
ECE264 Fall 2018 Final Exam

330-530 PM, December 10

Please keep the answer sheet clean. Do not use the
answer sheet as your scratch space. The answer sheet

should contain only the answers.

Do not write anything that is not the answers.
Otherwise, you may lose points.

Please use DARK ink. If your pen is too light, your
answer may not be graded.

1

2

1 Huffman Tree

Consider the beginning of the header of a Huffman compressed file is (output of xxd)

bc5e 57a5 86c5 6300 ...

Here ... means more to come (for the rest of the header). For your reference, the output

of xxd -b for the same file is shown below (empty line is added for clarity).

10111100 01011110 01010111 10100101

10000110 11000101 01100011 00000000 ...

When the control bit is 1, it is followed by 8 bits of data as a letter.

A: Which statement is correct?
1. The code for p is 101 (binary).
2. The code for x is 000 (binary).
3. The code for w is 010 (binary).
4. The code for a is 11 (binary).
5. The code for u is 111 (binary).
6. The code for t is 100 (binary).
7. None of the above

B: Which statement is correct?
1. The count of b must be larger than the count of a.
2. The count of x must be larger than the count of z.
3. The count of p must be larger than the count of x.
4. The count of c must not be greater than the count of u.
5. The count of b must not be greater than the count of a.
6. The count of a must not be greater than the count of x.
7. None of the above

C: Which statement is correct?
1. The code for a has the same length as the code for c.
2. The code for a has the same length as the code for x.
3. The code for p has the same length as the code for u.
4. The code for a has the same length as the code for z.
5. The code for b has the same length as the code for w.
6. The code for x has the same length as the code for z.
7. None of the above

3

D: Which statement is correct?
1. Four different letters appear in the original file.
2. Five different letters appear in the original file.
3. Six different letters appear in the original file.
4. Seven different letters appear in the original file.
5. At least eight different letters appear in the original file.
6. It is not possible to use Huffman compression if n different letters appear in the original

file and n is an odd number.
7. It is not possible to use Huffman compression if each letter needs six bits, instead of

eight.
8. None of the above

Answer:
2 5 4 3

4

2 Huffman Compression

Consider the following tree expressing the codes for Huffman compression.

Consider the beginning of the data of a Huffman compressed file is (output of xxd)

bc5e 57a5 86c5 6300 ...

Here ... means more to come. For your reference, the output of xxd -b for the same file is
shown below (empty line is added for clarity).

10111100 01011110 01010111 10100101

10000110 11000101 01100011 00000000 ...

Write down the first, third, fifth, and seventh letters of the data for answers A - D.
Answer:

10: d

111: g

10: d

001: b

01: c

111: g

001: b

01: c

01: c

111: g

0100101 10000110 11000101 01100011 00000000

d d c b

5

3 Shape of Binary Trees

Define NL(n) as the number of nodes on the left side of node n; NR(n) is the number of
nodes on the right side of node n. Two trees T1 and T2 have same shape if

• NL(r1) is the same as NL(r2); NR(r1) is the same as NR(r2). Here, r1 and r2 are the
roots of T1 and T2 respectively.

• The left side of r1 has the same shape as the left side of r2.

• The right side of r1 has the same shape as the right side of r2.

Please notice that this definition is recursive.

The shape of a binary search tree depends on the order of data.

• If 1, 2, 3 are inserted in the order 1, 2, 3, the binary search tree is shown in Figure 1
(a).

• If the order is 3, 2, 1, the binary search tree is shown in Figure 1 (b).

• If the order is 2, 1, 3, the binary search tree is shown in Figure 1 (c). Please notice
that if the order is 2, 3, 1, the tree is the same.

• If the order is 3, 1, 2, the binary search tree is shown in Figure 1 (d).

(a) (b) (c) (d)

Figure 1: Different shapes of binary search trees.

A: There are 24 (4!) different orders of 1, 2, 3, 4. How many different orders can produce
the same shape as the sequence 2, 1, 4, 3 (including 2, 1, 4, 3 itself)?

B: There are 120 (5!) different orders of 1, 2, 3, 4, 5. How many different orders can
produce the same shape as the sequence 4, 2, 3, 1, 5 (including 4, 2, 3, 1, 5 itself)?

6

C: A binary tree (may not be a binary search tree) has 6 nodes. It has the same output
for in-order and pre-order traversal. Each node stores distinct data. What is the
maximum number of different shapes this tree may have? Hint: Your answer may
be 0, 1, 2, 3, infinity.

D: A binary tree (it may not be a binary search tree) has the same output for in-order,
pre-order, and post-order traversal. What is the maximum number of nodes in this
tree? If the tree has more than one nodes, each node stores distinct data. Hint: Your
answer may be 0, 1, 2, 3,, infinity.

