
ECE264 Fall 2019 Final Exam

8-10 AM, December 12
Sections 1 and 2

(Dr. Lu’s sections)

Please keep the answer sheet clean. Do not use the
answer sheet as your scratch space. The answer sheet

should contain only the answers.

Do not write anything that is not the answers.
Otherwise, you may lose points.

Please use DARK ink. If your pen is too light, your
answer may not be graded.

Please write at the center of each box.

Enjoy the Semester Break

1

The values below are decimal.

Value Character Value Character

65 A 97 a

66 B 98 b

67 C 99 c

68 D 100 d

69 E 101 e

70 F 102 f

71 G 103 g

72 H 104 h

73 I 105 i

74 J 106 j

75 K 107 k

76 L 108 l

77 M 109 m

78 N 110 n

79 O 111 o

80 P 112 p

81 Q 113 q

82 R 114 r

83 S 115 s

84 T 116 t

85 U 117 u

86 V 118 v

87 W 119 w

88 X 120 x

89 Y 121 y

90 Z 122 z

2

1 Huffman Compression

1.1 Codes

Consider the following Huffman tree.

Figure 1: Huffman Tree.

What is the code for e?

1.2 Properties and Codes of Huffman Tree

Choose every correct statement.
If a statement is correct and you do not choose it, you lose points for that statement.
If a statement is incorrect and you choose it, you lose points for that statement.

1. The code of every letter has the same number of bits.
2. If one letter appears more frequently than another letter, the code for the first letter

must always be shorter than the code for the second letter.
3. In Figure 1, the frequency of c must be the same as the frequency of f.
4. The shape of a Huffman tree depends on the content to be compressed.
5. The code for a is 110.
6. The code for b is 010.
7. The code for c is 011.

1.3 Express Huffman Tree using Post-Order

If a Huffman tree is expressed using post-order as

1c 1d 1a 0 1b 0 1e 1f 1g 0 0 0 0 0

3

Space is added for clarity. The space does not represent any information.
What is the code for b?

1.4 Bit Expression of Huffman Tree

Continue from the previous question using 1c 1d 1a 0 1b 0 1e 1f 1g 0 0 0 0 0 as the
Huffman Tree. Write the second byte in hexadecimal (i.e., starting with 0X). You do not
need to write 0X. Please refer to the ASCII table earlier in this exam. Each letter uses 8
bits.

1.5 Huffman Compression Data

(This question is not related to 1.3 or 1.4.)
This table shows the codes of letters:

a 0 0
b 0 1
c 1

If the beginning of the information is

a b c a b c c a b a b c ...

here ... means additional letters. Space is added for clarity. The space does not represent
any information.
Write down the second byte in hexadecimal (i.e., starting with 0X). You do not need to
write 0X.
Answer:

1. 101

2. 4

3. 101

4. 0XD9 or 217, it is ok not to include 0X

Explanation: c is 99 = 0110 0011, d is 100 = 0110 0100.

The tree is 1 0110 0011 1 0110 0100 = 1011 0001 1101 1001 00 = 0X--D9.

5. 0XE2 or 226

Explanation

4

Figure 2: Huffman Tree for 1c 1d 1a 0 1b 0 1e 1f 1g 0 0 0 0 0.

a b c a b c c a b a b c ...

00 01 1 00 01 1 1 00 01 00 01 1

Regroup:

0001 1000 1110 0010

5

2 Build Huffman Tree

The following table shows how many times each letter occurs in a file.

Letter Occurrences
a 20
b 6
c 5
d 1
e 24
f 13
g 2

Create the Huffman tree.

2.1 Sibling of f

Which letter is the sibling of f (i.e., sharing the same parent node)? If f’s silbing is not a
letter, please write -.

2.2 Code of e?

What is the code of e?
For your reference, the code of a is 10.

2.3 Code of b?

What is the code of b?
For your reference, the code of c is 0111.

2.4 Code of g

What is the code of g?

2.5 Letter with 2-bit codes

How many letters have 2-bit codes?

6

Answer:

1. -

2. 11

3. 010

4. 01101 or 01100

5. 3: f, a, e

7

(a)

(b) (c)

(d) (e)

8

3 Maze

Consider HW 17 Maze.

#ifndef MAZE_H1
#define MAZE_H2

3
typedef struct4
{5

int * * cells;6
// two dimensional array to store each cell:7
// -1: brick8
// 0: starting point9
// a large number (numrow * numcol + 1): cell not yet visited10
int numcalls; // how many times the move function is called?11
// size of the maze12
int numrow;13
int numcol;14
// starting location15
int startrow;16
int startcol;17

18
// additional attributes if necessary19
// ...20

} Maze;21
22

#endif23

The function findDistance finds the shortest distance from the starting point by calling
move.

