of this postfix expression?

3 5 + 2 1 + * 6 4 - *

3.2 Convert Postfix to Infix

Convert the previous postifx expression to infix. How many pairs of parentheses does this
expression have?

3.3 Convert Infix to Postfix

The following infix expression

(1 + 2 + 3) * (4 + 5 + 6)

is converted to postfix as

1 2 + 3 + 4 5 + 6 + *

If the postfix expession is stored in a linked list, 1 is the first node and * is the eleventh
node.
Convert

(1 + 2 + 3) * (4 + 5) * (6 + 7 + 8)

to postfix expression.
The first * (multiplication) is the xth node and the second * is the yth node. What is x+ y?

3.4 Valid Postfix Expressions

This question considers only binary operator, i.e., needing two operands. A valid postfix
expession is stored in a linked list and this list has n nodes. Consider where an operator (+,
-, *) may appear. Let x be the first possible location where an operator may appear. In
order words, if the first node in the linked list may be an operator, then x is 1. If the first
node in the linked list must not be an operator but the second node may be an operator,
then x is 2. Let y be the last possible location where an operator may appear. What is the
x + y?

7

3.5 True / False

A binary operator needs two operands. For example, in this infix expression 2 * 6, * is
a binary operator. The postfix expression is 2 6 *. This question considers only binary
operators and valid postfix expressions.
Write T (true) or F (false) whether the following statement is correct.

“If a linked list stores a valid postfix expression and the linked
list’s length is n, then n must be a multiple of 3”

“Multiple of 3” means that you can find an integer k such that n = 3k.
Please write only T or F. DO not write anything else. You will receive no point if you
write True, true, False, or false.
Answer:

1. 48

2. 3; -1 if 2 or 4; -2 if 1 or 5

3. 24 or 29; -1 if 23, 28, or 30; -2 if 22, 25, 27, or 31

4. n + 3; -1 if n + 2 or n + 4; -2 if n + 1 or n + 5

5. F

Explanation of partial credits:

1. (3 + 5) * (2 + 1) * (6 - 4)

2. 3 (3 + 5) * (2 + 1) * (6 - 4)

3. 24 or 29: 24 = 9 + 15 because 1 2 + 3 + 4 5 + * 6 7 + 8 + *; 29 = 14 + 15 because
1 2 + 3 + 4 5 + 6 7 + 8 + * *

4. n + 3

5. F, 1 + 2 + 3 becomes 1 2 3 + + and n is 5

8

4 Linked List

This question asks you to write code for detecting whether two linked lists share one or
multiple nodes (i.e., pointing to the same memory addresses). For simplicity, this question
considers only singly linked list; i.e., each node has only the next pointer and no prev

pointer. Consider Figure 3 as an example. Assume both linked lists end with NULL, i.e., not
circular linked list.

Figure 3: Two linked lists share nodes.

Hint: If two nodes reside in different memory addresses, they are not considered sharing
even if they store the same value.

4.1 True / False

Write T (true) or F (false) whether the following statement is correct.

“Two linked lists share nodes if and only if they have the same
last node.”

Please write only T or F. DO not write anything else. You will receive no point if you
write True, true, False, or false.
NULL is not considered a valid node. Thus, two linked lists are not considered sharing because
both end with NULL.

4.2 Find Last Node

Consider this definition of ListNode:

// list.h1
typedef struct lnode2
{3

int value;4
struct lnode * next;5

} ListNode;6

The following function finds the last node of a linked list.

9

// This function returns the last node of a linked list1
// If the linked list is empty (i.e., NULL), return NULL2
#include <list.h>3

4
ListNode * findLast(ListNode * head)5
{6

if (head == NULL) // empty list7
{8

return NULL;9
}10

ListNode * p = head;11
while ((/* <--- ANSWER HERE ---> */) != NULL)12

{13
p = p -> next;14

}15
return p;16

}17

4.3 Determine Sharing

The following function determines whether two linked lists shares one or more nodes.

// Determine whether two linked lists share one or more nodes1
// If they share a node , return true.2
// Otherwise , return false.3
//4
// If both lists are empty , they are not considered sharing.5

6
#include <list.h>7

8
bool shareNode(ListNode * list1 , ListNode * list2)9
{10

ListNode * tail1 = findLast(list1);11
ListNode * tail2 = findLast(list2);12
if ((tail1 != NULL) && (/* <--- ANSWER HERE ---> */))13

{14
return true;15

}16
return false;17

}18

10

4.4 Find First Shared Node

The following functions find the first shared node of two linked lists. If they do not share a
node, this function returns NULL.

#include <list.h>1
// calculate the length of a linked list2
static int findLength(ListNode * head)3
{4

int len = 0;5
while (/* <--- ANSWER D ---> */)6

{7
len ++;8
head = head -> next;9

}10
return len;11

}12
13

// This function finds the first shared nodes in two linked lists14
// return NULL if the two linked lists do not share node (or nodes)15
ListNode * findFirstShare(ListNode * list1 , ListNode * list2)16
{17

// If either linked list is empty (i.e., NULL), return NULL18
if ((list1 == NULL) || (list2 == NULL))19

{20
return NULL;21

}22
// method:23
// 1. find the lengths of the lists , called len1 and len224
// 2. suppose len1 is larger , from the head of list1 , move25
// forward as many as (len1 - len2) nodes26
// 3. move forward list1 and list2 simutaneously until finding27
// the same node28
int len1 = findLength(list1);29
int len2 = findLength(list2);30
ListNode * p1 = list1;31
ListNode * p2 = list2;32
if (len1 < len2)33

{34
// swap the pointers and the lengths35
p1 = list2;36
p2 = list1;37
int temp = len1;38
len1 = len2;39

11

len2 = temp;40
}41

// len1 must be >= len2 now42
while ((len1 > len2) && (p1 != NULL))43

{44
// move forward45
len1 --;46
p1 = p1 -> next;47

}48
// from p1 to NULL has the same number of nodes as49
// from p2 to NULL50
while ((p1 != NULL) && (p2 != NULL))51

{52
if (p1 == p2)53

{54
// <--- ANSWER E --->55

}56
p1 = p1 -> next;57
p2 = p2 -> next;58

}59
return NULL; // do not find same node60

}61

Answer:
T

p -> next

tail1 == tail2

head != NULL

return p1; (or return p2;)

12