Answer:
3: 2 1 4 3, 2 4 3 1, 2 4 3 1
8: 42315, 42351, 42135, 42153, 42513, 42531, 45213, 45231
1: the nodes have only right children
1

7

4 Reverse Linked List

This program asks you to write a function that reverses a linked list by reversing the in-
dividual links between the nodes. The function’s input argument is the head of the linked
list and returns the head of the reversed linked list. This function should not call malloc.
Figure 2 shows an example list and its reversed form.

(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) The original linked list. The list’s head points to A. (b) The reversed linked
list. The list’s head points to E. The steps from (a) to (b) are shown in (c)-(f).

8

Consider the following program with one (or several) mistake(s). A linked list from Figure 2
(a) is given (A is the head node).

#include "list.h"1
Node * List_reverse(Node * head)2
{3

if (head == NULL)4
{5

// empty list , nothing to do6
return NULL;7

}8
9

// Answer C, consider the following three lines of code10
Node * orighead = head; // C.111
Node * revhead = NULL; // C.212
Node * origsec; // C.313
while (orighead != NULL)14

{15
// The following code has one (or several) mistake(s)16
// DO NOT CORRECT THE MISTAKE17
origsec = orighead -> next;18
orighead -> next = revhead;19
orighead = origsec;20
revhead = orighead;21
// <--- Answer D22

}23
return revhead;24

}25

A: Which node is the new head returned by the function?
1. A

2. B

3. C

4. D

5. E

6. Segmentation fault
7. Infinite loop
8. May be different when the program runs again, but the program has no segmentation

fault and no infinite loop
9. None of the above

B: How many nodes’ memory is lost? Your answer may be 0 (no memory leak), 1, 2, 3, 4,
or 5 (all nodes’ memory is lost).

9

C: Can you correct the mistake(s) by removing or reordering the three lines marked as C.1

C.2, and C.3? If the answer is no (reordering or removing these three lines cannot correct
the code), write No. If the answer is yes, write the order that can correct the code. If the
answer is yes, your answer may be something like
C.2, C.1, C.3 (meaning reordering C.2 and C.1)
or
C.1, C.3 (meaning that C.2 should be deleted).

D: Can you add code (location marked for Answer D) to correct the mistake? You can
only add code. You are not allowed to delete anything within while. You are not allowed
to recorder anything within while. You cannot change anywhere else (other than the
correction for Answer C, if you have any). If the answer is no (nothing at this location can
correrct the code), write No. If the answer is yes, write the code that can correct the error.
Answer:
9
5
No.
No

10

5 Integer Partition

A positive integer can be expressed as the sum of a sequence of positive integers, or itself.
Integer partition creates such sequences of integers. For example, 5 can be broken in to
the sum of 1 + 2 + 2 or 2 + 3. These two partitions use different numbers, and thus are
considered unique partitions. The order of the number in the partition is also important.
Thus, 1 + 2 + 2 and 2 + 1 + 2 are considered different partitions because 1 appears in
different positions. Below are some examples of integer partitions:

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1+ 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

In general, number n can be partitioned in 2n−1 different ways. For example, 4 can be
partitioned in 24−1 = 8 different ways.
If 1 cannot be used, 2 can be partitioned in only one way: 2.
If 1 cannot be used, 4 can be partitioned in only two ways: 2 + 2 and 4.

A: If 1 cannot be used, how many ways can 6 be partitioned?

B: If 1 cannot be used, how many ways can 10 be partitioned?

Consider the following program with one mistake.

// partition.c1
#include <stdio.h>2
#include <stdlib.h>3
#include <string.h>4
void printPartition(int * arr , int length)5
{6

int ind;7
for (ind = 0; ind < length - 1; ind ++)8

{9
printf ("%d + ", arr[ind]);10

}11
printf ("%d\n", arr[length - 1]);12

}13
14

void partition(int * arr , int ind , int left)15

11

{16
int val;17
if (left == 0)18

{19
printPartition(arr , ind);20
return; // not necessary21

}22
for (val = 1; val < left; val ++)23

// <---24
// ERROR , should be <=, but it is < here25
// DO NOT CORRECT THE MISTAKE26
// --->27
{28

arr[ind] = val;29
partition(arr , ind + 1, left - val);30

}31
}32

33
int main(int argc , char * argv [])34
{35

if (argc != 2)36
{37

return EXIT_FAILURE;38
}39

int n = (int) strtol(argv[1], NULL , 10);40
if (n <= 0)41

{42
return EXIT_FAILURE;43

}44
int * arr;45
arr = malloc(sizeof(int) * n);46
partition(arr , 0, n);47
free (arr);48
return EXIT_SUCCESS;49

}50

How many lines does this program print when the input number

C: n in main is 6.

D: n in main is 10.
Answer:

5

12

34

0 for both

13