#include <stdio.h>1
#include <stdlib.h>2
#include "maze.h"3

4
enum {ORIGIN , EAST , SOUTH , WEST , NORTH };5

6
void printMaze(Maze * maz)7
{8

if (maz == NULL)9
{10

return;11
}12

int indrow;13
int indcol;14

9

for (indrow = 0; indrow < (maz -> numrow); indrow ++)15
{16

for (indcol = 0; indcol < (maz -> numcol); indcol ++)17
{18

printf ("%4d ", (maz -> cells)[indrow][indcol]);19
}20

printf ("\n");21
}22

}23
24

static int canMove(Maze * maz , int row , int col , int dir)25
{26

/* (row , col) is the current location */27
switch (dir)28

{29
case NORTH:30

row --;31
break;32

case SOUTH:33
row ++;34
break;35

case WEST:36
col --;37
break;38

case EAST:39
col ++;40
break;41

}42
// is the index valid?43
if ((row < 0) || (row >= (maz -> numrow))) { return -1; }44
if ((col < 0) || (col >= (maz -> numcol))) { return -1; }45

46
return (maz ->cells)[row][col];47

}48
49

static void move(Maze * maz , int row , int col , int distance)50
{51

int dest;52
(maz -> numcalls) ++;53
(maz -> cells)[row][col] = distance;54
// move if the a neighbor ’s distance is larger than the55
// current distance + 156

10

dest = canMove(maz , row , col , EAST);57
if (dest > (distance + 1))58

{59
move(maz , row , col + 1, distance + 1);60

}61
dest = canMove(maz , row , col , WEST);62
if (dest > (distance + 1))63

{64
move(maz , row , col - 1, distance + 1);65

}66
dest = canMove(maz , row , col , NORTH);67
if (dest > (distance + 1))68

{69
move(maz , row - 1, col , distance + 1);70

}71
dest = canMove(maz , row , col , SOUTH);72
if (dest > (distance + 1))73

{74
move(maz , row + 1, col , distance + 1);75

}76
}77

78
void findDistance(Maze * maz)79
{80

if (maz == NULL)81
{82

return;83
}84

printMaze(maz);85
maz -> numcalls = 0;86
move(maz , maz -> startrow , maz -> startcol , 0);87
printf ("move is called %d times\n", maz -> numcalls);88
printMaze(maz);89

}90

The Maze structure has an integer, numcalls, to count how many times the move function is
called. Please be aware that the move function is called the very first time from the starting
point and the distance of this cell is zero.
For this set of questions, the “correctness” of the program is determined by whether the
output of printMaze called by findDistance at line 89 is correct or not for any valid input.

11

3.1 Simple Maze

Consider this maze (the line numbers are added for your reference and are not parts of the
maze).

bb bb1
bb b2
b b b3
b b b4
bbbsb5
bbbbb6

This is the output of the program:

-1 -1 43 -1 -1

-1 -1 43 43 -1

-1 43 -1 43 -1

-1 43 -1 43 -1

-1 -1 -1 0 -1

-1 -1 -1 -1 -1

move is called ???? times

-1 -1 5 -1 -1

-1 -1 4 3 -1

-1 43 -1 2 -1

-1 43 -1 1 -1

-1 -1 -1 0 -1

-1 -1 -1 -1 -1

How many times has move been called (i.e., what is ???)?

3.2 Complex Maze

Next, consider a complex maze:

b bbbbb1
b b b2
b bsb3
b b b b4
b b b5
bbbbbbb6

This is the output of the program:

-1 49 -1 -1 -1 -1 -1

-1 49 -1 49 49 49 -1

-1 49 49 49 -1 0 -1

12

-1 49 -1 49 -1 49 -1

-1 49 49 -1 49 49 -1

-1 -1 -1 -1 -1 -1 -1

move is called ??? times

-1 8 -1 -1 -1 -1 -1

-1 7 -1 3 2 1 -1

-1 6 5 4 -1 0 -1

-1 7 -1 5 -1 1 -1

-1 8 9 -1 3 2 -1

-1 -1 -1 -1 -1 -1 -1

How many times has move been called (i.e., what is ???)?

3.3 Properties of maze.c

Choose one (only one) correct statement.

1. The move function tries to move in the order of EAST, WEST, NORTH, and SOUTH. If the
order is changed, the move function may be called different numbers of times, even for
the same maze. In order words, the program’s output

move is called ??? times

may have different values at ??? if the order is changed.

2. The move function tries to move in the order of EAST, WEST, NORTH, and SOUTH. If
the order is changed, the shortest distances (the final results) of some cells may be
different, even for the same maze.

3. The program sets the distance for bricks to -1. The program will still function correctly
if the distance for bricks are set to a large positive number, as long as the number is
larger than 2 * number of rows * number of column + 1.

4. The program sets the distance for bricks to -1. If the distance for bricks are set to 0,
the program will not function correctly

5. If a maze has a cell that can be reached by multiple paths, this recursive function move

will not function correctly. It is possible that this recursive function keeps calling itself
indefintely and runs out of the stack memory.

13

3.4 True / False: Where to set distance

Write T (true) or F (false) whether the following statement is correct.

“Currently,
(maz -> cells)[row][col] = distance;

is before the four if blocks.
The program will still function correctly if

(maz -> cells)[row][col] = distance;
is moved after the four if blocks.”

Please write only T or F. DO not write anything else. You will receive no point if you
write True, true, False, or false.

3.5 True / False: Multiple Exits

Each of the two mazes shown above has only one exit at the top.
Write T (true) or F (false) whether the following statement is correct.

“The program will not function correctly if a maze has multiple exits at the
top.

Please write only T or F. DO not write anything else. You will receive no point if you
write True, true, False, or false.
Answer:

1. 6

2. 16

3. 1

4. T

5. F

14

4 Memory Management

Consider HW 18 Memory Management.
Suppose createMemory’s second argument (i.e., size) is 16 to create 16 memory blocks.
This is the state of the memory before calling allocateMemory or freeMemory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- - - - - - - - - - - - - - - -

For your convenience, the following tables are available to write down the process. Please
remember that you must write the answers on the answer sheet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4.1 allocateMemory and freeMemory

Consider the following testing program:

int main(int argc , char * * argv)1
{2

int allocsize [4] = {2, 4, 3, 5}; // allocate four times3
int startmem [4] = {-1}; // starting addresses4
int memsize = 16;5
Memory * mem;6
createMemory (& mem , memsize);7
startmem [0] = allocateMemory(mem , allocsize [0]);8
startmem [1] = allocateMemory(mem , allocsize [1]);9
startmem [2] = allocateMemory(mem , allocsize [2]);10
freeMemory(mem , startmem [1]);11
saveOccupancy(mem , "result1 ");12
startmem [3] = allocateMemory(mem , allocsize [3]);13

15

saveOccupancy(mem , "result2 ");14
destroyMemory(mem);15
return EXIT_SUCCESS;16

}17

After the program finishes,

A. What is the second bit of the second byte in result1?

B. What is the third bit of the second byte in result2?

C. What is the value stored in startmem[1]?

4.2 Allocation Fail (Answer D)

Which of the following sequence will received -1 when calling allocateMemory?
Choose every correct statement if at least one allocateMemory returns -1.
If a statement is correct and you do not choose it, you lose points for that statement.
If a statement is incorrect and you choose it, you lose points for that statement. Use startmem
to store the starting addresses.

int startmem[100] = {-1};

1. startmem[0] = allocateMemory(mem, 4);

startmem[1] = allocateMemory(mem, 4);

startmem[2] = allocateMemory(mem, 4);

startmem[3] = allocateMemory(mem, 4);

startmem[4] = allocateMemory(mem, 4);

2. startmem[0] = allocateMemory(mem, 4);

startmem[1] = allocateMemory(mem, 4);

startmem[2] = allocateMemory(mem, 4);

startmem[3] = allocateMemory(mem, 4);

freeMemory(mem, startmem[1]);

freeMemory(mem, startmem[2]);

freeMemory(mem, startmem[0]);

startmem[1] = allocateMemory(mem, 4);

3. startmem[0] = allocateMemory(mem, 4);

startmem[1] = allocateMemory(mem, 4);

startmem[2] = allocateMemory(mem, 4);

startmem[3] = allocateMemory(mem, 4);

freeMemory(mem, startmem[1]);

freeMemory(mem, startmem[3]);

startmem[1] = allocateMemory(mem, 5);

16

4. startmem[0] = allocateMemory(mem, 4);

startmem[1] = allocateMemory(mem, 3);

startmem[2] = allocateMemory(mem, 5);

startmem[3] = allocateMemory(mem, 4);

freeMemory(mem, startmem[0]);

freeMemory(mem, startmem[2]);

startmem[0] = allocateMemory(mem, 6);

5. startmem[0] = allocateMemory(mem, 3);

startmem[1] = allocateMemory(mem, 4);

startmem[2] = allocateMemory(mem, 3);

startmem[3] = allocateMemory(mem, 5);

freeMemory(mem, startmem[0]);

freeMemory(mem, startmem[3]);

startmem[0] = allocateMemory(mem, 4);

4.3 Allocated Address (Answer E)

Consider the following testing program:

int main(int argc , char * * argv)1
{2

int startmem [10] = {-1}; // starting addresses3
int memsize = 16;4
Memory * mem;5
createMemory (& mem , memsize);6
startmem [0] = allocateMemory(mem , 2);7
startmem [1] = allocateMemory(mem , 3);8
startmem [2] = allocateMemory(mem , 4);9
startmem [3] = allocateMemory(mem , 5);10
freeMemory(mem , startmem [1]);11
freeMemory(mem , startmem [3]);12
startmem [4] = allocateMemory(mem , 4);13
startmem [5] = allocateMemory(mem , 2);14
destroyMemory(mem);15
return EXIT_SUCCESS;16

}17

What is the value of startmem[5] before the program calls return EXIT SUCCESS?
Answer:

1. 0: result1 is 11000011 10000000

2. 1: result2 is 11000011 11111100

17

3. 2

4. 1, 3, 4

5. 2

18

